Identifier
-
Mp00185:
Skew partitions
—cell poset⟶
Posets
Mp00307: Posets —promotion cycle type⟶ Integer partitions
St000228: Integer partitions ⟶ ℤ
Values
[[1],[]] => ([],1) => [1] => 1
[[2],[]] => ([(0,1)],2) => [1] => 1
[[1,1],[]] => ([(0,1)],2) => [1] => 1
[[2,1],[1]] => ([],2) => [2] => 2
[[3],[]] => ([(0,2),(2,1)],3) => [1] => 1
[[2,1],[]] => ([(0,1),(0,2)],3) => [2] => 2
[[3,1],[1]] => ([(1,2)],3) => [3] => 3
[[2,2],[1]] => ([(0,2),(1,2)],3) => [2] => 2
[[3,2],[2]] => ([(1,2)],3) => [3] => 3
[[1,1,1],[]] => ([(0,2),(2,1)],3) => [1] => 1
[[2,2,1],[1,1]] => ([(1,2)],3) => [3] => 3
[[2,1,1],[1]] => ([(1,2)],3) => [3] => 3
[[3,2,1],[2,1]] => ([],3) => [3,3] => 6
[[4],[]] => ([(0,3),(2,1),(3,2)],4) => [1] => 1
[[3,1],[]] => ([(0,2),(0,3),(3,1)],4) => [3] => 3
[[4,1],[1]] => ([(1,2),(2,3)],4) => [4] => 4
[[2,2],[]] => ([(0,1),(0,2),(1,3),(2,3)],4) => [2] => 2
[[3,2],[1]] => ([(0,3),(1,2),(1,3)],4) => [3,2] => 5
[[4,2],[2]] => ([(0,3),(1,2)],4) => [4,2] => 6
[[2,1,1],[]] => ([(0,2),(0,3),(3,1)],4) => [3] => 3
[[3,2,1],[1,1]] => ([(1,2),(1,3)],4) => [8] => 8
[[3,1,1],[1]] => ([(0,3),(1,2)],4) => [4,2] => 6
[[3,3],[2]] => ([(0,3),(1,2),(2,3)],4) => [3] => 3
[[4,3],[3]] => ([(1,2),(2,3)],4) => [4] => 4
[[2,2,1],[1]] => ([(0,3),(1,2),(1,3)],4) => [3,2] => 5
[[3,3,1],[2,1]] => ([(1,3),(2,3)],4) => [8] => 8
[[3,2,1],[2]] => ([(1,2),(1,3)],4) => [8] => 8
[[2,2,2],[1,1]] => ([(0,3),(1,2),(2,3)],4) => [3] => 3
[[3,3,2],[2,2]] => ([(0,3),(1,2)],4) => [4,2] => 6
[[3,2,2],[2,1]] => ([(1,3),(2,3)],4) => [8] => 8
[[1,1,1,1],[]] => ([(0,3),(2,1),(3,2)],4) => [1] => 1
[[2,2,2,1],[1,1,1]] => ([(1,2),(2,3)],4) => [4] => 4
[[2,2,1,1],[1,1]] => ([(0,3),(1,2)],4) => [4,2] => 6
[[2,1,1,1],[1]] => ([(1,2),(2,3)],4) => [4] => 4
[[5],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => [1] => 1
[[4,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => [4] => 4
[[5,1],[1]] => ([(1,4),(3,2),(4,3)],5) => [5] => 5
[[3,2],[]] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => [3,2] => 5
[[4,2],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => [5,4] => 9
[[5,2],[2]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 10
[[3,1,1],[]] => ([(0,3),(0,4),(3,2),(4,1)],5) => [4,2] => 6
[[4,1,1],[1]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 10
[[3,3],[1]] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => [3,2] => 5
[[4,3],[2]] => ([(0,3),(1,2),(1,4),(3,4)],5) => [5,4] => 9
[[5,3],[3]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 10
[[2,2,1],[]] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => [3,2] => 5
[[3,3,1],[1,1]] => ([(1,2),(1,3),(2,4),(3,4)],5) => [5,5] => 10
[[2,1,1,1],[]] => ([(0,2),(0,4),(3,1),(4,3)],5) => [4] => 4
[[3,1,1,1],[1]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 10
[[4,4],[3]] => ([(0,4),(1,2),(2,3),(3,4)],5) => [4] => 4
[[5,4],[4]] => ([(1,4),(3,2),(4,3)],5) => [5] => 5
[[2,2,2],[1]] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => [3,2] => 5
[[3,2,2],[2]] => ([(1,2),(1,3),(2,4),(3,4)],5) => [5,5] => 10
[[2,2,1,1],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => [5,4] => 9
[[3,3,3],[2,2]] => ([(0,3),(1,2),(2,4),(3,4)],5) => [4,2] => 6
[[4,4,3],[3,3]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 10
[[2,2,2,1],[1,1]] => ([(0,3),(1,2),(1,4),(3,4)],5) => [5,4] => 9
[[2,2,2,2],[1,1,1]] => ([(0,4),(1,2),(2,3),(3,4)],5) => [4] => 4
[[3,3,3,2],[2,2,2]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 10
[[1,1,1,1,1],[]] => ([(0,4),(2,3),(3,1),(4,2)],5) => [1] => 1
[[2,2,2,2,1],[1,1,1,1]] => ([(1,4),(3,2),(4,3)],5) => [5] => 5
[[2,2,2,1,1],[1,1,1]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 10
[[2,2,1,1,1],[1,1]] => ([(0,3),(1,4),(4,2)],5) => [5,5] => 10
[[2,1,1,1,1],[1]] => ([(1,4),(3,2),(4,3)],5) => [5] => 5
[[6],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [1] => 1
[[5,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => [5] => 5
[[6,1],[1]] => ([(1,5),(3,4),(4,2),(5,3)],6) => [6] => 6
[[4,2],[]] => ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => [5,4] => 9
[[4,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => [5,5] => 10
[[3,3],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [3,2] => 5
[[3,1,1,1],[]] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => [5,5] => 10
[[4,4],[2]] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6) => [5,4] => 9
[[2,2,2],[]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [3,2] => 5
[[2,2,1,1],[]] => ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => [5,4] => 9
[[2,1,1,1,1],[]] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => [5] => 5
[[5,5],[4]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => [5] => 5
[[6,5],[5]] => ([(1,5),(3,4),(4,2),(5,3)],6) => [6] => 6
[[4,4,4],[3,3]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => [5,5] => 10
[[2,2,2,2],[1,1]] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6) => [5,4] => 9
[[3,3,3,3],[2,2,2]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => [5,5] => 10
[[2,2,2,2,2],[1,1,1,1]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => [5] => 5
[[1,1,1,1,1,1],[]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [1] => 1
[[2,2,2,2,2,1],[1,1,1,1,1]] => ([(1,5),(3,4),(4,2),(5,3)],6) => [6] => 6
[[2,1,1,1,1,1],[1]] => ([(1,5),(3,4),(4,2),(5,3)],6) => [6] => 6
[[7],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => [1] => 1
[[6,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7) => [6] => 6
[[7,1],[1]] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7) => [7] => 7
[[2,1,1,1,1,1],[]] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7) => [6] => 6
[[6,6],[5]] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7) => [6] => 6
[[7,6],[6]] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7) => [7] => 7
[[2,2,2,2,2,2],[1,1,1,1,1]] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7) => [6] => 6
[[1,1,1,1,1,1,1],[]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => [1] => 1
[[2,2,2,2,2,2,1],[1,1,1,1,1,1]] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7) => [7] => 7
[[2,1,1,1,1,1,1],[1]] => ([(1,6),(3,5),(4,3),(5,2),(6,4)],7) => [7] => 7
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The size of a partition.
This statistic is the constant statistic of the level sets.
This statistic is the constant statistic of the level sets.
Map
promotion cycle type
Description
The cycle type of promotion on the linear extensions of a poset.
Map
cell poset
Description
The Young diagram of a skew partition regarded as a poset.
This is the poset on the cells of the Young diagram, such that a cell $d$ is greater than a cell $c$ if the entry in $d$ must be larger than the entry of $c$ in any standard Young tableau on the skew partition.
This is the poset on the cells of the Young diagram, such that a cell $d$ is greater than a cell $c$ if the entry in $d$ must be larger than the entry of $c$ in any standard Young tableau on the skew partition.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!