Identifier
-
Mp00307:
Posets
—promotion cycle type⟶
Integer partitions
St000228: Integer partitions ⟶ ℤ
Values
([],1) => [1] => 1
([],2) => [2] => 2
([(0,1)],2) => [1] => 1
([],3) => [3,3] => 6
([(1,2)],3) => [3] => 3
([(0,1),(0,2)],3) => [2] => 2
([(0,2),(2,1)],3) => [1] => 1
([(0,2),(1,2)],3) => [2] => 2
([(1,2),(1,3)],4) => [8] => 8
([(0,1),(0,2),(0,3)],4) => [3,3] => 6
([(0,2),(0,3),(3,1)],4) => [3] => 3
([(0,1),(0,2),(1,3),(2,3)],4) => [2] => 2
([(1,2),(2,3)],4) => [4] => 4
([(0,3),(3,1),(3,2)],4) => [2] => 2
([(1,3),(2,3)],4) => [8] => 8
([(0,3),(1,3),(3,2)],4) => [2] => 2
([(0,3),(1,3),(2,3)],4) => [3,3] => 6
([(0,3),(1,2)],4) => [4,2] => 6
([(0,3),(1,2),(1,3)],4) => [3,2] => 5
([(0,2),(0,3),(1,2),(1,3)],4) => [2,2] => 4
([(0,3),(2,1),(3,2)],4) => [1] => 1
([(0,3),(1,2),(2,3)],4) => [3] => 3
([(0,1),(0,2),(0,3),(2,4),(3,4)],5) => [8] => 8
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => [3,3] => 6
([(0,3),(0,4),(4,1),(4,2)],5) => [8] => 8
([(1,2),(1,3),(2,4),(3,4)],5) => [5,5] => 10
([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => [2] => 2
([(0,3),(0,4),(3,2),(4,1)],5) => [4,2] => 6
([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => [3,2] => 5
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5) => [2,2] => 4
([(1,4),(4,2),(4,3)],5) => [5,5] => 10
([(0,4),(4,1),(4,2),(4,3)],5) => [3,3] => 6
([(1,4),(2,4),(4,3)],5) => [5,5] => 10
([(0,4),(1,4),(4,2),(4,3)],5) => [2,2] => 4
([(0,4),(1,4),(2,4),(4,3)],5) => [3,3] => 6
([(0,4),(1,4),(2,3),(4,2)],5) => [2] => 2
([(0,4),(1,3),(2,3),(3,4)],5) => [8] => 8
([(0,4),(1,2),(1,4),(2,3)],5) => [5,4] => 9
([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => [3,2] => 5
([(0,3),(0,4),(1,3),(1,4),(4,2)],5) => [6] => 6
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5) => [2,2] => 4
([(0,4),(1,2),(1,4),(4,3)],5) => [7] => 7
([(0,2),(0,4),(3,1),(4,3)],5) => [4] => 4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => [3] => 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [8] => 8
([(0,3),(0,4),(1,2),(1,3),(2,4)],5) => [5,3] => 8
([(0,3),(1,2),(1,4),(3,4)],5) => [5,4] => 9
([(0,3),(0,4),(1,2),(2,3),(2,4)],5) => [6] => 6
([(1,4),(3,2),(4,3)],5) => [5] => 5
([(0,3),(3,4),(4,1),(4,2)],5) => [2] => 2
([(0,4),(1,2),(2,4),(4,3)],5) => [3] => 3
([(0,3),(1,4),(4,2)],5) => [5,5] => 10
([(0,4),(3,2),(4,1),(4,3)],5) => [3] => 3
([(0,4),(1,2),(2,3),(2,4)],5) => [7] => 7
([(0,4),(2,3),(3,1),(4,2)],5) => [1] => 1
([(0,3),(1,2),(2,4),(3,4)],5) => [4,2] => 6
([(0,4),(1,2),(2,3),(3,4)],5) => [4] => 4
([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => [2] => 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => [3,3] => 6
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => [8] => 8
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6) => [5,5] => 10
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6) => [2,2] => 4
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6) => [6] => 6
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => [2,2] => 4
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6) => [7] => 7
([(0,4),(4,5),(5,1),(5,2),(5,3)],6) => [3,3] => 6
([(0,5),(1,5),(2,5),(3,4),(5,3)],6) => [3,3] => 6
([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => [8] => 8
([(0,5),(1,5),(4,2),(5,3),(5,4)],6) => [6] => 6
([(0,5),(1,5),(4,2),(4,3),(5,4)],6) => [2,2] => 4
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6) => [5,5] => 10
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => [4,2] => 6
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => [8] => 8
([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => [2] => 2
([(0,4),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => [8] => 8
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6) => [5,5] => 10
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => [3,3] => 6
([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => [5,5] => 10
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6) => [2,2] => 4
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6) => [6,2,2] => 10
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6) => [3,2] => 5
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6) => [6,2,2] => 10
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6) => [2,2,2,2] => 8
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6) => [4,4] => 8
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6) => [2,2] => 4
([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6) => [6] => 6
([(0,3),(0,4),(4,5),(5,1),(5,2)],6) => [5,5] => 10
([(0,4),(0,5),(3,2),(4,3),(5,1)],6) => [5,5] => 10
([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => [5,4] => 9
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [3,2] => 5
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6) => [5,4] => 9
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6) => [5,3] => 8
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => [3] => 3
([(0,5),(1,2),(1,3),(2,5),(3,5),(5,4)],6) => [8] => 8
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => [4] => 4
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => [2] => 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6) => [5,5] => 10
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6) => [5,3] => 8
([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6) => [6] => 6
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6) => [7] => 7
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6) => [3,3,3] => 9
>>> Load all 249 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The size of a partition.
This statistic is the constant statistic of the level sets.
This statistic is the constant statistic of the level sets.
Map
promotion cycle type
Description
The cycle type of promotion on the linear extensions of a poset.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!