Processing math: 100%

Values
[1] => [1] => [[1]] => 0
[2] => [1,1] => [[1],[2]] => 1
[1,1] => [2] => [[1,2]] => 0
[3] => [1,1,1] => [[1],[2],[3]] => 3
[2,1] => [2,1] => [[1,2],[3]] => 1
[1,1,1] => [3] => [[1,2,3]] => 0
[4] => [1,1,1,1] => [[1],[2],[3],[4]] => 6
[3,1] => [2,1,1] => [[1,2],[3],[4]] => 3
[2,2] => [2,2] => [[1,2],[3,4]] => 2
[2,1,1] => [3,1] => [[1,2,3],[4]] => 1
[1,1,1,1] => [4] => [[1,2,3,4]] => 0
[5] => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 10
[4,1] => [2,1,1,1] => [[1,2],[3],[4],[5]] => 6
[3,2] => [2,2,1] => [[1,2],[3,4],[5]] => 4
[3,1,1] => [3,1,1] => [[1,2,3],[4],[5]] => 3
[2,2,1] => [3,2] => [[1,2,3],[4,5]] => 2
[2,1,1,1] => [4,1] => [[1,2,3,4],[5]] => 1
[1,1,1,1,1] => [5] => [[1,2,3,4,5]] => 0
[6] => [1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => 15
[5,1] => [2,1,1,1,1] => [[1,2],[3],[4],[5],[6]] => 10
[4,2] => [2,2,1,1] => [[1,2],[3,4],[5],[6]] => 7
[4,1,1] => [3,1,1,1] => [[1,2,3],[4],[5],[6]] => 6
[3,3] => [2,2,2] => [[1,2],[3,4],[5,6]] => 6
[3,2,1] => [3,2,1] => [[1,2,3],[4,5],[6]] => 4
[3,1,1,1] => [4,1,1] => [[1,2,3,4],[5],[6]] => 3
[2,2,2] => [3,3] => [[1,2,3],[4,5,6]] => 3
[2,2,1,1] => [4,2] => [[1,2,3,4],[5,6]] => 2
[2,1,1,1,1] => [5,1] => [[1,2,3,4,5],[6]] => 1
[1,1,1,1,1,1] => [6] => [[1,2,3,4,5,6]] => 0
[7] => [1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => 21
[6,1] => [2,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7]] => 15
[5,2] => [2,2,1,1,1] => [[1,2],[3,4],[5],[6],[7]] => 11
[5,1,1] => [3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => 10
[4,3] => [2,2,2,1] => [[1,2],[3,4],[5,6],[7]] => 9
[4,2,1] => [3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => 7
[4,1,1,1] => [4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => 6
[3,3,1] => [3,2,2] => [[1,2,3],[4,5],[6,7]] => 6
[3,2,2] => [3,3,1] => [[1,2,3],[4,5,6],[7]] => 5
[3,2,1,1] => [4,2,1] => [[1,2,3,4],[5,6],[7]] => 4
[3,1,1,1,1] => [5,1,1] => [[1,2,3,4,5],[6],[7]] => 3
[2,2,2,1] => [4,3] => [[1,2,3,4],[5,6,7]] => 3
[2,2,1,1,1] => [5,2] => [[1,2,3,4,5],[6,7]] => 2
[2,1,1,1,1,1] => [6,1] => [[1,2,3,4,5,6],[7]] => 1
[1,1,1,1,1,1,1] => [7] => [[1,2,3,4,5,6,7]] => 0
[8] => [1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8]] => 28
[7,1] => [2,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8]] => 21
[6,2] => [2,2,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8]] => 16
[6,1,1] => [3,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8]] => 15
[5,3] => [2,2,2,1,1] => [[1,2],[3,4],[5,6],[7],[8]] => 13
[5,2,1] => [3,2,1,1,1] => [[1,2,3],[4,5],[6],[7],[8]] => 11
[5,1,1,1] => [4,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8]] => 10
[4,4] => [2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => 12
[4,3,1] => [3,2,2,1] => [[1,2,3],[4,5],[6,7],[8]] => 9
[4,2,2] => [3,3,1,1] => [[1,2,3],[4,5,6],[7],[8]] => 8
[4,2,1,1] => [4,2,1,1] => [[1,2,3,4],[5,6],[7],[8]] => 7
[4,1,1,1,1] => [5,1,1,1] => [[1,2,3,4,5],[6],[7],[8]] => 6
[3,3,2] => [3,3,2] => [[1,2,3],[4,5,6],[7,8]] => 7
[3,3,1,1] => [4,2,2] => [[1,2,3,4],[5,6],[7,8]] => 6
[3,2,2,1] => [4,3,1] => [[1,2,3,4],[5,6,7],[8]] => 5
[3,2,1,1,1] => [5,2,1] => [[1,2,3,4,5],[6,7],[8]] => 4
[3,1,1,1,1,1] => [6,1,1] => [[1,2,3,4,5,6],[7],[8]] => 3
[2,2,2,2] => [4,4] => [[1,2,3,4],[5,6,7,8]] => 4
[2,2,2,1,1] => [5,3] => [[1,2,3,4,5],[6,7,8]] => 3
[2,2,1,1,1,1] => [6,2] => [[1,2,3,4,5,6],[7,8]] => 2
[2,1,1,1,1,1,1] => [7,1] => [[1,2,3,4,5,6,7],[8]] => 1
[1,1,1,1,1,1,1,1] => [8] => [[1,2,3,4,5,6,7,8]] => 0
[9] => [1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => 36
[8,1] => [2,1,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8],[9]] => 28
[7,2] => [2,2,1,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8],[9]] => 22
[7,1,1] => [3,1,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8],[9]] => 21
[6,3] => [2,2,2,1,1,1] => [[1,2],[3,4],[5,6],[7],[8],[9]] => 18
[6,2,1] => [3,2,1,1,1,1] => [[1,2,3],[4,5],[6],[7],[8],[9]] => 16
[6,1,1,1] => [4,1,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8],[9]] => 15
[5,4] => [2,2,2,2,1] => [[1,2],[3,4],[5,6],[7,8],[9]] => 16
[5,3,1] => [3,2,2,1,1] => [[1,2,3],[4,5],[6,7],[8],[9]] => 13
[5,2,2] => [3,3,1,1,1] => [[1,2,3],[4,5,6],[7],[8],[9]] => 12
[5,2,1,1] => [4,2,1,1,1] => [[1,2,3,4],[5,6],[7],[8],[9]] => 11
[5,1,1,1,1] => [5,1,1,1,1] => [[1,2,3,4,5],[6],[7],[8],[9]] => 10
[4,4,1] => [3,2,2,2] => [[1,2,3],[4,5],[6,7],[8,9]] => 12
[4,3,2] => [3,3,2,1] => [[1,2,3],[4,5,6],[7,8],[9]] => 10
[4,3,1,1] => [4,2,2,1] => [[1,2,3,4],[5,6],[7,8],[9]] => 9
[4,2,2,1] => [4,3,1,1] => [[1,2,3,4],[5,6,7],[8],[9]] => 8
[4,2,1,1,1] => [5,2,1,1] => [[1,2,3,4,5],[6,7],[8],[9]] => 7
[4,1,1,1,1,1] => [6,1,1,1] => [[1,2,3,4,5,6],[7],[8],[9]] => 6
[3,3,3] => [3,3,3] => [[1,2,3],[4,5,6],[7,8,9]] => 9
[3,3,2,1] => [4,3,2] => [[1,2,3,4],[5,6,7],[8,9]] => 7
[3,3,1,1,1] => [5,2,2] => [[1,2,3,4,5],[6,7],[8,9]] => 6
[3,2,2,2] => [4,4,1] => [[1,2,3,4],[5,6,7,8],[9]] => 6
[3,2,2,1,1] => [5,3,1] => [[1,2,3,4,5],[6,7,8],[9]] => 5
[3,2,1,1,1,1] => [6,2,1] => [[1,2,3,4,5,6],[7,8],[9]] => 4
[3,1,1,1,1,1,1] => [7,1,1] => [[1,2,3,4,5,6,7],[8],[9]] => 3
[2,2,2,2,1] => [5,4] => [[1,2,3,4,5],[6,7,8,9]] => 4
[2,2,2,1,1,1] => [6,3] => [[1,2,3,4,5,6],[7,8,9]] => 3
[2,2,1,1,1,1,1] => [7,2] => [[1,2,3,4,5,6,7],[8,9]] => 2
[2,1,1,1,1,1,1,1] => [8,1] => [[1,2,3,4,5,6,7,8],[9]] => 1
[1,1,1,1,1,1,1,1,1] => [9] => [[1,2,3,4,5,6,7,8,9]] => 0
[10] => [1,1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]] => 45
[9,1] => [2,1,1,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8],[9],[10]] => 36
[8,2] => [2,2,1,1,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8],[9],[10]] => 29
[8,1,1] => [3,1,1,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8],[9],[10]] => 28
[7,3] => [2,2,2,1,1,1,1] => [[1,2],[3,4],[5,6],[7],[8],[9],[10]] => 24
>>> Load all 191 entries. <<<
[7,2,1] => [3,2,1,1,1,1,1] => [[1,2,3],[4,5],[6],[7],[8],[9],[10]] => 22
[7,1,1,1] => [4,1,1,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8],[9],[10]] => 21
[6,4] => [2,2,2,2,1,1] => [[1,2],[3,4],[5,6],[7,8],[9],[10]] => 21
[6,3,1] => [3,2,2,1,1,1] => [[1,2,3],[4,5],[6,7],[8],[9],[10]] => 18
[6,2,2] => [3,3,1,1,1,1] => [[1,2,3],[4,5,6],[7],[8],[9],[10]] => 17
[6,2,1,1] => [4,2,1,1,1,1] => [[1,2,3,4],[5,6],[7],[8],[9],[10]] => 16
[6,1,1,1,1] => [5,1,1,1,1,1] => [[1,2,3,4,5],[6],[7],[8],[9],[10]] => 15
[5,5] => [2,2,2,2,2] => [[1,2],[3,4],[5,6],[7,8],[9,10]] => 20
[5,4,1] => [3,2,2,2,1] => [[1,2,3],[4,5],[6,7],[8,9],[10]] => 16
[5,3,2] => [3,3,2,1,1] => [[1,2,3],[4,5,6],[7,8],[9],[10]] => 14
[5,3,1,1] => [4,2,2,1,1] => [[1,2,3,4],[5,6],[7,8],[9],[10]] => 13
[5,2,2,1] => [4,3,1,1,1] => [[1,2,3,4],[5,6,7],[8],[9],[10]] => 12
[5,2,1,1,1] => [5,2,1,1,1] => [[1,2,3,4,5],[6,7],[8],[9],[10]] => 11
[5,1,1,1,1,1] => [6,1,1,1,1] => [[1,2,3,4,5,6],[7],[8],[9],[10]] => 10
[4,4,2] => [3,3,2,2] => [[1,2,3],[4,5,6],[7,8],[9,10]] => 13
[4,4,1,1] => [4,2,2,2] => [[1,2,3,4],[5,6],[7,8],[9,10]] => 12
[4,3,3] => [3,3,3,1] => [[1,2,3],[4,5,6],[7,8,9],[10]] => 12
[4,3,2,1] => [4,3,2,1] => [[1,2,3,4],[5,6,7],[8,9],[10]] => 10
[4,3,1,1,1] => [5,2,2,1] => [[1,2,3,4,5],[6,7],[8,9],[10]] => 9
[4,2,2,2] => [4,4,1,1] => [[1,2,3,4],[5,6,7,8],[9],[10]] => 9
[4,2,2,1,1] => [5,3,1,1] => [[1,2,3,4,5],[6,7,8],[9],[10]] => 8
[4,2,1,1,1,1] => [6,2,1,1] => [[1,2,3,4,5,6],[7,8],[9],[10]] => 7
[4,1,1,1,1,1,1] => [7,1,1,1] => [[1,2,3,4,5,6,7],[8],[9],[10]] => 6
[3,3,3,1] => [4,3,3] => [[1,2,3,4],[5,6,7],[8,9,10]] => 9
[3,3,2,2] => [4,4,2] => [[1,2,3,4],[5,6,7,8],[9,10]] => 8
[3,3,2,1,1] => [5,3,2] => [[1,2,3,4,5],[6,7,8],[9,10]] => 7
[3,3,1,1,1,1] => [6,2,2] => [[1,2,3,4,5,6],[7,8],[9,10]] => 6
[3,2,2,2,1] => [5,4,1] => [[1,2,3,4,5],[6,7,8,9],[10]] => 6
[3,2,2,1,1,1] => [6,3,1] => [[1,2,3,4,5,6],[7,8,9],[10]] => 5
[3,2,1,1,1,1,1] => [7,2,1] => [[1,2,3,4,5,6,7],[8,9],[10]] => 4
[3,1,1,1,1,1,1,1] => [8,1,1] => [[1,2,3,4,5,6,7,8],[9],[10]] => 3
[2,2,2,2,2] => [5,5] => [[1,2,3,4,5],[6,7,8,9,10]] => 5
[2,2,2,2,1,1] => [6,4] => [[1,2,3,4,5,6],[7,8,9,10]] => 4
[2,2,2,1,1,1,1] => [7,3] => [[1,2,3,4,5,6,7],[8,9,10]] => 3
[2,2,1,1,1,1,1,1] => [8,2] => [[1,2,3,4,5,6,7,8],[9,10]] => 2
[2,1,1,1,1,1,1,1,1] => [9,1] => [[1,2,3,4,5,6,7,8,9],[10]] => 1
[1,1,1,1,1,1,1,1,1,1] => [10] => [[1,2,3,4,5,6,7,8,9,10]] => 0
[5,4,2] => [3,3,2,2,1] => [[1,2,3],[4,5,6],[7,8],[9,10],[11]] => 17
[5,4,1,1] => [4,2,2,2,1] => [[1,2,3,4],[5,6],[7,8],[9,10],[11]] => 16
[5,3,3] => [3,3,3,1,1] => [[1,2,3],[4,5,6],[7,8,9],[10],[11]] => 16
[5,3,2,1] => [4,3,2,1,1] => [[1,2,3,4],[5,6,7],[8,9],[10],[11]] => 14
[5,3,1,1,1] => [5,2,2,1,1] => [[1,2,3,4,5],[6,7],[8,9],[10],[11]] => 13
[5,2,2,2] => [4,4,1,1,1] => [[1,2,3,4],[5,6,7,8],[9],[10],[11]] => 13
[5,2,2,1,1] => [5,3,1,1,1] => [[1,2,3,4,5],[6,7,8],[9],[10],[11]] => 12
[4,4,3] => [3,3,3,2] => [[1,2,3],[4,5,6],[7,8,9],[10,11]] => 15
[4,4,2,1] => [4,3,2,2] => [[1,2,3,4],[5,6,7],[8,9],[10,11]] => 13
[4,4,1,1,1] => [5,2,2,2] => [[1,2,3,4,5],[6,7],[8,9],[10,11]] => 12
[4,3,3,1] => [4,3,3,1] => [[1,2,3,4],[5,6,7],[8,9,10],[11]] => 12
[4,3,2,2] => [4,4,2,1] => [[1,2,3,4],[5,6,7,8],[9,10],[11]] => 11
[4,3,2,1,1] => [5,3,2,1] => [[1,2,3,4,5],[6,7,8],[9,10],[11]] => 10
[4,2,2,2,1] => [5,4,1,1] => [[1,2,3,4,5],[6,7,8,9],[10],[11]] => 9
[3,3,3,2] => [4,4,3] => [[1,2,3,4],[5,6,7,8],[9,10,11]] => 10
[3,3,3,1,1] => [5,3,3] => [[1,2,3,4,5],[6,7,8],[9,10,11]] => 9
[3,3,2,2,1] => [5,4,2] => [[1,2,3,4,5],[6,7,8,9],[10,11]] => 8
[6,6] => [2,2,2,2,2,2] => [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]] => 30
[6,4,2] => [3,3,2,2,1,1] => [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]] => 22
[5,4,3] => [3,3,3,2,1] => [[1,2,3],[4,5,6],[7,8,9],[10,11],[12]] => 19
[5,4,2,1] => [4,3,2,2,1] => [[1,2,3,4],[5,6,7],[8,9],[10,11],[12]] => 17
[5,4,1,1,1] => [5,2,2,2,1] => [[1,2,3,4,5],[6,7],[8,9],[10,11],[12]] => 16
[5,3,3,1] => [4,3,3,1,1] => [[1,2,3,4],[5,6,7],[8,9,10],[11],[12]] => 16
[5,3,2,2] => [4,4,2,1,1] => [[1,2,3,4],[5,6,7,8],[9,10],[11],[12]] => 15
[5,3,2,1,1] => [5,3,2,1,1] => [[1,2,3,4,5],[6,7,8],[9,10],[11],[12]] => 14
[5,2,2,2,1] => [5,4,1,1,1] => [[1,2,3,4,5],[6,7,8,9],[10],[11],[12]] => 13
[4,4,3,1] => [4,3,3,2] => [[1,2,3,4],[5,6,7],[8,9,10],[11,12]] => 15
[4,4,2,2] => [4,4,2,2] => [[1,2,3,4],[5,6,7,8],[9,10],[11,12]] => 14
[4,4,2,1,1] => [5,3,2,2] => [[1,2,3,4,5],[6,7,8],[9,10],[11,12]] => 13
[4,3,3,2] => [4,4,3,1] => [[1,2,3,4],[5,6,7,8],[9,10,11],[12]] => 13
[4,3,3,1,1] => [5,3,3,1] => [[1,2,3,4,5],[6,7,8],[9,10,11],[12]] => 12
[4,3,2,2,1] => [5,4,2,1] => [[1,2,3,4,5],[6,7,8,9],[10,11],[12]] => 11
[3,3,3,2,1] => [5,4,3] => [[1,2,3,4,5],[6,7,8,9],[10,11,12]] => 10
[3,3,2,2,1,1] => [6,4,2] => [[1,2,3,4,5,6],[7,8,9,10],[11,12]] => 8
[2,2,2,2,2,2] => [6,6] => [[1,2,3,4,5,6],[7,8,9,10,11,12]] => 6
[1,1,1,1,1,1,1,1,1,1,1,1] => [12] => [[1,2,3,4,5,6,7,8,9,10,11,12]] => 0
[5,4,3,1] => [4,3,3,2,1] => [[1,2,3,4],[5,6,7],[8,9,10],[11,12],[13]] => 19
[5,4,2,2] => [4,4,2,2,1] => [[1,2,3,4],[5,6,7,8],[9,10],[11,12],[13]] => 18
[5,4,2,1,1] => [5,3,2,2,1] => [[1,2,3,4,5],[6,7,8],[9,10],[11,12],[13]] => 17
[5,3,3,2] => [4,4,3,1,1] => [[1,2,3,4],[5,6,7,8],[9,10,11],[12],[13]] => 17
[5,3,3,1,1] => [5,3,3,1,1] => [[1,2,3,4,5],[6,7,8],[9,10,11],[12],[13]] => 16
[5,3,2,2,1] => [5,4,2,1,1] => [[1,2,3,4,5],[6,7,8,9],[10,11],[12],[13]] => 15
[4,4,3,2] => [4,4,3,2] => [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13]] => 16
[4,4,3,1,1] => [5,3,3,2] => [[1,2,3,4,5],[6,7,8],[9,10,11],[12,13]] => 15
[4,4,2,2,1] => [5,4,2,2] => [[1,2,3,4,5],[6,7,8,9],[10,11],[12,13]] => 14
[4,3,3,2,1] => [5,4,3,1] => [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13]] => 13
[5,4,3,2] => [4,4,3,2,1] => [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13],[14]] => 20
[5,4,3,1,1] => [5,3,3,2,1] => [[1,2,3,4,5],[6,7,8],[9,10,11],[12,13],[14]] => 19
[5,4,2,2,1] => [5,4,2,2,1] => [[1,2,3,4,5],[6,7,8,9],[10,11],[12,13],[14]] => 18
[5,3,3,2,1] => [5,4,3,1,1] => [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13],[14]] => 17
[4,4,3,2,1] => [5,4,3,2] => [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13,14]] => 16
[5,4,3,2,1] => [5,4,3,2,1] => [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13,14],[15]] => 20
[] => [] => [] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The cocharge of a standard tableau.
The cocharge of a standard tableau T, denoted cc(T), is defined to be the cocharge of the reading word of the tableau. The cocharge of a permutation w1w2wn can be computed by the following algorithm:
1) Starting from wn, scan the entries right-to-left until finding the entry 1 with a superscript 0.
2) Continue scanning until the 2 is found, and label this with a superscript 1. Then scan until the 3 is found, labeling with a 2, and so on, incrementing the label each time, until the beginning of the word is reached. Then go back to the end and scan again from right to left, and *do not* increment the superscript label for the first number found in the next scan. Then continue scanning and labeling, each time incrementing the superscript only if we have not cycled around the word since the last labeling.
3) The cocharge is defined as the sum of the superscript labels on the letters.
Map
conjugate
Description
Return the conjugate partition of the partition.
The conjugate partition of the partition λ of n is the partition λ whose Ferrers diagram is obtained from the diagram of λ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
Map
initial tableau
Description
Sends an integer partition to the standard tableau obtained by filling the numbers 1 through n row by row.