Identifier
-
Mp00092:
Perfect matchings
—to set partition⟶
Set partitions
Mp00221: Set partitions —conjugate⟶ Set partitions
St000163: Set partitions ⟶ ℤ
Values
[(1,2)] => {{1,2}} => {{1},{2}} => 1
[(1,2),(3,4)] => {{1,2},{3,4}} => {{1,3},{2},{4}} => 2
[(1,3),(2,4)] => {{1,3},{2,4}} => {{1,3},{2,4}} => 1
[(1,4),(2,3)] => {{1,4},{2,3}} => {{1},{2,4},{3}} => 2
[(1,2),(3,4),(5,6)] => {{1,2},{3,4},{5,6}} => {{1,3,5},{2},{4},{6}} => 2
[(1,3),(2,4),(5,6)] => {{1,3},{2,4},{5,6}} => {{1,3,5},{2},{4,6}} => 6
[(1,4),(2,3),(5,6)] => {{1,4},{2,3},{5,6}} => {{1,3},{2},{4,6},{5}} => 3
[(1,5),(2,3),(4,6)] => {{1,5},{2,3},{4,6}} => {{1,3},{2,4,6},{5}} => 6
[(1,6),(2,3),(4,5)] => {{1,6},{2,3},{4,5}} => {{1},{2,4,6},{3},{5}} => 2
[(1,6),(2,4),(3,5)] => {{1,6},{2,4},{3,5}} => {{1},{2,4,6},{3,5}} => 6
[(1,5),(2,4),(3,6)] => {{1,5},{2,4},{3,6}} => {{1,4},{2,6},{3,5}} => 3
[(1,4),(2,5),(3,6)] => {{1,4},{2,5},{3,6}} => {{1,4},{2,5},{3,6}} => 1
[(1,3),(2,5),(4,6)] => {{1,3},{2,5},{4,6}} => {{1,3},{2,5},{4,6}} => 3
[(1,2),(3,5),(4,6)] => {{1,2},{3,5},{4,6}} => {{1,3,5},{2,4},{6}} => 6
[(1,2),(3,6),(4,5)] => {{1,2},{3,6},{4,5}} => {{1,5},{2,4},{3},{6}} => 3
[(1,3),(2,6),(4,5)] => {{1,3},{2,6},{4,5}} => {{1,5},{2,4,6},{3}} => 6
[(1,4),(2,6),(3,5)] => {{1,4},{2,6},{3,5}} => {{1,5},{2,4},{3,6}} => 3
[(1,5),(2,6),(3,4)] => {{1,5},{2,6},{3,4}} => {{1,3,5},{2,6},{4}} => 6
[(1,6),(2,5),(3,4)] => {{1,6},{2,5},{3,4}} => {{1},{2,6},{3,5},{4}} => 3
[(1,7),(2,4),(3,5),(6,8)] => {{1,7},{2,4},{3,5},{6,8}} => {{1,3},{2,8},{4,6},{5,7}} => 4
[(1,4),(2,7),(3,5),(6,8)] => {{1,4},{2,7},{3,5},{6,8}} => {{1,3},{2,7},{4,6},{5,8}} => 8
[(1,7),(2,8),(3,5),(4,6)] => {{1,7},{2,8},{3,5},{4,6}} => {{1,7},{2,8},{3,5},{4,6}} => 4
[(1,6),(2,8),(3,5),(4,7)] => {{1,6},{2,8},{3,5},{4,7}} => {{1,7},{2,5},{3,8},{4,6}} => 8
[(1,5),(2,8),(3,6),(4,7)] => {{1,5},{2,8},{3,6},{4,7}} => {{1,7},{2,5},{3,6},{4,8}} => 8
[(1,4),(2,8),(3,6),(5,7)] => {{1,4},{2,8},{3,6},{5,7}} => {{1,7},{2,4},{3,6},{5,8}} => 8
[(1,3),(2,8),(4,6),(5,7)] => {{1,3},{2,8},{4,6},{5,7}} => {{1,7},{2,4},{3,5},{6,8}} => 4
[(1,3),(2,7),(4,6),(5,8)] => {{1,3},{2,7},{4,6},{5,8}} => {{1,4},{2,7},{3,5},{6,8}} => 8
[(1,4),(2,7),(3,6),(5,8)] => {{1,4},{2,7},{3,6},{5,8}} => {{1,4},{2,7},{3,6},{5,8}} => 2
[(1,5),(2,7),(3,6),(4,8)] => {{1,5},{2,7},{3,6},{4,8}} => {{1,5},{2,7},{3,6},{4,8}} => 4
[(1,6),(2,7),(3,5),(4,8)] => {{1,6},{2,7},{3,5},{4,8}} => {{1,5},{2,7},{3,8},{4,6}} => 8
[(1,7),(2,6),(3,5),(4,8)] => {{1,7},{2,6},{3,5},{4,8}} => {{1,5},{2,8},{3,7},{4,6}} => 4
[(1,7),(2,5),(3,6),(4,8)] => {{1,7},{2,5},{3,6},{4,8}} => {{1,5},{2,8},{3,6},{4,7}} => 8
[(1,6),(2,5),(3,7),(4,8)] => {{1,6},{2,5},{3,7},{4,8}} => {{1,5},{2,6},{3,8},{4,7}} => 4
[(1,5),(2,6),(3,7),(4,8)] => {{1,5},{2,6},{3,7},{4,8}} => {{1,5},{2,6},{3,7},{4,8}} => 1
[(1,4),(2,6),(3,7),(5,8)] => {{1,4},{2,6},{3,7},{5,8}} => {{1,4},{2,6},{3,7},{5,8}} => 4
[(1,3),(2,6),(4,7),(5,8)] => {{1,3},{2,6},{4,7},{5,8}} => {{1,4},{2,5},{3,7},{6,8}} => 8
[(1,3),(2,5),(4,7),(6,8)] => {{1,3},{2,5},{4,7},{6,8}} => {{1,3},{2,5},{4,7},{6,8}} => 8
[(1,4),(2,5),(3,7),(6,8)] => {{1,4},{2,5},{3,7},{6,8}} => {{1,3},{2,6},{4,7},{5,8}} => 8
[(1,5),(2,4),(3,7),(6,8)] => {{1,5},{2,4},{3,7},{6,8}} => {{1,3},{2,6},{4,8},{5,7}} => 4
[(1,6),(2,4),(3,7),(5,8)] => {{1,6},{2,4},{3,7},{5,8}} => {{1,4},{2,6},{3,8},{5,7}} => 8
[(1,7),(2,4),(3,6),(5,8)] => {{1,7},{2,4},{3,6},{5,8}} => {{1,4},{2,8},{3,6},{5,7}} => 8
[(1,3),(2,4),(5,7),(6,8)] => {{1,3},{2,4},{5,7},{6,8}} => {{1,3},{2,4},{5,7},{6,8}} => 4
[(1,6),(2,4),(3,8),(5,7)] => {{1,6},{2,4},{3,8},{5,7}} => {{1,6},{2,4},{3,8},{5,7}} => 8
[(1,3),(2,6),(4,8),(5,7)] => {{1,3},{2,6},{4,8},{5,7}} => {{1,5},{2,4},{3,7},{6,8}} => 4
[(1,4),(2,6),(3,8),(5,7)] => {{1,4},{2,6},{3,8},{5,7}} => {{1,6},{2,4},{3,7},{5,8}} => 8
[(1,5),(2,6),(3,8),(4,7)] => {{1,5},{2,6},{3,8},{4,7}} => {{1,6},{2,5},{3,7},{4,8}} => 4
[(1,6),(2,5),(3,8),(4,7)] => {{1,6},{2,5},{3,8},{4,7}} => {{1,6},{2,5},{3,8},{4,7}} => 2
[(1,7),(2,5),(3,8),(4,6)] => {{1,7},{2,5},{3,8},{4,6}} => {{1,6},{2,8},{3,5},{4,7}} => 8
[(1,5),(2,7),(3,8),(4,6)] => {{1,5},{2,7},{3,8},{4,6}} => {{1,6},{2,7},{3,5},{4,8}} => 8
[(1,5),(2,8),(3,7),(4,6)] => {{1,5},{2,8},{3,7},{4,6}} => {{1,7},{2,6},{3,5},{4,8}} => 4
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The size of the orbit of the set partition under rotation.
Map
to set partition
Description
Return the set partition corresponding to the perfect matching.
Map
conjugate
Description
The conjugate of a set partition.
This is an involution exchanging singletons and circular adjacencies due to [1].
This is an involution exchanging singletons and circular adjacencies due to [1].
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!