Processing math: 100%

Values
[1] => [1] => [[1]] => 0
[2] => [1,1] => [[1],[2]] => 1
[1,1] => [2] => [[1,2]] => 0
[3] => [1,1,1] => [[1],[2],[3]] => 3
[2,1] => [2,1] => [[1,2],[3]] => 2
[1,1,1] => [3] => [[1,2,3]] => 0
[4] => [1,1,1,1] => [[1],[2],[3],[4]] => 6
[3,1] => [2,1,1] => [[1,2],[3],[4]] => 5
[2,2] => [2,2] => [[1,2],[3,4]] => 4
[2,1,1] => [3,1] => [[1,2,3],[4]] => 3
[1,1,1,1] => [4] => [[1,2,3,4]] => 0
[5] => [1,1,1,1,1] => [[1],[2],[3],[4],[5]] => 10
[4,1] => [2,1,1,1] => [[1,2],[3],[4],[5]] => 9
[3,2] => [2,2,1] => [[1,2],[3,4],[5]] => 8
[3,1,1] => [3,1,1] => [[1,2,3],[4],[5]] => 7
[2,2,1] => [3,2] => [[1,2,3],[4,5]] => 6
[2,1,1,1] => [4,1] => [[1,2,3,4],[5]] => 4
[1,1,1,1,1] => [5] => [[1,2,3,4,5]] => 0
[6] => [1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6]] => 15
[5,1] => [2,1,1,1,1] => [[1,2],[3],[4],[5],[6]] => 14
[4,2] => [2,2,1,1] => [[1,2],[3,4],[5],[6]] => 13
[4,1,1] => [3,1,1,1] => [[1,2,3],[4],[5],[6]] => 12
[3,3] => [2,2,2] => [[1,2],[3,4],[5,6]] => 12
[3,2,1] => [3,2,1] => [[1,2,3],[4,5],[6]] => 11
[3,1,1,1] => [4,1,1] => [[1,2,3,4],[5],[6]] => 9
[2,2,2] => [3,3] => [[1,2,3],[4,5,6]] => 9
[2,2,1,1] => [4,2] => [[1,2,3,4],[5,6]] => 8
[2,1,1,1,1] => [5,1] => [[1,2,3,4,5],[6]] => 5
[1,1,1,1,1,1] => [6] => [[1,2,3,4,5,6]] => 0
[7] => [1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7]] => 21
[6,1] => [2,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7]] => 20
[5,2] => [2,2,1,1,1] => [[1,2],[3,4],[5],[6],[7]] => 19
[5,1,1] => [3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => 18
[4,3] => [2,2,2,1] => [[1,2],[3,4],[5,6],[7]] => 18
[4,2,1] => [3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => 17
[4,1,1,1] => [4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => 15
[3,3,1] => [3,2,2] => [[1,2,3],[4,5],[6,7]] => 16
[3,2,2] => [3,3,1] => [[1,2,3],[4,5,6],[7]] => 15
[3,2,1,1] => [4,2,1] => [[1,2,3,4],[5,6],[7]] => 14
[3,1,1,1,1] => [5,1,1] => [[1,2,3,4,5],[6],[7]] => 11
[2,2,2,1] => [4,3] => [[1,2,3,4],[5,6,7]] => 12
[2,2,1,1,1] => [5,2] => [[1,2,3,4,5],[6,7]] => 10
[2,1,1,1,1,1] => [6,1] => [[1,2,3,4,5,6],[7]] => 6
[1,1,1,1,1,1,1] => [7] => [[1,2,3,4,5,6,7]] => 0
[8] => [1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8]] => 28
[7,1] => [2,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8]] => 27
[6,2] => [2,2,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8]] => 26
[6,1,1] => [3,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8]] => 25
[5,3] => [2,2,2,1,1] => [[1,2],[3,4],[5,6],[7],[8]] => 25
[5,2,1] => [3,2,1,1,1] => [[1,2,3],[4,5],[6],[7],[8]] => 24
[5,1,1,1] => [4,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8]] => 22
[4,4] => [2,2,2,2] => [[1,2],[3,4],[5,6],[7,8]] => 24
[4,3,1] => [3,2,2,1] => [[1,2,3],[4,5],[6,7],[8]] => 23
[4,2,2] => [3,3,1,1] => [[1,2,3],[4,5,6],[7],[8]] => 22
[4,2,1,1] => [4,2,1,1] => [[1,2,3,4],[5,6],[7],[8]] => 21
[4,1,1,1,1] => [5,1,1,1] => [[1,2,3,4,5],[6],[7],[8]] => 18
[3,3,2] => [3,3,2] => [[1,2,3],[4,5,6],[7,8]] => 21
[3,3,1,1] => [4,2,2] => [[1,2,3,4],[5,6],[7,8]] => 20
[3,2,2,1] => [4,3,1] => [[1,2,3,4],[5,6,7],[8]] => 19
[3,2,1,1,1] => [5,2,1] => [[1,2,3,4,5],[6,7],[8]] => 17
[3,1,1,1,1,1] => [6,1,1] => [[1,2,3,4,5,6],[7],[8]] => 13
[2,2,2,2] => [4,4] => [[1,2,3,4],[5,6,7,8]] => 16
[2,2,2,1,1] => [5,3] => [[1,2,3,4,5],[6,7,8]] => 15
[2,2,1,1,1,1] => [6,2] => [[1,2,3,4,5,6],[7,8]] => 12
[2,1,1,1,1,1,1] => [7,1] => [[1,2,3,4,5,6,7],[8]] => 7
[1,1,1,1,1,1,1,1] => [8] => [[1,2,3,4,5,6,7,8]] => 0
[9] => [1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => 36
[8,1] => [2,1,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8],[9]] => 35
[7,2] => [2,2,1,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8],[9]] => 34
[7,1,1] => [3,1,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8],[9]] => 33
[6,3] => [2,2,2,1,1,1] => [[1,2],[3,4],[5,6],[7],[8],[9]] => 33
[6,2,1] => [3,2,1,1,1,1] => [[1,2,3],[4,5],[6],[7],[8],[9]] => 32
[6,1,1,1] => [4,1,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8],[9]] => 30
[5,4] => [2,2,2,2,1] => [[1,2],[3,4],[5,6],[7,8],[9]] => 32
[5,3,1] => [3,2,2,1,1] => [[1,2,3],[4,5],[6,7],[8],[9]] => 31
[5,2,2] => [3,3,1,1,1] => [[1,2,3],[4,5,6],[7],[8],[9]] => 30
[5,2,1,1] => [4,2,1,1,1] => [[1,2,3,4],[5,6],[7],[8],[9]] => 29
[5,1,1,1,1] => [5,1,1,1,1] => [[1,2,3,4,5],[6],[7],[8],[9]] => 26
[4,4,1] => [3,2,2,2] => [[1,2,3],[4,5],[6,7],[8,9]] => 30
[4,3,2] => [3,3,2,1] => [[1,2,3],[4,5,6],[7,8],[9]] => 29
[4,3,1,1] => [4,2,2,1] => [[1,2,3,4],[5,6],[7,8],[9]] => 28
[4,2,2,1] => [4,3,1,1] => [[1,2,3,4],[5,6,7],[8],[9]] => 27
[4,2,1,1,1] => [5,2,1,1] => [[1,2,3,4,5],[6,7],[8],[9]] => 25
[4,1,1,1,1,1] => [6,1,1,1] => [[1,2,3,4,5,6],[7],[8],[9]] => 21
[3,3,3] => [3,3,3] => [[1,2,3],[4,5,6],[7,8,9]] => 27
[3,3,2,1] => [4,3,2] => [[1,2,3,4],[5,6,7],[8,9]] => 26
[3,3,1,1,1] => [5,2,2] => [[1,2,3,4,5],[6,7],[8,9]] => 24
[3,2,2,2] => [4,4,1] => [[1,2,3,4],[5,6,7,8],[9]] => 24
[3,2,2,1,1] => [5,3,1] => [[1,2,3,4,5],[6,7,8],[9]] => 23
[3,2,1,1,1,1] => [6,2,1] => [[1,2,3,4,5,6],[7,8],[9]] => 20
[3,1,1,1,1,1,1] => [7,1,1] => [[1,2,3,4,5,6,7],[8],[9]] => 15
[2,2,2,2,1] => [5,4] => [[1,2,3,4,5],[6,7,8,9]] => 20
[2,2,2,1,1,1] => [6,3] => [[1,2,3,4,5,6],[7,8,9]] => 18
[2,2,1,1,1,1,1] => [7,2] => [[1,2,3,4,5,6,7],[8,9]] => 14
[2,1,1,1,1,1,1,1] => [8,1] => [[1,2,3,4,5,6,7,8],[9]] => 8
[1,1,1,1,1,1,1,1,1] => [9] => [[1,2,3,4,5,6,7,8,9]] => 0
[10] => [1,1,1,1,1,1,1,1,1,1] => [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]] => 45
[9,1] => [2,1,1,1,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7],[8],[9],[10]] => 44
[8,2] => [2,2,1,1,1,1,1,1] => [[1,2],[3,4],[5],[6],[7],[8],[9],[10]] => 43
[8,1,1] => [3,1,1,1,1,1,1,1] => [[1,2,3],[4],[5],[6],[7],[8],[9],[10]] => 42
[7,3] => [2,2,2,1,1,1,1] => [[1,2],[3,4],[5,6],[7],[8],[9],[10]] => 42
>>> Load all 191 entries. <<<
[7,2,1] => [3,2,1,1,1,1,1] => [[1,2,3],[4,5],[6],[7],[8],[9],[10]] => 41
[7,1,1,1] => [4,1,1,1,1,1,1] => [[1,2,3,4],[5],[6],[7],[8],[9],[10]] => 39
[6,4] => [2,2,2,2,1,1] => [[1,2],[3,4],[5,6],[7,8],[9],[10]] => 41
[6,3,1] => [3,2,2,1,1,1] => [[1,2,3],[4,5],[6,7],[8],[9],[10]] => 40
[6,2,2] => [3,3,1,1,1,1] => [[1,2,3],[4,5,6],[7],[8],[9],[10]] => 39
[6,2,1,1] => [4,2,1,1,1,1] => [[1,2,3,4],[5,6],[7],[8],[9],[10]] => 38
[6,1,1,1,1] => [5,1,1,1,1,1] => [[1,2,3,4,5],[6],[7],[8],[9],[10]] => 35
[5,5] => [2,2,2,2,2] => [[1,2],[3,4],[5,6],[7,8],[9,10]] => 40
[5,4,1] => [3,2,2,2,1] => [[1,2,3],[4,5],[6,7],[8,9],[10]] => 39
[5,3,2] => [3,3,2,1,1] => [[1,2,3],[4,5,6],[7,8],[9],[10]] => 38
[5,3,1,1] => [4,2,2,1,1] => [[1,2,3,4],[5,6],[7,8],[9],[10]] => 37
[5,2,2,1] => [4,3,1,1,1] => [[1,2,3,4],[5,6,7],[8],[9],[10]] => 36
[5,2,1,1,1] => [5,2,1,1,1] => [[1,2,3,4,5],[6,7],[8],[9],[10]] => 34
[5,1,1,1,1,1] => [6,1,1,1,1] => [[1,2,3,4,5,6],[7],[8],[9],[10]] => 30
[4,4,2] => [3,3,2,2] => [[1,2,3],[4,5,6],[7,8],[9,10]] => 37
[4,4,1,1] => [4,2,2,2] => [[1,2,3,4],[5,6],[7,8],[9,10]] => 36
[4,3,3] => [3,3,3,1] => [[1,2,3],[4,5,6],[7,8,9],[10]] => 36
[4,3,2,1] => [4,3,2,1] => [[1,2,3,4],[5,6,7],[8,9],[10]] => 35
[4,3,1,1,1] => [5,2,2,1] => [[1,2,3,4,5],[6,7],[8,9],[10]] => 33
[4,2,2,2] => [4,4,1,1] => [[1,2,3,4],[5,6,7,8],[9],[10]] => 33
[4,2,2,1,1] => [5,3,1,1] => [[1,2,3,4,5],[6,7,8],[9],[10]] => 32
[4,2,1,1,1,1] => [6,2,1,1] => [[1,2,3,4,5,6],[7,8],[9],[10]] => 29
[4,1,1,1,1,1,1] => [7,1,1,1] => [[1,2,3,4,5,6,7],[8],[9],[10]] => 24
[3,3,3,1] => [4,3,3] => [[1,2,3,4],[5,6,7],[8,9,10]] => 33
[3,3,2,2] => [4,4,2] => [[1,2,3,4],[5,6,7,8],[9,10]] => 32
[3,3,2,1,1] => [5,3,2] => [[1,2,3,4,5],[6,7,8],[9,10]] => 31
[3,3,1,1,1,1] => [6,2,2] => [[1,2,3,4,5,6],[7,8],[9,10]] => 28
[3,2,2,2,1] => [5,4,1] => [[1,2,3,4,5],[6,7,8,9],[10]] => 29
[3,2,2,1,1,1] => [6,3,1] => [[1,2,3,4,5,6],[7,8,9],[10]] => 27
[3,2,1,1,1,1,1] => [7,2,1] => [[1,2,3,4,5,6,7],[8,9],[10]] => 23
[3,1,1,1,1,1,1,1] => [8,1,1] => [[1,2,3,4,5,6,7,8],[9],[10]] => 17
[2,2,2,2,2] => [5,5] => [[1,2,3,4,5],[6,7,8,9,10]] => 25
[2,2,2,2,1,1] => [6,4] => [[1,2,3,4,5,6],[7,8,9,10]] => 24
[2,2,2,1,1,1,1] => [7,3] => [[1,2,3,4,5,6,7],[8,9,10]] => 21
[2,2,1,1,1,1,1,1] => [8,2] => [[1,2,3,4,5,6,7,8],[9,10]] => 16
[2,1,1,1,1,1,1,1,1] => [9,1] => [[1,2,3,4,5,6,7,8,9],[10]] => 9
[1,1,1,1,1,1,1,1,1,1] => [10] => [[1,2,3,4,5,6,7,8,9,10]] => 0
[5,4,2] => [3,3,2,2,1] => [[1,2,3],[4,5,6],[7,8],[9,10],[11]] => 47
[5,4,1,1] => [4,2,2,2,1] => [[1,2,3,4],[5,6],[7,8],[9,10],[11]] => 46
[5,3,3] => [3,3,3,1,1] => [[1,2,3],[4,5,6],[7,8,9],[10],[11]] => 46
[5,3,2,1] => [4,3,2,1,1] => [[1,2,3,4],[5,6,7],[8,9],[10],[11]] => 45
[5,3,1,1,1] => [5,2,2,1,1] => [[1,2,3,4,5],[6,7],[8,9],[10],[11]] => 43
[5,2,2,2] => [4,4,1,1,1] => [[1,2,3,4],[5,6,7,8],[9],[10],[11]] => 43
[5,2,2,1,1] => [5,3,1,1,1] => [[1,2,3,4,5],[6,7,8],[9],[10],[11]] => 42
[4,4,3] => [3,3,3,2] => [[1,2,3],[4,5,6],[7,8,9],[10,11]] => 45
[4,4,2,1] => [4,3,2,2] => [[1,2,3,4],[5,6,7],[8,9],[10,11]] => 44
[4,4,1,1,1] => [5,2,2,2] => [[1,2,3,4,5],[6,7],[8,9],[10,11]] => 42
[4,3,3,1] => [4,3,3,1] => [[1,2,3,4],[5,6,7],[8,9,10],[11]] => 43
[4,3,2,2] => [4,4,2,1] => [[1,2,3,4],[5,6,7,8],[9,10],[11]] => 42
[4,3,2,1,1] => [5,3,2,1] => [[1,2,3,4,5],[6,7,8],[9,10],[11]] => 41
[4,2,2,2,1] => [5,4,1,1] => [[1,2,3,4,5],[6,7,8,9],[10],[11]] => 39
[3,3,3,2] => [4,4,3] => [[1,2,3,4],[5,6,7,8],[9,10,11]] => 40
[3,3,3,1,1] => [5,3,3] => [[1,2,3,4,5],[6,7,8],[9,10,11]] => 39
[3,3,2,2,1] => [5,4,2] => [[1,2,3,4,5],[6,7,8,9],[10,11]] => 38
[6,6] => [2,2,2,2,2,2] => [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]] => 60
[6,4,2] => [3,3,2,2,1,1] => [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]] => 58
[5,4,3] => [3,3,3,2,1] => [[1,2,3],[4,5,6],[7,8,9],[10,11],[12]] => 56
[5,4,2,1] => [4,3,2,2,1] => [[1,2,3,4],[5,6,7],[8,9],[10,11],[12]] => 55
[5,4,1,1,1] => [5,2,2,2,1] => [[1,2,3,4,5],[6,7],[8,9],[10,11],[12]] => 53
[5,3,3,1] => [4,3,3,1,1] => [[1,2,3,4],[5,6,7],[8,9,10],[11],[12]] => 54
[5,3,2,2] => [4,4,2,1,1] => [[1,2,3,4],[5,6,7,8],[9,10],[11],[12]] => 53
[5,3,2,1,1] => [5,3,2,1,1] => [[1,2,3,4,5],[6,7,8],[9,10],[11],[12]] => 52
[5,2,2,2,1] => [5,4,1,1,1] => [[1,2,3,4,5],[6,7,8,9],[10],[11],[12]] => 50
[4,4,3,1] => [4,3,3,2] => [[1,2,3,4],[5,6,7],[8,9,10],[11,12]] => 53
[4,4,2,2] => [4,4,2,2] => [[1,2,3,4],[5,6,7,8],[9,10],[11,12]] => 52
[4,4,2,1,1] => [5,3,2,2] => [[1,2,3,4,5],[6,7,8],[9,10],[11,12]] => 51
[4,3,3,2] => [4,4,3,1] => [[1,2,3,4],[5,6,7,8],[9,10,11],[12]] => 51
[4,3,3,1,1] => [5,3,3,1] => [[1,2,3,4,5],[6,7,8],[9,10,11],[12]] => 50
[4,3,2,2,1] => [5,4,2,1] => [[1,2,3,4,5],[6,7,8,9],[10,11],[12]] => 49
[3,3,3,2,1] => [5,4,3] => [[1,2,3,4,5],[6,7,8,9],[10,11,12]] => 47
[3,3,2,2,1,1] => [6,4,2] => [[1,2,3,4,5,6],[7,8,9,10],[11,12]] => 44
[2,2,2,2,2,2] => [6,6] => [[1,2,3,4,5,6],[7,8,9,10,11,12]] => 36
[1,1,1,1,1,1,1,1,1,1,1,1] => [12] => [[1,2,3,4,5,6,7,8,9,10,11,12]] => 0
[5,4,3,1] => [4,3,3,2,1] => [[1,2,3,4],[5,6,7],[8,9,10],[11,12],[13]] => 65
[5,4,2,2] => [4,4,2,2,1] => [[1,2,3,4],[5,6,7,8],[9,10],[11,12],[13]] => 64
[5,4,2,1,1] => [5,3,2,2,1] => [[1,2,3,4,5],[6,7,8],[9,10],[11,12],[13]] => 63
[5,3,3,2] => [4,4,3,1,1] => [[1,2,3,4],[5,6,7,8],[9,10,11],[12],[13]] => 63
[5,3,3,1,1] => [5,3,3,1,1] => [[1,2,3,4,5],[6,7,8],[9,10,11],[12],[13]] => 62
[5,3,2,2,1] => [5,4,2,1,1] => [[1,2,3,4,5],[6,7,8,9],[10,11],[12],[13]] => 61
[4,4,3,2] => [4,4,3,2] => [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13]] => 62
[4,4,3,1,1] => [5,3,3,2] => [[1,2,3,4,5],[6,7,8],[9,10,11],[12,13]] => 61
[4,4,2,2,1] => [5,4,2,2] => [[1,2,3,4,5],[6,7,8,9],[10,11],[12,13]] => 60
[4,3,3,2,1] => [5,4,3,1] => [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13]] => 59
[5,4,3,2] => [4,4,3,2,1] => [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13],[14]] => 75
[5,4,3,1,1] => [5,3,3,2,1] => [[1,2,3,4,5],[6,7,8],[9,10,11],[12,13],[14]] => 74
[5,4,2,2,1] => [5,4,2,2,1] => [[1,2,3,4,5],[6,7,8,9],[10,11],[12,13],[14]] => 73
[5,3,3,2,1] => [5,4,3,1,1] => [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13],[14]] => 72
[4,4,3,2,1] => [5,4,3,2] => [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13,14]] => 71
[5,4,3,2,1] => [5,4,3,2,1] => [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13,14],[15]] => 85
[] => [] => [] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The inversion number of a standard tableau as defined by Haglund and Stevens.
Their inversion number is the total number of inversion pairs for the tableau. An inversion pair is defined as a pair of cells (a,b), (x,y) such that the content of (x,y) is greater than the content of (a,b) and (x,y) is north of the inversion path of (a,b), where the inversion path is defined in detail in [1].
Map
conjugate
Description
Return the conjugate partition of the partition.
The conjugate partition of the partition λ of n is the partition λ whose Ferrers diagram is obtained from the diagram of λ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
Map
initial tableau
Description
Sends an integer partition to the standard tableau obtained by filling the numbers 1 through n row by row.