Identifier
-
Mp00307:
Posets
—promotion cycle type⟶
Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St000005: Dyck paths ⟶ ℤ
Values
([],1) => [1] => [1,0,1,0] => [1,1,0,0] => 0
([],2) => [2] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 2
([(0,1)],2) => [1] => [1,0,1,0] => [1,1,0,0] => 0
([],3) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 8
([(1,2)],3) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => 5
([(0,1),(0,2)],3) => [2] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 2
([(0,2),(2,1)],3) => [1] => [1,0,1,0] => [1,1,0,0] => 0
([(0,2),(1,2)],3) => [2] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 2
([(0,1),(0,2),(0,3)],4) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 8
([(0,2),(0,3),(3,1)],4) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => 5
([(0,1),(0,2),(1,3),(2,3)],4) => [2] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 2
([(1,2),(2,3)],4) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => 9
([(0,3),(3,1),(3,2)],4) => [2] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 2
([(0,3),(1,3),(3,2)],4) => [2] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 2
([(0,3),(1,3),(2,3)],4) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 8
([(0,3),(1,2)],4) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => 6
([(0,3),(1,2),(1,3)],4) => [3,2] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0] => 3
([(0,2),(0,3),(1,2),(1,3)],4) => [2,2] => [1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => 4
([(0,3),(2,1),(3,2)],4) => [1] => [1,0,1,0] => [1,1,0,0] => 0
([(0,3),(1,2),(2,3)],4) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => 5
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 8
([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => [2] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 2
([(0,3),(0,4),(3,2),(4,1)],5) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => 6
([(0,2),(0,3),(2,4),(3,1),(3,4)],5) => [3,2] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0] => 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5) => [2,2] => [1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => 4
([(0,4),(4,1),(4,2),(4,3)],5) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 8
([(0,4),(1,4),(4,2),(4,3)],5) => [2,2] => [1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => 4
([(0,4),(1,4),(2,4),(4,3)],5) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 8
([(0,4),(1,4),(2,3),(4,2)],5) => [2] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 2
([(0,4),(1,2),(1,4),(2,3)],5) => [5,4] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 12
([(0,3),(1,2),(1,3),(2,4),(3,4)],5) => [3,2] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0] => 3
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5) => [2,2] => [1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => 4
([(0,2),(0,4),(3,1),(4,3)],5) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => 9
([(0,4),(1,2),(1,3),(3,4)],5) => [4,4,3] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => 10
([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => 5
([(0,3),(0,4),(1,2),(1,3),(2,4)],5) => [5,3] => [1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 11
([(0,3),(1,2),(1,4),(3,4)],5) => [5,4] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 12
([(1,4),(3,2),(4,3)],5) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => 14
([(0,3),(3,4),(4,1),(4,2)],5) => [2] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 2
([(0,4),(1,2),(2,4),(4,3)],5) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => 5
([(0,4),(3,2),(4,1),(4,3)],5) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => 5
([(0,4),(2,3),(3,1),(4,2)],5) => [1] => [1,0,1,0] => [1,1,0,0] => 0
([(0,3),(1,2),(2,4),(3,4)],5) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => 6
([(0,4),(1,2),(2,3),(3,4)],5) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => 9
([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => [2] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 8
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6) => [2,2] => [1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => 4
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6) => [2,2] => [1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => 4
([(0,4),(4,5),(5,1),(5,2),(5,3)],6) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 8
([(0,5),(1,5),(2,5),(3,4),(5,3)],6) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 8
([(0,5),(1,5),(4,2),(4,3),(5,4)],6) => [2,2] => [1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => 4
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => 6
([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => [2] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 8
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6) => [2,2] => [1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => 4
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6) => [3,2] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0] => 3
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6) => [4,4,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => 8
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6) => [2,2,2,2] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => 9
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6) => [4,4] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => 13
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6) => [2,2] => [1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => 4
([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6) => [5,4] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 12
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => [3,2] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0] => 3
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6) => [5,4] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 12
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6) => [5,3] => [1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 11
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => 5
([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6) => [4,4,3] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => 10
([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6) => [4,4,3] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => 10
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => 9
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => [2] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 2
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6) => [5,3] => [1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => 11
([(0,4),(0,5),(1,3),(3,4),(3,5),(5,2)],6) => [3,3,3] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => 11
([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6) => [5,4] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 12
([(0,2),(0,5),(3,4),(4,1),(5,3)],6) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => 14
([(0,5),(1,4),(4,2),(4,5),(5,3)],6) => [4,3,3] => [1,1,1,0,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0,1,0] => 10
([(0,4),(3,5),(4,3),(5,1),(5,2)],6) => [2] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 2
([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => 6
([(0,5),(3,4),(4,2),(5,1),(5,3)],6) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => 9
([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6) => [4,4,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => 8
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => [2] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 2
([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => [4] => [1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => 9
([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [5,4] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 12
([(0,5),(1,3),(1,5),(4,2),(5,4)],6) => [5,4] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 12
([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6) => [4,4] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => 13
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6) => [2,2] => [1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => 4
([(0,4),(2,5),(3,1),(3,5),(4,2),(4,3)],6) => [3,2] => [1,1,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0] => 3
([(0,5),(3,2),(4,1),(5,3),(5,4)],6) => [4,2] => [1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => 6
([(0,4),(3,2),(4,5),(5,1),(5,3)],6) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => 5
([(0,5),(1,3),(3,4),(4,2),(4,5)],6) => [5,4] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 12
([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [1] => [1,0,1,0] => [1,1,0,0] => 0
([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => 5
([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => [5] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => 14
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => [2] => [1,1,0,0,1,0] => [1,1,0,0,1,0] => 2
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => [3] => [1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => 5
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6),(6,1)],7) => [2,2] => [1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => 4
([(0,3),(0,4),(3,5),(3,6),(4,5),(4,6),(5,2),(6,1)],7) => [4,4,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => 8
([(0,1),(0,2),(1,5),(1,6),(2,5),(2,6),(5,3),(5,4),(6,3),(6,4)],7) => [2,2,2,2] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => 9
([(0,6),(1,6),(2,6),(3,5),(5,4),(6,3)],7) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 8
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7) => [3,3] => [1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => 8
([(0,6),(1,6),(2,5),(3,5),(4,2),(4,3),(6,4)],7) => [2,2] => [1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => 4
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => [2,2] => [1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => 4
([(0,6),(1,6),(4,2),(5,4),(6,3),(6,5)],7) => [4,4] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => 13
>>> Load all 173 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The bounce statistic of a Dyck path.
The bounce path $D'$ of a Dyck path $D$ is the Dyck path obtained from $D$ by starting at the end point $(2n,0)$, traveling north-west until hitting $D$, then bouncing back south-west to the $x$-axis, and repeating this procedure until finally reaching the point $(0,0)$.
The points where $D'$ touches the $x$-axis are called bounce points, and a bounce path is uniquely determined by its bounce points.
This statistic is given by the sum of all $i$ for which the bounce path $D'$ of $D$ touches the $x$-axis at $(2i,0)$.
In particular, the bounce statistics of $D$ and $D'$ coincide.
The bounce path $D'$ of a Dyck path $D$ is the Dyck path obtained from $D$ by starting at the end point $(2n,0)$, traveling north-west until hitting $D$, then bouncing back south-west to the $x$-axis, and repeating this procedure until finally reaching the point $(0,0)$.
The points where $D'$ touches the $x$-axis are called bounce points, and a bounce path is uniquely determined by its bounce points.
This statistic is given by the sum of all $i$ for which the bounce path $D'$ of $D$ touches the $x$-axis at $(2i,0)$.
In particular, the bounce statistics of $D$ and $D'$ coincide.
Map
promotion cycle type
Description
The cycle type of promotion on the linear extensions of a poset.
Map
decomposition reverse
Description
This map is recursively defined as follows.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
The unique empty path of semilength $0$ is sent to itself.
Let $D$ be a Dyck path of semilength $n > 0$ and decompose it into $1 D_1 0 D_2$ with Dyck paths $D_1, D_2$ of respective semilengths $n_1$ and $n_2$ such that $n_1$ is minimal. One then has $n_1+n_2 = n-1$.
Now let $\tilde D_1$ and $\tilde D_2$ be the recursively defined respective images of $D_1$ and $D_2$ under this map. The image of $D$ is then defined as $1 \tilde D_2 0 \tilde D_1$.
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!