searching the database
Your data matches 5 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001928
Mp00051: Ordered trees —to Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
St001928: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
St001928: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[]
=> []
=> [1] => [1] => 0
[[]]
=> [1,0]
=> [2,1] => [2,1] => 1
[[],[]]
=> [1,0,1,0]
=> [3,1,2] => [3,1,2] => 1
[[[]]]
=> [1,1,0,0]
=> [2,3,1] => [3,2,1] => 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => [4,1,2,3] => 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => [4,3,1,2] => 1
[[[]],[]]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => [4,2,1,3] => 1
[[[],[]]]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => [3,1,4,2] => 2
[[[[]]]]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => [4,3,2,1] => 2
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [5,1,2,3,4] => 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5,4,1,2,3] => 1
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5,3,1,2,4] => 1
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [4,1,2,5,3] => 2
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5,4,3,1,2] => 2
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => 1
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5,4,2,1,3] => 2
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [3,1,5,2,4] => 2
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5,3,2,1,4] => 2
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [4,1,5,2,3] => 2
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [3,1,5,4,2] => 2
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [4,2,1,5,3] => 2
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [4,3,1,5,2] => 2
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,4,3,2,1] => 2
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [6,1,2,3,4,5] => 1
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [6,5,1,2,3,4] => 1
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6,4,1,2,3,5] => 1
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [5,1,2,3,6,4] => 2
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6,5,4,1,2,3] => 2
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6,3,1,2,4,5] => 1
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,5,3,1,2,4] => 2
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [4,1,2,6,3,5] => 2
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6,4,3,1,2,5] => 2
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [5,1,2,6,3,4] => 2
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [4,1,2,6,5,3] => 2
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [5,3,1,2,6,4] => 2
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [5,4,1,2,6,3] => 2
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6,5,4,3,1,2] => 2
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [6,2,1,3,4,5] => 1
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6,5,2,1,3,4] => 2
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [6,4,2,1,3,5] => 2
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [5,2,1,3,6,4] => 2
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6,5,4,2,1,3] => 2
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [3,1,6,2,4,5] => 2
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [6,3,2,1,4,5] => 2
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [3,1,6,5,2,4] => 2
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [6,5,3,2,1,4] => 2
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [4,1,6,2,3,5] => 2
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [3,1,6,4,2,5] => 2
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [4,2,1,6,3,5] => 2
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [4,3,1,6,2,5] => 2
Description
The number of non-overlapping descents in a permutation.
In other words, any maximal descending subsequence $\pi_i,\pi_{i+1},\dots,\pi_k$ contributes $\lfloor\frac{k-i+1}{2}\rfloor$ to the total count.
Matching statistic: St000455
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00246: Ordered trees —rotate⟶ Ordered trees
Mp00046: Ordered trees —to graph⟶ Graphs
Mp00111: Graphs —complement⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 50%
Mp00046: Ordered trees —to graph⟶ Graphs
Mp00111: Graphs —complement⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 50%
Values
[]
=> []
=> ([],1)
=> ([],1)
=> ? = 0 - 1
[[]]
=> [[]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 - 1
[[],[]]
=> [[],[]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 0 = 1 - 1
[[[]]]
=> [[[]]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 0 = 1 - 1
[[],[],[]]
=> [[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[],[[]]]
=> [[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 1
[[[]],[]]
=> [[[],[]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[[[],[]]]
=> [[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 1
[[[[]]]]
=> [[[[]]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 1
[[],[],[],[]]
=> [[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[],[],[[]]]
=> [[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
[[],[[]],[]]
=> [[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
[[],[[],[]]]
=> [[[],[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 1
[[],[[[]]]]
=> [[[[]]],[]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 1
[[[]],[],[]]
=> [[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[[]],[[]]]
=> [[[[]],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 1
[[[],[]],[]]
=> [[],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 1
[[[[]]],[]]
=> [[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 1
[[[],[],[]]]
=> [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 1
[[[],[[]]]]
=> [[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 1
[[[[]],[]]]
=> [[[],[[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 1
[[[[],[]]]]
=> [[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 1
[[[[[]]]]]
=> [[[[[]]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 1
[[],[],[],[],[]]
=> [[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
[[],[],[],[[]]]
=> [[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
[[],[],[[]],[]]
=> [[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
[[],[],[[],[]]]
=> [[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[],[],[[[]]]]
=> [[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[],[[]],[],[]]
=> [[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
[[],[[]],[[]]]
=> [[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[],[[],[]],[]]
=> [[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[],[[[]]],[]]
=> [[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[],[[],[],[]]]
=> [[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[],[[],[[]]]]
=> [[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[],[[[]],[]]]
=> [[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[],[[[],[]]]]
=> [[[[],[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[],[[[[]]]]]
=> [[[[[]]]],[]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[[]],[],[],[]]
=> [[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
[[[]],[],[[]]]
=> [[[],[[]],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[[]],[[]],[]]
=> [[[[]],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[[]],[[],[]]]
=> [[[[],[]],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[[]],[[[]]]]
=> [[[[[]]],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[[],[]],[],[]]
=> [[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[[[]]],[],[]]
=> [[[[],[],[]]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[[],[]],[[]]]
=> [[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[[[]]],[[]]]
=> [[[[[]],[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[[],[],[]],[]]
=> [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[[],[[]]],[]]
=> [[[]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[[[]],[]],[]]
=> [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[[[[],[]]],[]]
=> [[],[[[],[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[[[[]]]],[]]
=> [[[[[],[]]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[[],[],[],[]]]
=> [[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[[],[],[[]]]]
=> [[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[[],[[]],[]]]
=> [[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[[[],[[],[]]]]
=> [[[],[]],[[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[[],[[[]]]]]
=> [[[[]]],[[]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[[[[]],[],[]]]
=> [[[],[],[[]]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[[[]],[[]]]]
=> [[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[[[],[]],[]]]
=> [[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[[[[]]],[]]]
=> [[[[],[[]]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[[[[],[],[]]]]
=> [[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[[[[],[[]]]]]
=> [[[]],[[[]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[[[[[]],[]]]]
=> [[[],[[[]]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Matching statistic: St000454
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00328: Ordered trees —DeBruijn-Morselt plane tree automorphism⟶ Ordered trees
Mp00046: Ordered trees —to graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 75%
Mp00046: Ordered trees —to graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 75%
Values
[]
=> []
=> ([],1)
=> 0
[[]]
=> [[]]
=> ([(0,1)],2)
=> 1
[[],[]]
=> [[[]]]
=> ([(0,2),(1,2)],3)
=> ? = 1
[[[]]]
=> [[],[]]
=> ([(0,2),(1,2)],3)
=> ? = 1
[[],[],[]]
=> [[[[]]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[[],[[]]]
=> [[[],[]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 1
[[[]],[]]
=> [[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[[[],[]]]
=> [[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[[[[]]]]
=> [[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 2
[[],[],[],[]]
=> [[[[[]]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1
[[],[],[[]]]
=> [[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 1
[[],[[]],[]]
=> [[[],[[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 1
[[],[[],[]]]
=> [[[[]],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2
[[],[[[]]]]
=> [[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[[]],[],[]]
=> [[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1
[[[]],[[]]]
=> [[],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2
[[[],[]],[]]
=> [[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2
[[[[]]],[]]
=> [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2
[[[],[],[]]]
=> [[[[]]],[]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2
[[[],[[]]]]
=> [[[],[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2
[[[[]],[]]]
=> [[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2
[[[[],[]]]]
=> [[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2
[[[[[]]]]]
=> [[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[],[],[],[],[]]
=> [[[[[[]]]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 1
[[],[],[],[[]]]
=> [[[[[],[]]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 1
[[],[],[[]],[]]
=> [[[[],[[]]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 1
[[],[],[[],[]]]
=> [[[[[]],[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 2
[[],[],[[[]]]]
=> [[[[],[],[]]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 2
[[],[[]],[],[]]
=> [[[],[[[]]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 1
[[],[[]],[[]]]
=> [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[[],[[],[]],[]]
=> [[[[]],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 2
[[],[[[]]],[]]
=> [[[],[],[[]]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 2
[[],[[],[],[]]]
=> [[[[[]]],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 2
[[],[[],[[]]]]
=> [[[[],[]],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[[],[[[]],[]]]
=> [[[],[[]],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 2
[[],[[[],[]]]]
=> [[[[]],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 2
[[],[[[[]]]]]
=> [[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2
[[[]],[],[],[]]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 1
[[[]],[],[[]]]
=> [[],[[[],[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 2
[[[]],[[]],[]]
=> [[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 2
[[[]],[[],[]]]
=> [[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 2
[[[]],[[[]]]]
=> [[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 2
[[[],[]],[],[]]
=> [[[]],[[[]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 2
[[[[]]],[],[]]
=> [[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 2
[[[],[]],[[]]]
=> [[[]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 2
[[[[]]],[[]]]
=> [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[[[],[],[]],[]]
=> [[[[]]],[[]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 2
[[[],[[]]],[]]
=> [[[],[]],[[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 2
[[[[]],[]],[]]
=> [[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 2
[[[[],[]]],[]]
=> [[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 2
[[[[[]]]],[]]
=> [[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 2
[[[],[],[],[]]]
=> [[[[[]]]],[]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 2
[[[],[],[[]]]]
=> [[[[],[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 2
[[[],[[]],[]]]
=> [[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 3
[[[],[[],[]]]]
=> [[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 2
[[[],[[[]]]]]
=> [[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 3
[[[[]],[],[]]]
=> [[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 2
[[[[]],[[]]]]
=> [[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
[[[[],[[]]]]]
=> [[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St000264
Mp00051: Ordered trees —to Dyck path⟶ Dyck paths
Mp00024: Dyck paths —to 321-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 25%
Mp00024: Dyck paths —to 321-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 25%
Values
[]
=> []
=> [] => ([],0)
=> ? = 0 + 2
[[]]
=> [1,0]
=> [1] => ([],1)
=> ? = 1 + 2
[[],[]]
=> [1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> ? = 1 + 2
[[[]]]
=> [1,1,0,0]
=> [1,2] => ([],2)
=> ? = 1 + 2
[[],[],[]]
=> [1,0,1,0,1,0]
=> [2,1,3] => ([(1,2)],3)
=> ? = 1 + 2
[[],[[]]]
=> [1,0,1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ? = 1 + 2
[[[]],[]]
=> [1,1,0,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> ? = 1 + 2
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,3,2] => ([(1,2)],3)
=> ? = 2 + 2
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ? = 2 + 2
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? = 1 + 2
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ? = 1 + 2
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? = 2 + 2
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 2 + 2
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4 = 2 + 2
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? = 2 + 2
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? = 2 + 2
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,3,2,4] => ([(2,3)],4)
=> ? = 2 + 2
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? = 2 + 2
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? = 2 + 2
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? = 2 + 2
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? = 2 + 2
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? = 1 + 2
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? = 1 + 2
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? = 1 + 2
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2 + 2
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? = 1 + 2
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 + 2
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? = 2 + 2
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ? = 2 + 2
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? = 2 + 2
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 + 2
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? = 2 + 2
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2 + 2
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 2 + 2
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ? = 1 + 2
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 2 + 2
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 + 2
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 2 + 2
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2 + 2
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 2 + 2
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 2 + 2
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? = 2 + 2
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? = 2 + 2
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 + 2
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2 + 2
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 2 + 2
[[[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? = 2 + 2
[[[],[],[[]]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ? = 2 + 2
[[[],[[]],[]]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> ? = 3 + 2
[[[],[[],[]]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? = 2 + 2
[[[],[[[]]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 3 + 2
[[[[]],[],[]]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ? = 2 + 2
[[[[]],[[]]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 2 + 2
[[[[],[]],[]]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ? = 2 + 2
Description
The girth of a graph, which is not a tree.
This is the length of the shortest cycle in the graph.
Matching statistic: St001292
Mp00139: Ordered trees —Zeilberger's Strahler bijection⟶ Binary trees
Mp00008: Binary trees —to complete tree⟶ Ordered trees
Mp00051: Ordered trees —to Dyck path⟶ Dyck paths
St001292: Dyck paths ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 50%
Mp00008: Binary trees —to complete tree⟶ Ordered trees
Mp00051: Ordered trees —to Dyck path⟶ Dyck paths
St001292: Dyck paths ⟶ ℤResult quality: 12% ●values known / values provided: 12%●distinct values known / distinct values provided: 50%
Values
[]
=> .
=> ?
=> ?
=> ? = 0 - 1
[[]]
=> [.,.]
=> [[],[]]
=> [1,0,1,0]
=> 0 = 1 - 1
[[],[]]
=> [.,[.,.]]
=> [[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> 0 = 1 - 1
[[[]]]
=> [[.,.],.]
=> [[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> 0 = 1 - 1
[[],[],[]]
=> [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[[],[[]]]
=> [.,[[.,.],.]]
=> [[],[[[],[]],[]]]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> 0 = 1 - 1
[[[]],[]]
=> [[.,[.,.]],.]
=> [[[],[[],[]]],[]]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> 0 = 1 - 1
[[[],[]]]
=> [[.,.],[.,.]]
=> [[[],[]],[[],[]]]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> 1 = 2 - 1
[[[[]]]]
=> [[[.,.],.],.]
=> [[[[],[]],[]],[]]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> 1 = 2 - 1
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> [1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [[],[[],[[[],[]],[]]]]
=> [1,0,1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> ? = 1 - 1
[[],[[]],[]]
=> [.,[[.,[.,.]],.]]
=> [[],[[[],[[],[]]],[]]]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? = 1 - 1
[[],[[],[]]]
=> [.,[[.,.],[.,.]]]
=> [[],[[[],[]],[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> ? = 2 - 1
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [[],[[[[],[]],[]],[]]]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> ? = 2 - 1
[[[]],[],[]]
=> [[.,[.,[.,.]]],.]
=> [[[],[[],[[],[]]]],[]]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> ? = 1 - 1
[[[]],[[]]]
=> [[.,[[.,.],.]],.]
=> [[[],[[[],[]],[]]],[]]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> ? = 2 - 1
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> [1,1,0,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> ? = 2 - 1
[[[[]]],[]]
=> [[[.,[.,.]],.],.]
=> [[[[],[[],[]]],[]],[]]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0,1,0]
=> ? = 2 - 1
[[[],[],[]]]
=> [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> [1,1,0,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> ? = 2 - 1
[[[],[[]]]]
=> [[.,.],[[.,.],.]]
=> [[[],[]],[[[],[]],[]]]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> ? = 2 - 1
[[[[]],[]]]
=> [[[.,.],.],[.,.]]
=> [[[[],[]],[]],[[],[]]]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,1,0,0]
=> ? = 2 - 1
[[[[],[]]]]
=> [[[.,.],[.,.]],.]
=> [[[[],[]],[[],[]]],[]]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0,1,0]
=> ? = 2 - 1
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [[[[[],[]],[]],[]],[]]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0]
=> ? = 2 - 1
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> [1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0]
=> ? = 1 - 1
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [[],[[],[[],[[[],[]],[]]]]]
=> [1,0,1,1,0,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0]
=> ? = 1 - 1
[[],[],[[]],[]]
=> [.,[.,[[.,[.,.]],.]]]
=> [[],[[],[[[],[[],[]]],[]]]]
=> [1,0,1,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0]
=> ? = 1 - 1
[[],[],[[],[]]]
=> [.,[.,[[.,.],[.,.]]]]
=> [[],[[],[[[],[]],[[],[]]]]]
=> [1,0,1,1,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0,0]
=> ? = 2 - 1
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [[],[[],[[[[],[]],[]],[]]]]
=> [1,0,1,1,0,1,1,1,1,0,1,0,0,1,0,0,1,0,0,0]
=> ? = 2 - 1
[[],[[]],[],[]]
=> [.,[[.,[.,[.,.]]],.]]
=> [[],[[[],[[],[[],[]]]],[]]]
=> [1,0,1,1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0,0]
=> ? = 1 - 1
[[],[[]],[[]]]
=> [.,[[.,[[.,.],.]],.]]
=> [[],[[[],[[[],[]],[]]],[]]]
=> [1,0,1,1,1,0,1,1,1,0,1,0,0,1,0,0,0,1,0,0]
=> ? = 2 - 1
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [[],[[[],[[],[]]],[[],[]]]]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,1,1,0,1,0,0,0]
=> ? = 2 - 1
[[],[[[]]],[]]
=> [.,[[[.,[.,.]],.],.]]
=> [[],[[[[],[[],[]]],[]],[]]]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,1,0,0,1,0,0]
=> ? = 2 - 1
[[],[[],[],[]]]
=> [.,[[.,.],[.,[.,.]]]]
=> [[],[[[],[]],[[],[[],[]]]]]
=> [1,0,1,1,1,0,1,0,0,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 2 - 1
[[],[[],[[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> [[],[[[],[]],[[[],[]],[]]]]
=> [1,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,0,0,0]
=> ? = 2 - 1
[[],[[[]],[]]]
=> [.,[[[.,.],.],[.,.]]]
=> [[],[[[[],[]],[]],[[],[]]]]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,1,1,0,1,0,0,0]
=> ? = 2 - 1
[[],[[[],[]]]]
=> [.,[[[.,.],[.,.]],.]]
=> [[],[[[[],[]],[[],[]]],[]]]
=> [1,0,1,1,1,1,0,1,0,0,1,1,0,1,0,0,0,1,0,0]
=> ? = 2 - 1
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [[],[[[[[],[]],[]],[]],[]]]
=> [1,0,1,1,1,1,1,0,1,0,0,1,0,0,1,0,0,1,0,0]
=> ? = 2 - 1
[[[]],[],[],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [[[],[[],[[],[[],[]]]]],[]]
=> [1,1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 1 - 1
[[[]],[],[[]]]
=> [[.,[.,[[.,.],.]]],.]
=> [[[],[[],[[[],[]],[]]]],[]]
=> [1,1,0,1,1,0,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> ? = 2 - 1
[[[]],[[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [[[],[[[],[[],[]]],[]]],[]]
=> [1,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0,1,0]
=> ? = 2 - 1
[[[]],[[],[]]]
=> [[.,.],[[.,.],[.,.]]]
=> [[[],[]],[[[],[]],[[],[]]]]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> ? = 2 - 1
[[[]],[[[]]]]
=> [[.,[[[.,.],.],.]],.]
=> [[[],[[[[],[]],[]],[]]],[]]
=> [1,1,0,1,1,1,1,0,1,0,0,1,0,0,1,0,0,0,1,0]
=> ? = 2 - 1
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [[[],[[],[]]],[[],[[],[]]]]
=> [1,1,0,1,1,0,1,0,0,0,1,1,0,1,1,0,1,0,0,0]
=> ? = 2 - 1
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [[[[],[[],[[],[]]]],[]],[]]
=> [1,1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0,0,1,0]
=> ? = 2 - 1
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [[[],[[],[]]],[[[],[]],[]]]
=> [1,1,0,1,1,0,1,0,0,0,1,1,1,0,1,0,0,1,0,0]
=> ? = 2 - 1
[[[[]]],[[]]]
=> [[[.,[[.,.],.]],.],.]
=> [[[[],[[[],[]],[]]],[]],[]]
=> [1,1,1,0,1,1,1,0,1,0,0,1,0,0,0,1,0,0,1,0]
=> ? = 2 - 1
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [[[],[[],[[],[]]]],[[],[]]]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,1,0,1,0,0]
=> ? = 2 - 1
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [[[],[[[],[]],[]]],[[],[]]]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0,1,1,0,1,0,0]
=> ? = 2 - 1
[[[[]],[]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [[[[],[[],[]]],[]],[[],[]]]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0,1,1,0,1,0,0]
=> ? = 2 - 1
[[[[],[]]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [[[[],[[],[]]],[[],[]]],[]]
=> [1,1,1,0,1,1,0,1,0,0,0,1,1,0,1,0,0,0,1,0]
=> ? = 2 - 1
[[[[[]]]],[]]
=> [[[[.,[.,.]],.],.],.]
=> [[[[[],[[],[]]],[]],[]],[]]
=> [1,1,1,1,0,1,1,0,1,0,0,0,1,0,0,1,0,0,1,0]
=> ? = 2 - 1
[[[],[],[],[]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [[[],[]],[[],[[],[[],[]]]]]
=> [1,1,0,1,0,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 2 - 1
[[[],[],[[]]]]
=> [[.,.],[.,[[.,.],.]]]
=> [[[],[]],[[],[[[],[]],[]]]]
=> [1,1,0,1,0,0,1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> ? = 2 - 1
[[[],[[]],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [[[],[]],[[[],[[],[]]],[]]]
=> [1,1,0,1,0,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? = 3 - 1
[[[],[[],[]]]]
=> [[.,[[.,.],[.,.]]],.]
=> [[[],[[[],[]],[[],[]]]],[]]
=> [1,1,0,1,1,1,0,1,0,0,1,1,0,1,0,0,0,0,1,0]
=> ? = 2 - 1
[[[],[[[]]]]]
=> [[.,.],[[[.,.],.],.]]
=> [[[],[]],[[[[],[]],[]],[]]]
=> [1,1,0,1,0,0,1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> ? = 3 - 1
[[[[]],[],[]]]
=> [[[.,.],.],[.,[.,.]]]
=> [[[[],[]],[]],[[],[[],[]]]]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> ? = 2 - 1
[[[[]],[[]]]]
=> [[[.,.],.],[[.,.],.]]
=> [[[[],[]],[]],[[[],[]],[]]]
=> [1,1,1,0,1,0,0,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> ? = 2 - 1
Description
The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path.
Here $A$ is the Nakayama algebra associated to a Dyck path as given in [[DyckPaths/NakayamaAlgebras]].
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!