Processing math: 42%

Your data matches 164 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001587
Mp00074: Posets to graphGraphs
Mp00251: Graphs clique sizesInteger partitions
St001587: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1]
=> 0
([],2)
=> ([],2)
=> [1,1]
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 1
([],3)
=> ([],3)
=> [1,1,1]
=> 0
([(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 1
([],4)
=> ([],4)
=> [1,1,1,1]
=> 0
([(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 1
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> 1
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 1
([],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0
([(3,4)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 1
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 1
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> 1
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 1
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 1
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> 1
Description
Half of the largest even part of an integer partition. The largest even part is recorded by [[St000995]].
Matching statistic: St001918
Mp00074: Posets to graphGraphs
Mp00251: Graphs clique sizesInteger partitions
St001918: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1]
=> 0
([],2)
=> ([],2)
=> [1,1]
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 1
([],3)
=> ([],3)
=> [1,1,1]
=> 0
([(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 1
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 1
([],4)
=> ([],4)
=> [1,1,1,1]
=> 0
([(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 1
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> 1
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 1
([],5)
=> ([],5)
=> [1,1,1,1,1]
=> 0
([(3,4)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 1
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 1
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> 1
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 1
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 1
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> 1
Description
The degree of the cyclic sieving polynomial corresponding to an integer partition. Let λ be an integer partition of n and let N be the least common multiple of the parts of λ. Fix an arbitrary permutation π of cycle type λ. Then π induces a cyclic action of order N on {1,,n}. The corresponding character can be identified with the cyclic sieving polynomial Cλ(q) of this action, modulo qN1. Explicitly, it is pλ[p]qN/p, where [p]q=1++qp1 is the q-integer. This statistic records the degree of Cλ(q). Equivalently, it equals (11λ1)N, where λ1 is the largest part of λ. The statistic is undefined for the empty partition.
Matching statistic: St000147
Mp00074: Posets to graphGraphs
Mp00251: Graphs clique sizesInteger partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1]
=> 1 = 0 + 1
([],2)
=> ([],2)
=> [1,1]
=> 1 = 0 + 1
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> 2 = 1 + 1
([],3)
=> ([],3)
=> [1,1,1]
=> 1 = 0 + 1
([(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 2 = 1 + 1
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 2 = 1 + 1
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 2 = 1 + 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> 2 = 1 + 1
([],4)
=> ([],4)
=> [1,1,1,1]
=> 1 = 0 + 1
([(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 2 = 1 + 1
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 2 = 1 + 1
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 2 = 1 + 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 2 = 1 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> 2 = 1 + 1
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 2 = 1 + 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 2 = 1 + 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> 2 = 1 + 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 2 = 1 + 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> 2 = 1 + 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> 2 = 1 + 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 2 = 1 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> 2 = 1 + 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 2 = 1 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> 2 = 1 + 1
([],5)
=> ([],5)
=> [1,1,1,1,1]
=> 1 = 0 + 1
([(3,4)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> 2 = 1 + 1
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 2 = 1 + 1
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 2 = 1 + 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 2 = 1 + 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> 2 = 1 + 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 2 = 1 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> 2 = 1 + 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> 2 = 1 + 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> 2 = 1 + 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> 2 = 1 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 2 = 1 + 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> 2 = 1 + 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> 2 = 1 + 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> 2 = 1 + 1
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 2 = 1 + 1
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 2 = 1 + 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 2 = 1 + 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> 2 = 1 + 1
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 2 = 1 + 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 2 = 1 + 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> 2 = 1 + 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 2 = 1 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> 2 = 1 + 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> 2 = 1 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> 2 = 1 + 1
Description
The largest part of an integer partition.
Mp00074: Posets to graphGraphs
Mp00111: Graphs complementGraphs
St000786: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1 = 0 + 1
([],2)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> 2 = 1 + 1
([],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2 = 1 + 1
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2 = 1 + 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 2 = 1 + 1
([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 2 = 1 + 1
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 1 + 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 2 = 1 + 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
([],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
([(3,4)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 1 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
Description
The maximal number of occurrences of a colour in a proper colouring of a graph. To any proper colouring with the minimal number of colours possible we associate the integer partition recording how often each colour is used. This statistic records the largest part occurring in any of these partitions. For example, the graph on six vertices consisting of a square together with two attached triangles - ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) in the list of values - is three-colourable and admits two colouring schemes, [2,2,2] and [3,2,1]. Therefore, the statistic on this graph is 3.
Mp00074: Posets to graphGraphs
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000535: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1] => ([],1)
=> 0
([],2)
=> ([],2)
=> [2] => ([],2)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 1
([],3)
=> ([],3)
=> [3] => ([],3)
=> 0
([(1,2)],3)
=> ([(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
([],4)
=> ([],4)
=> [4] => ([],4)
=> 0
([(2,3)],4)
=> ([(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([],5)
=> ([],5)
=> [5] => ([],5)
=> 0
([(3,4)],5)
=> ([(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
Description
The rank-width of a graph.
Matching statistic: St000651
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
St000651: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [[1]]
=> [1] => 0
([],2)
=> [1,1]
=> [[1],[2]]
=> [2,1] => 0
([(0,1)],2)
=> [2]
=> [[1,2]]
=> [1,2] => 1
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 0
([(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> [3,1,2] => 1
([(0,1),(0,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> [3,1,2] => 1
([(0,2),(2,1)],3)
=> [3]
=> [[1,2,3]]
=> [1,2,3] => 1
([(0,2),(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> [3,1,2] => 1
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 0
([(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
([(1,2),(1,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 1
([(1,2),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 1
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 1
([(1,3),(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 1
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 1
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 1
([(0,3),(2,1),(3,2)],4)
=> [4]
=> [[1,2,3,4]]
=> [1,2,3,4] => 1
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 1
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 0
([(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 1
([(2,3),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 1
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 1
Description
The maximal size of a rise in a permutation. This is max, except for the permutations without rises, where it is 0.
Mp00074: Posets to graphGraphs
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001333: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1] => ([],1)
=> 0
([],2)
=> ([],2)
=> [2] => ([],2)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 1
([],3)
=> ([],3)
=> [3] => ([],3)
=> 0
([(1,2)],3)
=> ([(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
([],4)
=> ([],4)
=> [4] => ([],4)
=> 0
([(2,3)],4)
=> ([(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([],5)
=> ([],5)
=> [5] => ([],5)
=> 0
([(3,4)],5)
=> ([(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
Description
The cardinality of a minimal edge-isolating set of a graph. Let \mathcal F be a set of graphs. A set of vertices S is \mathcal F-isolating, if the subgraph induced by the vertices in the complement of the closed neighbourhood of S does not contain any graph in \mathcal F. This statistic returns the cardinality of the smallest isolating set when \mathcal F contains only the graph with one edge.
Mp00074: Posets to graphGraphs
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001393: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1] => ([],1)
=> 0
([],2)
=> ([],2)
=> [2] => ([],2)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 1
([],3)
=> ([],3)
=> [3] => ([],3)
=> 0
([(1,2)],3)
=> ([(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
([],4)
=> ([],4)
=> [4] => ([],4)
=> 0
([(2,3)],4)
=> ([(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([],5)
=> ([],5)
=> [5] => ([],5)
=> 0
([(3,4)],5)
=> ([(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
Description
The induced matching number of a graph. An induced matching of a graph is a set of independent edges which is an induced subgraph. This statistic records the maximal number of edges in an induced matching.
Matching statistic: St001743
Mp00074: Posets to graphGraphs
Mp00324: Graphs chromatic difference sequenceInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001743: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1] => ([],1)
=> 0
([],2)
=> ([],2)
=> [2] => ([],2)
=> 0
([(0,1)],2)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 1
([],3)
=> ([],3)
=> [3] => ([],3)
=> 0
([(1,2)],3)
=> ([(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
([],4)
=> ([],4)
=> [4] => ([],4)
=> 0
([(2,3)],4)
=> ([(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> 1
([],5)
=> ([],5)
=> [5] => ([],5)
=> 0
([(3,4)],5)
=> ([(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
Description
The discrepancy of a graph. For a subset C of the set of vertices V(G), and a vertex v, let d_{C, v} = |\#(N(v)\cap C) - \#(N(v)\cap(V\setminus C))|, and let d_C be the maximal value of d_{C, v} over all vertices. Then the discrepancy of the graph is the minimal value of d_C over all subsets of V(G). Graphs with at most 8 vertices have discrepancy at most 2, but there are graphs with arbitrary discrepancy.
Matching statistic: St000010
Mp00074: Posets to graphGraphs
Mp00251: Graphs clique sizesInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> [1]
=> [1]
=> 1 = 0 + 1
([],2)
=> ([],2)
=> [1,1]
=> [2]
=> 1 = 0 + 1
([(0,1)],2)
=> ([(0,1)],2)
=> [2]
=> [1,1]
=> 2 = 1 + 1
([],3)
=> ([],3)
=> [1,1,1]
=> [3]
=> 1 = 0 + 1
([(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> [2,1]
=> 2 = 1 + 1
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> [2,2]
=> 2 = 1 + 1
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> [2,2]
=> 2 = 1 + 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2,2]
=> [2,2]
=> 2 = 1 + 1
([],4)
=> ([],4)
=> [1,1,1,1]
=> [4]
=> 1 = 0 + 1
([(2,3)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 2 = 1 + 1
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> [3,2]
=> 2 = 1 + 1
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 2 = 1 + 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 2 = 1 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [4,4]
=> 2 = 1 + 1
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> [3,2]
=> 2 = 1 + 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 2 = 1 + 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2,2,1]
=> [3,2]
=> 2 = 1 + 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 2 = 1 + 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 2 = 1 + 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> 2 = 1 + 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 2 = 1 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2,2,2]
=> [4,4]
=> 2 = 1 + 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 2 = 1 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [2,2,2]
=> [3,3]
=> 2 = 1 + 1
([],5)
=> ([],5)
=> [1,1,1,1,1]
=> [5]
=> 1 = 0 + 1
([(3,4)],5)
=> ([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 2 = 1 + 1
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [4,2]
=> 2 = 1 + 1
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> 2 = 1 + 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 2 = 1 + 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 2 = 1 + 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [5,5]
=> 2 = 1 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [6,6]
=> 2 = 1 + 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> 2 = 1 + 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 2 = 1 + 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,1]
=> [5,4]
=> 2 = 1 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [5,5]
=> 2 = 1 + 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 2 = 1 + 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [2,2,2,2,2]
=> [5,5]
=> 2 = 1 + 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,2,2,2,2]
=> [6,6]
=> 2 = 1 + 1
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [4,2]
=> 2 = 1 + 1
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> 2 = 1 + 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 2 = 1 + 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [2,2,1,1]
=> [4,2]
=> 2 = 1 + 1
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> 2 = 1 + 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 2 = 1 + 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [2,2,2,1]
=> [4,3]
=> 2 = 1 + 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 2 = 1 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 2 = 1 + 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [2,2,2]
=> [3,3]
=> 2 = 1 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,2,2]
=> [4,4]
=> 2 = 1 + 1
Description
The length of the partition.
The following 154 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000381The largest part of an integer composition. St000382The first part of an integer composition. St000757The length of the longest weakly inreasing subsequence of parts of an integer composition. St000765The number of weak records in an integer composition. St000808The number of up steps of the associated bargraph. St001261The Castelnuovo-Mumford regularity of a graph. St001654The monophonic hull number of a graph. St001784The minimum of the smallest closer and the second element of the block containing 1 in a set partition. St000253The crossing number of a set partition. St000254The nesting number of a set partition. St000659The number of rises of length at least 2 of a Dyck path. St000730The maximal arc length of a set partition. St001031The height of the bicoloured Motzkin path associated with the Dyck path. St000781The number of proper colouring schemes of a Ferrers diagram. St001657The number of twos in an integer partition. St001568The smallest positive integer that does not appear twice in the partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St000929The constant term of the character polynomial of an integer partition. St001651The Frankl number of a lattice. St000993The multiplicity of the largest part of an integer partition. St000097The order of the largest clique of the graph. St000264The girth of a graph, which is not a tree. St001613The binary logarithm of the size of the center of a lattice. St001092The number of distinct even parts of a partition. St001890The maximum magnitude of the Möbius function of a poset. St001621The number of atoms of a lattice. St000298The order dimension or Dushnik-Miller dimension of a poset. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000379The number of Hamiltonian cycles in a graph. St000699The toughness times the least common multiple of 1,. St001281The normalized isoperimetric number of a graph. St000281The size of the preimage of the map 'to poset' from Binary trees to Posets. St000282The size of the preimage of the map 'to poset' from Ordered trees to Posets. St000914The sum of the values of the Möbius function of a poset. St000093The cardinality of a maximal independent set of vertices of a graph. St000260The radius of a connected graph. St001307The number of induced stars on four vertices in a graph. St001310The number of induced diamond graphs in a graph. St001309The number of four-cliques in a graph. St001625The Möbius invariant of a lattice. St001720The minimal length of a chain of small intervals in a lattice. St000456The monochromatic index of a connected graph. St001578The minimal number of edges to add or remove to make a graph a line graph. St000322The skewness of a graph. St001335The cardinality of a minimal cycle-isolating set of a graph. St001095The number of non-isomorphic posets with precisely one further covering relation. St000480The number of lower covers of a partition in dominance order. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000481The number of upper covers of a partition in dominance order. St000346The number of coarsenings of a partition. St000668The least common multiple of the parts of the partition. St000741The Colin de Verdière graph invariant. St000455The second largest eigenvalue of a graph if it is integral. St001195The global dimension of the algebra A/AfA of the corresponding Nakayama algebra A with minimal left faithful projective-injective module Af. St001330The hat guessing number of a graph. St001056The Grundy value for the game of deleting vertices of a graph until it has no edges. St001071The beta invariant of the graph. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001349The number of different graphs obtained from the given graph by removing an edge. St000259The diameter of a connected graph. St000917The open packing number of a graph. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001316The domatic number of a graph. St001656The monophonic position number of a graph. St000256The number of parts from which one can substract 2 and still get an integer partition. St000473The number of parts of a partition that are strictly bigger than the number of ones. St000985The number of positive eigenvalues of the adjacency matrix of the graph. St001192The maximal dimension of Ext_A^2(S,A) for a simple module S over the corresponding Nakayama algebra A. St001251The number of parts of a partition that are not congruent 1 modulo 3. St001271The competition number of a graph. St001280The number of parts of an integer partition that are at least two. St001340The cardinality of a minimal non-edge isolating set of a graph. St001354The number of series nodes in the modular decomposition of a graph. St001512The minimum rank of a graph. St000258The burning number of a graph. St000273The domination number of a graph. St000299The number of nonisomorphic vertex-induced subtrees. St000378The diagonal inversion number of an integer partition. St000452The number of distinct eigenvalues of a graph. St000453The number of distinct Laplacian eigenvalues of a graph. St000482The (zero)-forcing number of a graph. St000544The cop number of a graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000773The multiplicity of the largest Laplacian eigenvalue in a graph. St000774The maximal multiplicity of a Laplacian eigenvalue in a graph. St000776The maximal multiplicity of an eigenvalue in a graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000778The metric dimension of a graph. St000899The maximal number of repetitions of an integer composition. St000904The maximal number of repetitions of an integer composition. St000918The 2-limited packing number of a graph. St001093The detour number of a graph. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001286The annihilation number of a graph. St001315The dissociation number of a graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001322The size of a minimal independent dominating set in a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001339The irredundance number of a graph. St001357The maximal degree of a regular spanning subgraph of a graph. St001358The largest degree of a regular subgraph of a graph. St001674The number of vertices of the largest induced star graph in the graph. St001792The arboricity of a graph. St001829The common independence number of a graph. St001949The rigidity index of a graph. St000469The distinguishing number of a graph. St000636The hull number of a graph. St001655The general position number of a graph. St001877Number of indecomposable injective modules with projective dimension 2. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001875The number of simple modules with projective dimension at most 1. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St000284The Plancherel distribution on integer partitions. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000706The product of the factorials of the multiplicities of an integer partition. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000901The cube of the number of standard Young tableaux with shape given by the partition. St001128The exponens consonantiae of a partition. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000567The sum of the products of all pairs of parts. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St001057The Grundy value of the game of creating an independent set in a graph. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001198The number of simple modules in the algebra eAe with projective dimension at most 1 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001206The maximal dimension of an indecomposable projective eAe-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module eA. St001570The minimal number of edges to add to make a graph Hamiltonian. St000762The sum of the positions of the weak records of an integer composition. St000454The largest eigenvalue of a graph if it is integral. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St001060The distinguishing index of a graph. St001323The independence gap of a graph. St000660The number of rises of length at least 3 of a Dyck path. St001118The acyclic chromatic index of a graph. St001545The second Elser number of a connected graph. St001498The normalised height of a Nakayama algebra with magnitude 1. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000464The Schultz index of a connected graph. St001738The minimal order of a graph which is not an induced subgraph of the given graph.