searching the database
Your data matches 76 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001880
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 4
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 5
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 5
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[0,0,0,0,1],[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 4
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St001090
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00327: Dyck paths —inverse Kreweras complement⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St001090: Permutations ⟶ ℤResult quality: 71% ●values known / values provided: 71%●distinct values known / distinct values provided: 100%
Mp00327: Dyck paths —inverse Kreweras complement⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
St001090: Permutations ⟶ ℤResult quality: 71% ●values known / values provided: 71%●distinct values known / distinct values provided: 100%
Values
[[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3
[[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 4
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 4
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 4
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 4
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 4
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 4
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 4
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 4
[[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 4
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => 5
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => 5
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => 5
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => 4
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => 4
[[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 5
[[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 5
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => 4
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => 4
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 5
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 5
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 5
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => 4
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 5
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 5
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => 5
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => 4
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => 4
[[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 5
[[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 5
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => 4
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => 4
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 5
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 5
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 5
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => 4
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 5
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 5
[[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 5
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 5
[[0,0,0,0,1],[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 5
[[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 5
[[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 5
[[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 5
[[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 5
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => 4
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => 4
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 5
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => 5
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => ? = 4
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => ? = 5
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => ? = 5
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [7,3,1,2,6,4,5] => ? = 6
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [7,3,1,2,6,4,5] => ? = 6
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => ? = 6
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => ? = 6
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [7,3,1,2,6,4,5] => ? = 6
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [7,3,1,2,6,4,5] => ? = 6
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => ? = 6
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => ? = 6
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => ? = 6
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [7,3,1,2,6,4,5] => ? = 6
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => ? = 6
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => ? = 6
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => ? = 5
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => ? = 6
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => ? = 6
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => ? = 6
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [4,3,1,7,2,5,6] => ? = 4
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [4,3,1,7,2,5,6] => ? = 4
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [4,3,1,7,2,5,6] => ? = 4
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [4,3,1,7,2,5,6] => ? = 4
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [4,3,1,7,2,5,6] => ? = 4
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => ? = 6
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 4
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,-1,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 4
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 4
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 4
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => ? = 6
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [4,3,1,7,2,5,6] => ? = 4
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [4,3,1,7,2,5,6] => ? = 4
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [4,3,1,7,2,5,6] => ? = 4
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [4,3,1,7,2,5,6] => ? = 4
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [4,3,1,7,2,5,6] => ? = 4
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [6,1,7,2,3,4,5] => ? = 6
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 4
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,-1,0,1],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 4
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 4
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 4
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,0,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 4
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,-1,0,0,1],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => ? = 4
Description
The number of pop-stack-sorts needed to sort a permutation.
The pop-stack sorting operator is defined as follows. Process the permutation $\pi$ from left to right. If the stack is empty or its top element is smaller than the current element, empty the stack completely and append its elements to the output in reverse order. Next, push the current element onto the stack. After having processed the last entry, append the stack to the output in reverse order.
A permutation is $t$-pop-stack sortable if it is sortable using $t$ pop-stacks in series.
Matching statistic: St000672
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
St000672: Permutations ⟶ ℤResult quality: 58% ●values known / values provided: 58%●distinct values known / distinct values provided: 100%
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
St000672: Permutations ⟶ ℤResult quality: 58% ●values known / values provided: 58%●distinct values known / distinct values provided: 100%
Values
[[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => 2 = 3 - 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => 2 = 3 - 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => 3 = 4 - 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => 3 = 4 - 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => 3 = 4 - 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => 3 = 4 - 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => 3 = 4 - 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => 3 = 4 - 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => 3 = 4 - 1
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => 3 = 4 - 1
[[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [5,2,1,6,3,4] => 3 = 4 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [5,2,3,6,1,4] => 4 = 5 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [5,2,3,6,1,4] => 4 = 5 - 1
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [4,2,5,1,6,3] => 4 = 5 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [5,4,2,6,1,3] => 3 = 4 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [5,4,2,6,1,3] => 3 = 4 - 1
[[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 4 = 5 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [5,4,2,6,1,3] => 3 = 4 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [5,4,2,6,1,3] => 3 = 4 - 1
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 4 = 5 - 1
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [5,4,2,6,1,3] => 3 = 4 - 1
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 4 = 5 - 1
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [4,2,5,1,6,3] => 4 = 5 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [5,4,2,6,1,3] => 3 = 4 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [5,4,2,6,1,3] => 3 = 4 - 1
[[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 4 = 5 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [5,4,2,6,1,3] => 3 = 4 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [5,4,2,6,1,3] => 3 = 4 - 1
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 4 = 5 - 1
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [5,4,2,6,1,3] => 3 = 4 - 1
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 4 = 5 - 1
[[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 4 = 5 - 1
[[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 4 = 5 - 1
[[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 4 = 5 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [5,4,2,6,1,3] => 3 = 4 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [5,4,2,6,1,3] => 3 = 4 - 1
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,3,4,5,6,1] => 4 = 5 - 1
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => [6,2,1,3,7,4,5] => ? = 4 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => [6,2,3,1,7,4,5] => ? = 5 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => [6,2,3,1,7,4,5] => ? = 5 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,6,4,1,3,7,5] => [6,2,7,1,4,3,5] => ? = 6 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,6,4,1,3,7,5] => [6,2,7,1,4,3,5] => ? = 6 - 1
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => [6,2,3,4,7,1,5] => ? = 6 - 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => [6,2,3,4,7,1,5] => ? = 6 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,6,4,1,3,7,5] => [6,2,7,1,4,3,5] => ? = 6 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,6,4,1,3,7,5] => [6,2,7,1,4,3,5] => ? = 6 - 1
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => [6,2,3,4,7,1,5] => ? = 6 - 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => [6,2,3,4,7,1,5] => ? = 6 - 1
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => [6,2,3,4,7,1,5] => ? = 6 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,6,4,1,3,7,5] => [6,2,7,1,4,3,5] => ? = 6 - 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => [6,2,3,4,7,1,5] => ? = 6 - 1
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => [6,2,3,4,7,1,5] => ? = 6 - 1
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => [5,2,1,6,3,7,4] => ? = 5 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => [5,2,3,6,1,7,4] => ? = 6 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => [5,2,3,6,1,7,4] => ? = 6 - 1
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,6,1,5,3,7,4] => [6,5,2,1,7,3,4] => ? = 6 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [6,2,5,1,7,3,4] => ? = 4 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [6,2,5,1,7,3,4] => ? = 4 - 1
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => [6,5,2,3,7,1,4] => ? = 5 - 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => [6,5,2,3,7,1,4] => ? = 5 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [6,2,5,1,7,3,4] => ? = 4 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [6,2,5,1,7,3,4] => ? = 4 - 1
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => [6,5,2,3,7,1,4] => ? = 5 - 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => [6,5,2,3,7,1,4] => ? = 5 - 1
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => [6,5,2,3,7,1,4] => ? = 5 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [6,2,5,1,7,3,4] => ? = 4 - 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => [6,5,2,3,7,1,4] => ? = 5 - 1
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => [6,5,2,3,7,1,4] => ? = 5 - 1
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => [4,2,5,1,6,7,3] => ? = 6 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,5,4,1,6,7,3] => [5,4,2,6,1,7,3] => ? = 5 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,5,4,1,6,7,3] => [5,4,2,6,1,7,3] => ? = 5 - 1
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,6,4,5,1,7,3] => [6,2,4,5,7,1,3] => ? = 4 - 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,6,4,5,1,7,3] => [6,2,4,5,7,1,3] => ? = 4 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,5,4,1,6,7,3] => [5,4,2,6,1,7,3] => ? = 5 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,0,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,5,4,1,6,7,3] => [5,4,2,6,1,7,3] => ? = 5 - 1
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,6,4,5,1,7,3] => [6,2,4,5,7,1,3] => ? = 4 - 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,-1,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,6,4,5,1,7,3] => [6,2,4,5,7,1,3] => ? = 4 - 1
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,6,4,5,1,7,3] => [6,2,4,5,7,1,3] => ? = 4 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,5,4,1,6,7,3] => [5,4,2,6,1,7,3] => ? = 5 - 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,6,4,5,1,7,3] => [6,2,4,5,7,1,3] => ? = 4 - 1
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,6,4,5,1,7,3] => [6,2,4,5,7,1,3] => ? = 4 - 1
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,6,1,5,3,7,4] => [6,5,2,1,7,3,4] => ? = 6 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [6,2,5,1,7,3,4] => ? = 4 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [6,2,5,1,7,3,4] => ? = 4 - 1
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => [6,5,2,3,7,1,4] => ? = 5 - 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => [6,5,2,3,7,1,4] => ? = 5 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [6,2,5,1,7,3,4] => ? = 4 - 1
Description
The number of minimal elements in Bruhat order not less than the permutation.
The minimal elements in question are biGrassmannian, that is
$$1\dots r\ \ a+1\dots b\ \ r+1\dots a\ \ b+1\dots$$
for some $(r,a,b)$.
This is also the size of Fulton's essential set of the reverse permutation, according to [ex.4.7, 2].
Matching statistic: St001232
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00121: Dyck paths —Cori-Le Borgne involution⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 80%
Mp00121: Dyck paths —Cori-Le Borgne involution⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 80%
Values
[[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 3 - 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 3 - 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 5 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 5 - 1
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 5 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 5 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4 = 5 - 1
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 5 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 5 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 6 - 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 6 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 6 - 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 6 - 1
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 6 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 6 - 1
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 6 - 1
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 5 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 5 - 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 5 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 4 - 1
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 5 - 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 5 - 1
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 5 - 1
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 5 = 6 - 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St001645
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 100%
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 100%
Values
[[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? = 4
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? = 4
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? = 5
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? = 5
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? = 5
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 4
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 4
[[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 4
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 4
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 4
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? = 5
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 4
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 4
[[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 4
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 4
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 4
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 4
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 4
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 4
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 4
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => ([(2,5),(3,4)],6)
=> ? = 4
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [3,2,1,4,6,5] => ([(1,2),(3,4),(3,5),(4,5)],6)
=> ? = 5
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [3,2,1,4,6,5] => ([(1,2),(3,4),(3,5),(4,5)],6)
=> ? = 5
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [3,2,4,1,6,5] => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [3,2,4,1,6,5] => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,3,2,1,6,5] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,3,2,1,6,5] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [3,2,4,1,6,5] => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [3,2,4,1,6,5] => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,3,2,1,6,5] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,3,2,1,6,5] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,3,2,1,6,5] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [3,2,4,1,6,5] => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,3,2,1,6,5] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,3,2,1,6,5] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3,6,5,4] => ([(1,2),(3,4),(3,5),(4,5)],6)
=> ? = 5
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,2,1,6,5,4] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ? = 6
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,2,1,6,5,4] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ? = 6
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,1,4,6,5,3] => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 6
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 4
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 4
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,3,2,6,5,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,3,2,6,5,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 4
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 4
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,3,2,6,5,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,3,2,6,5,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,3,2,6,5,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 4
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,3,2,6,5,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 5
Description
The pebbling number of a connected graph.
Matching statistic: St001879
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 100%
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 100%
Values
[[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 4 - 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 5 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 5 - 1
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 5 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 5 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 4 - 1
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [[[[.,[.,.]],.],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 4 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [[[.,[.,[.,.]]],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 5 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [[[.,[.,[.,.]]],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 5 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [[.,[[.,[.,.]],.]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 6 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [[.,[[.,[.,.]],.]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 6 - 1
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 6 - 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 6 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [[.,[[.,[.,.]],.]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 6 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [[.,[[.,[.,.]],.]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 6 - 1
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 6 - 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 6 - 1
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 6 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [[.,[[.,[.,.]],.]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 6 - 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 6 - 1
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 6 - 1
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [[[.,[.,.]],.],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 5 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[.,[.,[.,.]]],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 6 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [[.,[.,[.,.]]],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 6 - 1
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [[.,[.,.]],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 6 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [.,[[[.,[.,.]],.],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 4 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [.,[[[.,[.,.]],.],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 4 - 1
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 5 - 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 5 - 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [.,[[[.,[.,.]],.],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 4 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [.,[[[.,[.,.]],.],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 4 - 1
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 5 - 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 5 - 1
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 5 - 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [.,[[[.,[.,.]],.],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 4 - 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ? = 5 - 1
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St000373
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00310: Permutations —toric promotion⟶ Permutations
St000373: Permutations ⟶ ℤResult quality: 50% ●values known / values provided: 50%●distinct values known / distinct values provided: 80%
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00310: Permutations —toric promotion⟶ Permutations
St000373: Permutations ⟶ ℤResult quality: 50% ●values known / values provided: 50%●distinct values known / distinct values provided: 80%
Values
[[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => [4,2,1,3] => 1 = 3 - 2
[[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => [4,2,1,3] => 1 = 3 - 2
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [1,5,3,4,2] => 2 = 4 - 2
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,2,3,1,4] => 2 = 4 - 2
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,2,3,1,4] => 2 = 4 - 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,2,3,1,4] => 2 = 4 - 2
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,2,3,1,4] => 2 = 4 - 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,2,3,1,4] => 2 = 4 - 2
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,2,3,1,4] => 2 = 4 - 2
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,2,3,1,4] => 2 = 4 - 2
[[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6,4,2,5,1,3] => 2 = 4 - 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [6,2,1,4,5,3] => 3 = 5 - 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [6,2,1,4,5,3] => 3 = 5 - 2
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [1,6,3,4,5,2] => 3 = 5 - 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [1,6,4,3,5,2] => 2 = 4 - 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [1,6,4,3,5,2] => 2 = 4 - 2
[[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,1,5] => 3 = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,1,5] => 3 = 5 - 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [1,6,4,3,5,2] => 2 = 4 - 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [1,6,4,3,5,2] => 2 = 4 - 2
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,1,5] => 3 = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,1,5] => 3 = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,1,5] => 3 = 5 - 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [1,6,4,3,5,2] => 2 = 4 - 2
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,1,5] => 3 = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,1,5] => 3 = 5 - 2
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [1,6,3,4,5,2] => 3 = 5 - 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [1,6,4,3,5,2] => 2 = 4 - 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [1,6,4,3,5,2] => 2 = 4 - 2
[[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,1,5] => 3 = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,1,5] => 3 = 5 - 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [1,6,4,3,5,2] => 2 = 4 - 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [1,6,4,3,5,2] => 2 = 4 - 2
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,1,5] => 3 = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,1,5] => 3 = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,1,5] => 3 = 5 - 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [1,6,4,3,5,2] => 2 = 4 - 2
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,1,5] => 3 = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,1,5] => 3 = 5 - 2
[[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,1,5] => 3 = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,1,5] => 3 = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,1,5] => 3 = 5 - 2
[[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,1,5] => 3 = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,1,5] => 3 = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,1,5] => 3 = 5 - 2
[[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,1,5] => 3 = 5 - 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [1,6,4,3,5,2] => 2 = 4 - 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [1,6,4,3,5,2] => 2 = 4 - 2
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,1,5] => 3 = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [6,2,3,4,1,5] => 3 = 5 - 2
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => [7,5,2,3,6,1,4] => ? = 4 - 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => [7,2,5,3,6,1,4] => ? = 5 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => [7,2,5,3,6,1,4] => ? = 5 - 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,6,4,1,3,7,5] => [7,5,3,2,6,1,4] => ? = 6 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,6,4,1,3,7,5] => [7,5,3,2,6,1,4] => ? = 6 - 2
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => [7,2,3,1,5,6,4] => ? = 6 - 2
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => [7,2,3,1,5,6,4] => ? = 6 - 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,6,4,1,3,7,5] => [7,5,3,2,6,1,4] => ? = 6 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,6,4,1,3,7,5] => [7,5,3,2,6,1,4] => ? = 6 - 2
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => [7,2,3,1,5,6,4] => ? = 6 - 2
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => [7,2,3,1,5,6,4] => ? = 6 - 2
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => [7,2,3,1,5,6,4] => ? = 6 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,6,4,1,3,7,5] => [7,5,3,2,6,1,4] => ? = 6 - 2
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => [7,2,3,1,5,6,4] => ? = 6 - 2
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => [7,2,3,1,5,6,4] => ? = 6 - 2
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => [7,4,2,5,6,1,3] => ? = 5 - 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => [7,2,1,4,5,6,3] => ? = 6 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => [7,2,1,4,5,6,3] => ? = 6 - 2
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,6,1,5,3,7,4] => [7,5,4,1,2,6,3] => ? = 6 - 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [7,5,4,2,6,1,3] => ? = 4 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [7,5,4,2,6,1,3] => ? = 4 - 2
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => [7,2,1,5,4,6,3] => ? = 5 - 2
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => [7,2,1,5,4,6,3] => ? = 5 - 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [7,5,4,2,6,1,3] => ? = 4 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [7,5,4,2,6,1,3] => ? = 4 - 2
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => [7,2,1,5,4,6,3] => ? = 5 - 2
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => [7,2,1,5,4,6,3] => ? = 5 - 2
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => [7,2,1,5,4,6,3] => ? = 5 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [7,5,4,2,6,1,3] => ? = 4 - 2
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => [7,2,1,5,4,6,3] => ? = 5 - 2
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => [7,2,1,5,4,6,3] => ? = 5 - 2
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => [1,7,3,4,5,6,2] => ? = 6 - 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,5,4,1,6,7,3] => [1,7,4,3,5,6,2] => ? = 5 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,5,4,1,6,7,3] => [1,7,4,3,5,6,2] => ? = 5 - 2
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,6,4,5,1,7,3] => [7,5,3,1,4,6,2] => ? = 4 - 2
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,-1,0,1],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,6,4,5,1,7,3] => [7,5,3,1,4,6,2] => ? = 4 - 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,5,4,1,6,7,3] => [1,7,4,3,5,6,2] => ? = 5 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,0,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,5,4,1,6,7,3] => [1,7,4,3,5,6,2] => ? = 5 - 2
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,6,4,5,1,7,3] => [7,5,3,1,4,6,2] => ? = 4 - 2
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,-1,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,6,4,5,1,7,3] => [7,5,3,1,4,6,2] => ? = 4 - 2
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,6,4,5,1,7,3] => [7,5,3,1,4,6,2] => ? = 4 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,5,4,1,6,7,3] => [1,7,4,3,5,6,2] => ? = 5 - 2
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,6,4,5,1,7,3] => [7,5,3,1,4,6,2] => ? = 4 - 2
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,6,4,5,1,7,3] => [7,5,3,1,4,6,2] => ? = 4 - 2
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,6,1,5,3,7,4] => [7,5,4,1,2,6,3] => ? = 6 - 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [7,5,4,2,6,1,3] => ? = 4 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [7,5,4,2,6,1,3] => ? = 4 - 2
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => [7,2,1,5,4,6,3] => ? = 5 - 2
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => [7,2,1,5,4,6,3] => ? = 5 - 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,-1,0,0,1],[0,0,1,0,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => [7,5,4,2,6,1,3] => ? = 4 - 2
Description
The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$.
Given a permutation $\pi = [\pi_1,\ldots,\pi_n]$, this statistic counts the number of position $j$ such that $\pi_j \geq j$ and there exist indices $i,k$ with $i < j < k$ and $\pi_i > \pi_j > \pi_k$.
See also [[St000213]] and [[St000119]].
Matching statistic: St000718
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000718: Graphs ⟶ ℤResult quality: 48% ●values known / values provided: 48%●distinct values known / distinct values provided: 80%
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000718: Graphs ⟶ ℤResult quality: 48% ●values known / values provided: 48%●distinct values known / distinct values provided: 80%
Values
[[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 4 = 3 + 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 4 = 3 + 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 4 + 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 5 = 4 + 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 5 = 4 + 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 5 = 4 + 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 5 = 4 + 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 5 = 4 + 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 5 = 4 + 1
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 5 = 4 + 1
[[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 4 + 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 5 + 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 5 + 1
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 5 + 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 4 + 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 4 + 1
[[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 4 + 1
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 4 + 1
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 4 + 1
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 5 + 1
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 4 + 1
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 4 + 1
[[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 4 + 1
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 4 + 1
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 4 + 1
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 4 + 1
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 4 + 1
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 4 + 1
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 4 + 1
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 6 = 5 + 1
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,6,1,3,4,7,5] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 4 + 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 5 + 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,3,6,1,4,7,5] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 5 + 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,6,4,1,3,7,5] => ([(0,4),(1,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 + 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,6,4,1,3,7,5] => ([(0,4),(1,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 + 1
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 6 + 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 6 + 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,6,4,1,3,7,5] => ([(0,4),(1,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 + 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,6,4,1,3,7,5] => ([(0,4),(1,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 + 1
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 6 + 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 6 + 1
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 6 + 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,6,4,1,3,7,5] => ([(0,4),(1,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 + 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 6 + 1
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 6 + 1
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,5,1,3,6,7,4] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ? = 5 + 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ? = 6 + 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,3,5,1,6,7,4] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ? = 6 + 1
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,6,1,5,3,7,4] => ([(0,4),(1,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 6 + 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => ([(0,4),(1,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => ([(0,4),(1,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => ([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 5 + 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => ([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 5 + 1
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => ([(0,4),(1,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => ([(0,4),(1,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => ([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 5 + 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => ([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 5 + 1
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => ([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 5 + 1
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [2,6,5,1,3,7,4] => ([(0,4),(1,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 + 1
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,6,5,1,7,4] => ([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 5 + 1
Description
The largest Laplacian eigenvalue of a graph if it is integral.
This statistic is undefined if the largest Laplacian eigenvalue of the graph is not integral.
Various results are collected in Section 3.9 of [1]
Matching statistic: St000394
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St000394: Dyck paths ⟶ ℤResult quality: 44% ●values known / values provided: 44%●distinct values known / distinct values provided: 60%
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St000394: Dyck paths ⟶ ℤResult quality: 44% ●values known / values provided: 44%●distinct values known / distinct values provided: 60%
Values
[[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> []
=> []
=> ? = 3 - 2
[[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> []
=> []
=> ? = 3 - 2
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? = 4 - 2
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? = 4 - 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? = 4 - 2
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? = 4 - 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? = 4 - 2
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? = 4 - 2
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? = 4 - 2
[[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 5 - 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 5 - 2
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 5 - 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 5 - 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [4,4,3]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 3 = 5 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [4,4,3]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 3 = 5 - 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [4,4,2]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> 4 = 6 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [4,4,2]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> 4 = 6 - 2
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4 = 6 - 2
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4 = 6 - 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [4,4,2]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> 4 = 6 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [4,4,2]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> 4 = 6 - 2
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4 = 6 - 2
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4 = 6 - 2
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4 = 6 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [4,4,2]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> 4 = 6 - 2
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4 = 6 - 2
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4 = 6 - 2
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> 3 = 5 - 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 4 = 6 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 4 = 6 - 2
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> 4 = 6 - 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 5 - 2
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 5 - 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 5 - 2
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 5 - 2
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 5 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 5 - 2
Description
The sum of the heights of the peaks of a Dyck path minus the number of peaks.
Matching statistic: St001480
Mp00007: Alternating sign matrices —to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001480: Dyck paths ⟶ ℤResult quality: 44% ●values known / values provided: 44%●distinct values known / distinct values provided: 60%
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001480: Dyck paths ⟶ ℤResult quality: 44% ●values known / values provided: 44%●distinct values known / distinct values provided: 60%
Values
[[0,0,1],[1,0,0],[0,1,0]]
=> [1,1,1,0,0,0]
=> []
=> []
=> ? = 3 - 2
[[0,0,1],[0,1,0],[1,0,0]]
=> [1,1,1,0,0,0]
=> []
=> []
=> ? = 3 - 2
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? = 4 - 2
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? = 4 - 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? = 4 - 2
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? = 4 - 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? = 4 - 2
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? = 4 - 2
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? = 4 - 2
[[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 5 - 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 5 - 2
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 5 - 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 5 - 2
[[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[1,0,0,0,0]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[1,0,0,0,0]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 5 - 2
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [4,4,3]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 3 = 5 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [4,4,3]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 3 = 5 - 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [4,4,2]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> 4 = 6 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [4,4,2]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> 4 = 6 - 2
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4 = 6 - 2
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4 = 6 - 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [4,4,2]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> 4 = 6 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [4,4,2]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> 4 = 6 - 2
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4 = 6 - 2
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4 = 6 - 2
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4 = 6 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [4,4,2]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> 4 = 6 - 2
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4 = 6 - 2
[[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 4 = 6 - 2
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> 3 = 5 - 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 4 = 6 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 4 = 6 - 2
[[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> 4 = 6 - 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 5 - 2
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 5 - 2
[[0,0,1,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,1,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 5 - 2
[[0,0,0,1,0,0],[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 5 - 2
[[0,0,0,1,0,0],[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 5 - 2
[[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 4 - 2
[[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[1,0,0,-1,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 5 - 2
Description
The number of simple summands of the module J^2/J^3. Here J is the Jacobson radical of the Nakayama algebra algebra corresponding to the Dyck path.
The following 66 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001596The number of two-by-two squares inside a skew partition. St000455The second largest eigenvalue of a graph if it is integral. St001529The number of monomials in the expansion of the nabla operator applied to the power-sum symmetric function indexed by the partition. St001488The number of corners of a skew partition. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St000264The girth of a graph, which is not a tree. St000454The largest eigenvalue of a graph if it is integral. St000422The energy of a graph, if it is integral. St000528The height of a poset. St000906The length of the shortest maximal chain in a poset. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St000643The size of the largest orbit of antichains under Panyushev complementation. St000080The rank of the poset. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St000216The absolute length of a permutation. St000443The number of long tunnels of a Dyck path. St000831The number of indices that are either descents or recoils. St000863The length of the first row of the shifted shape of a permutation. St000956The maximal displacement of a permutation. St001180Number of indecomposable injective modules with projective dimension at most 1. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001245The cyclic maximal difference between two consecutive entries of a permutation. St001246The maximal difference between two consecutive entries of a permutation. St001297The number of indecomposable non-injective projective modules minus the number of indecomposable non-injective projective modules that have reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001391The disjunction number of a graph. St001649The length of a longest trail in a graph. St000062The length of the longest increasing subsequence of the permutation. St000155The number of exceedances (also excedences) of a permutation. St000213The number of weak exceedances (also weak excedences) of a permutation. St000235The number of indices that are not cyclical small weak excedances. St000238The number of indices that are not small weak excedances. St000240The number of indices that are not small excedances. St000242The number of indices that are not cyclical small weak excedances. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001515The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule). St000039The number of crossings of a permutation. St000837The number of ascents of distance 2 of a permutation. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St000031The number of cycles in the cycle decomposition of a permutation. St000035The number of left outer peaks of a permutation. St000337The lec statistic, the sum of the inversion numbers of the hook factors of a permutation. St000374The number of exclusive right-to-left minima of a permutation. St000703The number of deficiencies of a permutation. St000742The number of big ascents of a permutation after prepending zero. St000994The number of cycle peaks and the number of cycle valleys of a permutation. St000996The number of exclusive left-to-right maxima of a permutation. St001693The excess length of a longest path consisting of elements and blocks of a set partition. St000245The number of ascents of a permutation. St000834The number of right outer peaks of a permutation. St000050The depth or height of a binary tree. St000356The number of occurrences of the pattern 13-2. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St000327The number of cover relations in a poset. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St000519The largest length of a factor maximising the subword complexity. St000922The minimal number such that all substrings of this length are unique. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!