Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001876
Mp00081: Standard tableaux reading word permutationPermutations
Mp00065: Permutations permutation posetPosets
Mp00206: Posets antichains of maximal sizeLattices
St001876: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1,2,3]]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,3,4]]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,2,3],[4]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
[[1,3],[2,4]]
=> [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2],[3,4]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,2,3,4,5]]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => ([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => ([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,3,4,6],[2,5]]
=> [2,5,1,3,4,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[1,3,4,5],[2,6]]
=> [2,6,1,3,4,5] => ([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,5),(1,3),(4,2),(5,4)],6)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> 3
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => ([(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => ([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
[[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => ([(0,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => ([(0,5),(1,4),(1,5),(4,2),(5,3)],6)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 2
[[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> 3
[[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => ([(0,5),(1,4),(4,2),(5,3)],6)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> 4
[[1,3,6],[2,4],[5]]
=> [5,2,4,1,3,6] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,6],[3,4],[5]]
=> [5,3,4,1,2,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,2,3],[4,6],[5]]
=> [5,4,6,1,2,3] => ([(0,5),(1,5),(2,3),(3,4)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,3,5],[2,4],[6]]
=> [6,2,4,1,3,5] => ([(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,5],[3,4],[6]]
=> [6,3,4,1,2,5] => ([(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,3,4],[2,5],[6]]
=> [6,2,5,1,3,4] => ([(1,5),(2,3),(2,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => ([(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(1,3),(2,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => ([(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,4],[2,5],[3,6]]
=> [3,6,2,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,3],[2,5],[4,6]]
=> [4,6,2,5,1,3] => ([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,2],[3,5],[4,6]]
=> [4,6,3,5,1,2] => ([(0,5),(1,3),(2,4),(2,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[1,3],[2,4],[5,6]]
=> [5,6,2,4,1,3] => ([(0,5),(1,3),(2,4),(2,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
Description
The number of 2-regular simple modules in the incidence algebra of the lattice.
Matching statistic: St001877
Mp00081: Standard tableaux reading word permutationPermutations
Mp00065: Permutations permutation posetPosets
Mp00206: Posets antichains of maximal sizeLattices
St001877: Lattices ⟶ ℤResult quality: 60% values known / values provided: 82%distinct values known / distinct values provided: 60%
Values
[[1,2,3]]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,3,4]]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,2,3],[4]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
[[1,3],[2,4]]
=> [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2],[3,4]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,2,3,4,5]]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[1,2,3,5],[4]]
=> [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,3,4],[5]]
=> [5,1,2,3,4] => ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,3,5],[2,4]]
=> [2,4,1,3,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,5],[3,4]]
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,3,4],[2,5]]
=> [2,5,1,3,4] => ([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,2,4],[3,5]]
=> [3,5,1,2,4] => ([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[[1,2,3],[4,5]]
=> [4,5,1,2,3] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[1,2,3],[4],[5]]
=> [5,4,1,2,3] => ([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
[[1,3],[2,4],[5]]
=> [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2],[3,4],[5]]
=> [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[[1,2,3,5,6],[4]]
=> [4,1,2,3,5,6] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,3,4,6],[5]]
=> [5,1,2,3,4,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => ([(1,5),(3,4),(4,2),(5,3)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[1,3,5,6],[2,4]]
=> [2,4,1,3,5,6] => ([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,3,4,6],[2,5]]
=> [2,5,1,3,4,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,2,4,6],[3,5]]
=> [3,5,1,2,4,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[[1,2,3,6],[4,5]]
=> [4,5,1,2,3,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[1,3,4,5],[2,6]]
=> [2,6,1,3,4,5] => ([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[[1,2,4,5],[3,6]]
=> [3,6,1,2,4,5] => ([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => ([(0,5),(1,3),(4,2),(5,4)],6)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3
[[1,2,3,6],[4],[5]]
=> [5,4,1,2,3,6] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,3,5],[4],[6]]
=> [6,4,1,2,3,5] => ([(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => ([(2,3),(3,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
[[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => ([(0,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => ([(0,5),(1,4),(1,5),(4,2),(5,3)],6)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 2
[[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => ([(0,3),(1,4),(1,5),(3,5),(4,2)],6)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 3
[[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => ([(0,5),(1,4),(4,2),(5,3)],6)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 4
[[1,3,6],[2,4],[5]]
=> [5,2,4,1,3,6] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,6],[3,4],[5]]
=> [5,3,4,1,2,6] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,2,3],[4,6],[5]]
=> [5,4,6,1,2,3] => ([(0,5),(1,5),(2,3),(3,4)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,3,5],[2,4],[6]]
=> [6,2,4,1,3,5] => ([(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2,5],[3,4],[6]]
=> [6,3,4,1,2,5] => ([(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,3,4],[2,5],[6]]
=> [6,2,5,1,3,4] => ([(1,5),(2,3),(2,5),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => ([(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => ([(1,3),(2,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => ([(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,4],[2,5],[3,6]]
=> [3,6,2,5,1,4] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,3],[2,5],[4,6]]
=> [4,6,2,5,1,3] => ([(0,4),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[[1,2],[3,5],[4,6]]
=> [4,6,3,5,1,2] => ([(0,5),(1,3),(2,4),(2,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[1,3],[2,4],[5,6]]
=> [5,6,2,4,1,3] => ([(0,5),(1,3),(2,4),(2,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => ([(0,5),(1,4),(2,3)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
[[1,3],[2,4],[5],[6]]
=> [6,5,2,4,1,3] => ([(2,5),(3,4),(3,5)],6)
=> ([(0,2),(2,1)],3)
=> 0
[[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => ([(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[[1,2,3,4,7],[5,6]]
=> [5,6,1,2,3,4,7] => ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3
[[1,2,3,5,6],[4,7]]
=> [4,7,1,2,3,5,6] => ([(0,5),(1,4),(1,6),(2,6),(5,2),(6,3)],7)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[1,2,3,4,6],[5,7]]
=> [5,7,1,2,3,4,6] => ([(0,5),(1,3),(1,6),(2,6),(4,2),(5,4)],7)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 3
[[1,2,4,7],[3,5,6]]
=> [3,5,6,1,2,4,7] => ([(0,3),(1,4),(1,6),(2,5),(3,6),(4,2),(6,5)],7)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 3
[[1,2,3,7],[4,5,6]]
=> [4,5,6,1,2,3,7] => ([(0,5),(1,4),(2,6),(3,6),(4,2),(5,3)],7)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 4
[[1,2,5,6],[3,4,7]]
=> [3,4,7,1,2,5,6] => ([(0,4),(1,5),(4,6),(5,2),(5,6),(6,3)],7)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[1,3,4,6],[2,5,7]]
=> [2,5,7,1,3,4,6] => ([(0,6),(1,4),(1,6),(3,5),(4,2),(4,5),(6,3)],7)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ? = 2
[[1,2,4,6],[3,5,7]]
=> [3,5,7,1,2,4,6] => ([(0,3),(1,4),(1,6),(3,6),(4,2),(4,5),(6,5)],7)
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ? = 3
[[1,3,4,5],[2,6,7]]
=> [2,6,7,1,3,4,5] => ([(0,6),(1,4),(1,6),(4,3),(5,2),(6,5)],7)
=> ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ? = 3
[[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ([(1,6),(2,4),(5,3),(6,5)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3
[[1,2,4],[3,5,6],[7]]
=> [7,3,5,6,1,2,4] => ([(1,4),(2,3),(2,6),(3,5),(4,6)],7)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 3
[[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => ([(1,6),(2,5),(5,3),(6,4)],7)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 4
[[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
[[1,2,6],[3,4],[5,7]]
=> [5,7,3,4,1,2,6] => ([(0,5),(1,4),(2,3),(2,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
[[1,2,3],[4,6],[5,7]]
=> [5,7,4,6,1,2,3] => ([(0,6),(1,4),(2,3),(2,6),(4,5)],7)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 4
[[1,2,5],[3,4],[6,7]]
=> [6,7,3,4,1,2,5] => ([(0,5),(1,4),(2,3),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
[[1,3,4],[2,5],[6,7]]
=> [6,7,2,5,1,3,4] => ([(0,6),(1,3),(2,4),(2,6),(6,5)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3
[[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => ([(1,6),(2,5),(3,4)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
[[1,2,3,4,5,6,7,8]]
=> [1,2,3,4,5,6,7,8] => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 0
[[1,2,3,4,6,8],[5,7]]
=> [5,7,1,2,3,4,6,8] => ([(0,5),(1,3),(1,7),(2,7),(3,6),(4,2),(5,4),(7,6)],8)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 3
[[1,2,4,6,8],[3,5,7]]
=> [3,5,7,1,2,4,6,8] => ([(0,3),(1,4),(1,7),(2,6),(3,7),(4,2),(4,5),(5,6),(7,5)],8)
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ? = 3
[[1,2,3,4,8],[5,6],[7]]
=> [7,5,6,1,2,3,4,8] => ([(0,7),(1,6),(2,4),(3,7),(4,7),(5,3),(6,5)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3
[[1,2,3,4,7],[5,6],[8]]
=> [8,5,6,1,2,3,4,7] => ([(1,6),(2,4),(3,7),(4,7),(5,3),(6,5)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3
[[1,2,3,4,6],[5,7],[8]]
=> [8,5,7,1,2,3,4,6] => ([(1,6),(2,4),(2,7),(3,7),(5,3),(6,5)],8)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ? = 3
[[1,2,3,8],[4,5,6],[7]]
=> [7,4,5,6,1,2,3,8] => ([(0,7),(1,6),(2,5),(3,7),(4,7),(5,3),(6,4)],8)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 4
[[1,2,3,4],[5,6,8],[7]]
=> [7,5,6,8,1,2,3,4] => ([(0,7),(1,6),(2,4),(4,7),(5,3),(6,5)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3
[[1,2,4,6],[3,5,7],[8]]
=> [8,3,5,7,1,2,4,6] => ([(1,4),(2,3),(2,6),(3,5),(3,7),(4,6),(6,7)],8)
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ? = 3
[[1,2,4,6],[3,7],[5,8]]
=> [5,8,3,7,1,2,4,6] => ([(0,5),(0,7),(1,4),(2,3),(2,5),(2,6),(4,7),(7,6)],8)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ? = 2
[[1,2,3,4],[5,6],[7],[8]]
=> [8,7,5,6,1,2,3,4] => ([(2,4),(3,5),(5,6),(6,7)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3
[[1,2,3],[4,5,6],[7],[8]]
=> [8,7,4,5,6,1,2,3] => ([(2,5),(3,4),(4,6),(5,7)],8)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 4
[[1,2,7],[3,4],[5,6],[8]]
=> [8,5,6,3,4,1,2,7] => ([(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 0
[[1,3,4],[2,5],[6,7],[8]]
=> [8,6,7,2,5,1,3,4] => ([(1,7),(2,5),(3,4),(3,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3
[[1,3],[2,4],[5,7],[6,8]]
=> [6,8,5,7,2,4,1,3] => ([(0,7),(1,6),(2,4),(2,6),(3,5),(3,7)],8)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 4
[[1,2,3,4,5,6,7,8,9]]
=> [1,2,3,4,5,6,7,8,9] => ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ? = 0
[[1,2,3,4,5,6,7,8,10],[9]]
=> [9,1,2,3,4,5,6,7,8,10] => ([(0,9),(1,8),(2,9),(3,5),(4,3),(5,7),(6,4),(7,2),(8,6)],10)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ? = 0
Description
Number of indecomposable injective modules with projective dimension 2.