Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
Mp00024: Dyck paths to 321-avoiding permutationPermutations
St001850: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,2] => 1
[2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [2,3,1] => 0
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [3,1,2] => 0
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,3,4,2] => 0
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => 0
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => 0
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [2,4,1,3] => 0
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [2,1,3,4] => 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [3,1,4,2] => 0
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,3] => 0
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,2,4,6,3,5] => 0
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,2,4,5,3] => 0
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 0
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 0
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,2,5,3,4] => 0
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,2,5,3,6,4] => 0
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,2,4,6,3,5,7] => 0
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4,6] => 0
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4] => 0
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => 0
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,4,5] => 0
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,1,2,5,3] => 0
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => 0
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,2] => 0
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,4,2,5,3,6] => 0
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,2,5,3,6,4,7] => 0
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,2,3,5,7,4,6] => 0
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,4,6,2,5] => 0
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,4,6,2,3,5] => 0
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,3,4,5,2] => 0
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,5] => 0
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,5,2,3] => 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3] => 0
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,4] => 0
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,5] => 0
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,4,5,2,6,3] => 0
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,4] => 0
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,5,2,3,6,4] => 0
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,2,3,6,4,7,5] => 0
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [1,4,6,2,3,5,7] => 0
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,3,4,6,2,5,7] => 0
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4,6] => 0
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,2,3,5,6,4] => 0
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4,6] => 0
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,6,4] => 0
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => 0
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => 0
Description
The number of Hecke atoms of a permutation. For a permutation $z\in\mathfrak S_n$, this is the cardinality of the set $$ \{ w\in\mathfrak S_n | w^{-1} \star w = z\}, $$ where $\star$ denotes the Demazure product. Note that $w\mapsto w^{-1}\star w$ is a surjection onto the set of involutions.
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00228: Dyck paths reflect parallelogram polyominoDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St001122: Integer partitions ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> []
=> ? = 1
[2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> 0
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2]
=> 0
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 0
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [1]
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 0
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> 0
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 0
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> 0
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> 0
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 0
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 0
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 0
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 0
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 0
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> 0
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [5,1]
=> 0
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [4,2,1]
=> 0
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> 0
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> 0
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> 0
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> 0
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> 0
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 0
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [3,2,1,1]
=> 0
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [2,1,1,1,1]
=> 0
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [5]
=> 0
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [4,1,1]
=> 0
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,2]
=> 0
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> 0
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> 0
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> 0
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> 0
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 0
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,2,1,1]
=> 0
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> 0
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [3,1,1,1]
=> 0
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1]
=> 0
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [5,3]
=> 0
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [5,1,1,1]
=> 0
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [4,4,1]
=> 0
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,1]
=> 0
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,1,1]
=> 0
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [5,3,1]
=> 0
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> 0
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> 0
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> 1
Description
The multiplicity of the sign representation in the Kronecker square corresponding to a partition. The Kronecker coefficient is the multiplicity $g_{\mu,\nu}^\lambda$ of the Specht module $S^\lambda$ in $S^\mu\otimes S^\nu$: $$ S^\mu\otimes S^\nu = \bigoplus_\lambda g_{\mu,\nu}^\lambda S^\lambda $$ This statistic records the Kronecker coefficient $g_{\lambda,\lambda}^{1^n}$, for $\lambda\vdash n$. It equals $1$ if and only if $\lambda$ is self-conjugate.
Mp00179: Integer partitions to skew partitionSkew partitions
Mp00185: Skew partitions cell posetPosets
St000633: Posets ⟶ ℤResult quality: 15% values known / values provided: 15%distinct values known / distinct values provided: 100%
Values
[1]
=> [[1],[]]
=> ([],1)
=> ? = 1 + 1
[2]
=> [[2],[]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,1]
=> [[1,1],[]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[3]
=> [[3],[]]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[2,1]
=> [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> 2 = 1 + 1
[1,1,1]
=> [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[4]
=> [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,1]
=> [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> 1 = 0 + 1
[2,2]
=> [[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,1,1]
=> [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> 1 = 0 + 1
[1,1,1,1]
=> [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[5]
=> [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[4,1]
=> [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 1 = 0 + 1
[3,2]
=> [[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 1 = 0 + 1
[3,1,1]
=> [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> 2 = 1 + 1
[2,2,1]
=> [[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 1 = 0 + 1
[2,1,1,1]
=> [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 1 = 0 + 1
[1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[6]
=> [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[5,1]
=> [[5,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> 1 = 0 + 1
[4,2]
=> [[4,2],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> 1 = 0 + 1
[4,1,1]
=> [[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 1 = 0 + 1
[3,3]
=> [[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[3,2,1]
=> [[3,2,1],[]]
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> 2 = 1 + 1
[3,1,1,1]
=> [[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 1 = 0 + 1
[2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 0 + 1
[2,2,1,1]
=> [[2,2,1,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> 1 = 0 + 1
[2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[6,1]
=> [[6,1],[]]
=> ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> ? = 0 + 1
[5,2]
=> [[5,2],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> ? = 0 + 1
[5,1,1]
=> [[5,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ? = 0 + 1
[4,3]
=> [[4,3],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ? = 0 + 1
[4,2,1]
=> [[4,2,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ? = 0 + 1
[4,1,1,1]
=> [[4,1,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7)
=> ? = 1 + 1
[3,3,1]
=> [[3,3,1],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ? = 0 + 1
[3,2,2]
=> [[3,2,2],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ? = 0 + 1
[3,2,1,1]
=> [[3,2,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ? = 0 + 1
[3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ? = 0 + 1
[2,2,2,1]
=> [[2,2,2,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ? = 0 + 1
[2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> ? = 0 + 1
[2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> ? = 0 + 1
[6,2]
=> [[6,2],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8)
=> ? = 0 + 1
[6,1,1]
=> [[6,1,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8)
=> ? = 0 + 1
[5,3]
=> [[5,3],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8)
=> ? = 0 + 1
[5,2,1]
=> [[5,2,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(5,7),(6,1),(6,7)],8)
=> ? = 0 + 1
[5,1,1,1]
=> [[5,1,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8)
=> ? = 0 + 1
[4,4]
=> [[4,4],[]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[4,3,1]
=> [[4,3,1],[]]
=> ([(0,4),(0,5),(3,2),(3,7),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ? = 0 + 1
[4,2,2]
=> [[4,2,2],[]]
=> ([(0,4),(0,5),(1,7),(3,2),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ? = 0 + 1
[4,2,1,1]
=> [[4,2,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(5,7),(6,4),(6,7)],8)
=> ? = 1 + 1
[4,1,1,1,1]
=> [[4,1,1,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8)
=> ? = 0 + 1
[3,3,2]
=> [[3,3,2],[]]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7)],8)
=> ? = 1 + 1
[3,3,1,1]
=> [[3,3,1,1],[]]
=> ([(0,4),(0,5),(1,7),(3,2),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ? = 0 + 1
[3,2,2,1]
=> [[3,2,2,1],[]]
=> ([(0,4),(0,5),(3,2),(3,7),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ? = 0 + 1
[3,2,1,1,1]
=> [[3,2,1,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(5,7),(6,1),(6,7)],8)
=> ? = 0 + 1
[2,2,2,2]
=> [[2,2,2,2],[]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 0 + 1
[2,2,2,1,1]
=> [[2,2,2,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8)
=> ? = 0 + 1
[2,2,1,1,1,1]
=> [[2,2,1,1,1,1],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8)
=> ? = 0 + 1
[6,3]
=> [[6,3],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(4,8),(5,1),(6,4),(6,7),(7,8)],9)
=> ? = 0 + 1
[6,2,1]
=> [[6,2,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(6,8),(7,1),(7,8)],9)
=> ? = 0 + 1
[6,1,1,1]
=> [[6,1,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,3),(5,2),(6,1),(7,6),(8,4)],9)
=> ? = 0 + 1
[5,4]
=> [[5,4],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,8),(4,1),(4,7),(5,3),(5,6),(6,8),(8,7)],9)
=> ? = 0 + 1
[5,3,1]
=> [[5,3,1],[]]
=> ([(0,5),(0,6),(3,4),(3,8),(4,2),(5,3),(5,7),(6,1),(6,7),(7,8)],9)
=> ? = 0 + 1
[5,2,2]
=> [[5,2,2],[]]
=> ([(0,5),(0,6),(2,8),(3,4),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8)],9)
=> ? = 0 + 1
[5,2,1,1]
=> [[5,2,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(6,8),(7,3),(7,8)],9)
=> ? = 0 + 1
[5,1,1,1,1]
=> [[5,1,1,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,6),(5,2),(6,1),(7,3),(8,4)],9)
=> ? = 1 + 1
[4,4,1]
=> [[4,4,1],[]]
=> ([(0,4),(0,5),(2,7),(3,2),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(8,7)],9)
=> ? = 0 + 1
[4,3,2]
=> [[4,3,2],[]]
=> ([(0,4),(0,5),(2,7),(3,1),(3,8),(4,2),(4,6),(5,3),(5,6),(6,7),(6,8)],9)
=> ? = 0 + 1
[4,3,1,1]
=> [[4,3,1,1],[]]
=> ([(0,5),(0,6),(3,1),(4,2),(4,8),(5,3),(5,7),(6,4),(6,7),(7,8)],9)
=> ? = 0 + 1
[4,2,2,1]
=> [[4,2,2,1],[]]
=> ([(0,5),(0,6),(3,1),(4,2),(4,8),(5,3),(5,7),(6,4),(6,7),(7,8)],9)
=> ? = 0 + 1
[4,2,1,1,1]
=> [[4,2,1,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(6,8),(7,3),(7,8)],9)
=> ? = 0 + 1
[4,1,1,1,1,1]
=> [[4,1,1,1,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,3),(5,2),(6,1),(7,6),(8,4)],9)
=> ? = 0 + 1
[3,3,3]
=> [[3,3,3],[]]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[3,3,2,1]
=> [[3,3,2,1],[]]
=> ([(0,4),(0,5),(2,7),(3,1),(3,8),(4,2),(4,6),(5,3),(5,6),(6,7),(6,8)],9)
=> ? = 0 + 1
[3,3,1,1,1]
=> [[3,3,1,1,1],[]]
=> ([(0,5),(0,6),(2,8),(3,4),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8)],9)
=> ? = 0 + 1
[3,2,2,2]
=> [[3,2,2,2],[]]
=> ([(0,4),(0,5),(2,7),(3,2),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(8,7)],9)
=> ? = 0 + 1
[3,2,2,1,1]
=> [[3,2,2,1,1],[]]
=> ([(0,5),(0,6),(3,4),(3,8),(4,2),(5,3),(5,7),(6,1),(6,7),(7,8)],9)
=> ? = 0 + 1
Description
The size of the automorphism group of a poset. A poset automorphism is a permutation of the elements of the poset preserving the order relation.