searching the database
Your data matches 46 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000029
(load all 53 compositions to match this statistic)
(load all 53 compositions to match this statistic)
St000029: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,2] => 0
[2,1] => 1
[1,2,3] => 0
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 2
[3,1,2] => 2
[3,2,1] => 2
[1,2,3,4] => 0
[1,2,4,3] => 1
[1,3,2,4] => 1
[1,3,4,2] => 2
[1,4,2,3] => 2
[1,4,3,2] => 2
[2,1,3,4] => 1
[2,1,4,3] => 2
[2,3,1,4] => 2
[2,3,4,1] => 3
[2,4,1,3] => 3
[2,4,3,1] => 3
[3,1,2,4] => 2
[3,1,4,2] => 3
[3,2,1,4] => 2
[3,2,4,1] => 3
[3,4,1,2] => 4
[3,4,2,1] => 4
[4,1,2,3] => 3
[4,1,3,2] => 3
[4,2,1,3] => 3
[4,2,3,1] => 3
[4,3,1,2] => 4
[4,3,2,1] => 4
Description
The depth of a permutation.
This is given by
$$\operatorname{dp}(\sigma) = \sum_{\sigma_i>i} (\sigma_i-i) = |\{ i \leq j : \sigma_i > j\}|.$$
The depth is half of the total displacement [4], Problem 5.1.1.28, or Spearman’s disarray [3] $\sum_i |\sigma_i-i|$.
Permutations with depth at most $1$ are called ''almost-increasing'' in [5].
Matching statistic: St000030
(load all 44 compositions to match this statistic)
(load all 44 compositions to match this statistic)
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
St000030: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000030: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => 0
[1,2] => [1,2] => 0
[2,1] => [2,1] => 1
[1,2,3] => [1,2,3] => 0
[1,3,2] => [1,3,2] => 1
[2,1,3] => [2,1,3] => 1
[2,3,1] => [3,2,1] => 2
[3,1,2] => [3,1,2] => 2
[3,2,1] => [2,3,1] => 2
[1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,4,3] => 1
[1,3,2,4] => [1,3,2,4] => 1
[1,3,4,2] => [1,4,3,2] => 2
[1,4,2,3] => [1,4,2,3] => 2
[1,4,3,2] => [1,3,4,2] => 2
[2,1,3,4] => [2,1,3,4] => 1
[2,1,4,3] => [2,1,4,3] => 2
[2,3,1,4] => [3,2,1,4] => 2
[2,3,4,1] => [4,3,2,1] => 3
[2,4,1,3] => [4,2,1,3] => 3
[2,4,3,1] => [3,4,2,1] => 3
[3,1,2,4] => [3,1,2,4] => 2
[3,1,4,2] => [4,3,1,2] => 3
[3,2,1,4] => [2,3,1,4] => 2
[3,2,4,1] => [2,4,3,1] => 3
[3,4,1,2] => [4,1,3,2] => 4
[3,4,2,1] => [4,2,3,1] => 4
[4,1,2,3] => [4,1,2,3] => 3
[4,1,3,2] => [3,4,1,2] => 3
[4,2,1,3] => [2,4,1,3] => 3
[4,2,3,1] => [2,3,4,1] => 3
[4,3,1,2] => [3,1,4,2] => 4
[4,3,2,1] => [3,2,4,1] => 4
Description
The sum of the descent differences of a permutations.
This statistic is given by
$$\pi \mapsto \sum_{i\in\operatorname{Des}(\pi)} (\pi_i-\pi_{i+1}).$$
See [[St000111]] and [[St000154]] for the sum of the descent tops and the descent bottoms, respectively. This statistic was studied in [1] and [2] where is was called the ''drop'' of a permutation.
Matching statistic: St001894
(load all 14 compositions to match this statistic)
(load all 14 compositions to match this statistic)
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001894: Signed permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001894: Signed permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => 0
[1,2] => [1,2] => 0
[2,1] => [2,1] => 1
[1,2,3] => [1,2,3] => 0
[1,3,2] => [1,3,2] => 1
[2,1,3] => [2,1,3] => 1
[2,3,1] => [2,3,1] => 2
[3,1,2] => [3,1,2] => 2
[3,2,1] => [3,2,1] => 2
[1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,4,3] => 1
[1,3,2,4] => [1,3,2,4] => 1
[1,3,4,2] => [1,3,4,2] => 2
[1,4,2,3] => [1,4,2,3] => 2
[1,4,3,2] => [1,4,3,2] => 2
[2,1,3,4] => [2,1,3,4] => 1
[2,1,4,3] => [2,1,4,3] => 2
[2,3,1,4] => [2,3,1,4] => 2
[2,3,4,1] => [2,3,4,1] => 3
[2,4,1,3] => [2,4,1,3] => 3
[2,4,3,1] => [2,4,3,1] => 3
[3,1,2,4] => [3,1,2,4] => 2
[3,1,4,2] => [3,1,4,2] => 3
[3,2,1,4] => [3,2,1,4] => 2
[3,2,4,1] => [3,2,4,1] => 3
[3,4,1,2] => [3,4,1,2] => 4
[3,4,2,1] => [3,4,2,1] => 4
[4,1,2,3] => [4,1,2,3] => 3
[4,1,3,2] => [4,1,3,2] => 3
[4,2,1,3] => [4,2,1,3] => 3
[4,2,3,1] => [4,2,3,1] => 3
[4,3,1,2] => [4,3,1,2] => 4
[4,3,2,1] => [4,3,2,1] => 4
Description
The depth of a signed permutation.
The depth of a positive root is its rank in the root poset. The depth of an element of a Coxeter group is the minimal sum of depths for any representation as product of reflections.
Matching statistic: St000224
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00240: Permutations —weak exceedance partition⟶ Set partitions
Mp00080: Set partitions —to permutation⟶ Permutations
St000224: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00080: Set partitions —to permutation⟶ Permutations
St000224: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => {{1}}
=> [1] => 0
[1,2] => {{1},{2}}
=> [1,2] => 0
[2,1] => {{1,2}}
=> [2,1] => 1
[1,2,3] => {{1},{2},{3}}
=> [1,2,3] => 0
[1,3,2] => {{1},{2,3}}
=> [1,3,2] => 1
[2,1,3] => {{1,2},{3}}
=> [2,1,3] => 1
[2,3,1] => {{1,2,3}}
=> [2,3,1] => 2
[3,1,2] => {{1,3},{2}}
=> [3,2,1] => 2
[3,2,1] => {{1,3},{2}}
=> [3,2,1] => 2
[1,2,3,4] => {{1},{2},{3},{4}}
=> [1,2,3,4] => 0
[1,2,4,3] => {{1},{2},{3,4}}
=> [1,2,4,3] => 1
[1,3,2,4] => {{1},{2,3},{4}}
=> [1,3,2,4] => 1
[1,3,4,2] => {{1},{2,3,4}}
=> [1,3,4,2] => 2
[1,4,2,3] => {{1},{2,4},{3}}
=> [1,4,3,2] => 2
[1,4,3,2] => {{1},{2,4},{3}}
=> [1,4,3,2] => 2
[2,1,3,4] => {{1,2},{3},{4}}
=> [2,1,3,4] => 1
[2,1,4,3] => {{1,2},{3,4}}
=> [2,1,4,3] => 2
[2,3,1,4] => {{1,2,3},{4}}
=> [2,3,1,4] => 2
[2,3,4,1] => {{1,2,3,4}}
=> [2,3,4,1] => 3
[2,4,1,3] => {{1,2,4},{3}}
=> [2,4,3,1] => 3
[2,4,3,1] => {{1,2,4},{3}}
=> [2,4,3,1] => 3
[3,1,2,4] => {{1,3},{2},{4}}
=> [3,2,1,4] => 2
[3,1,4,2] => {{1,3,4},{2}}
=> [3,2,4,1] => 3
[3,2,1,4] => {{1,3},{2},{4}}
=> [3,2,1,4] => 2
[3,2,4,1] => {{1,3,4},{2}}
=> [3,2,4,1] => 3
[3,4,1,2] => {{1,3},{2,4}}
=> [3,4,1,2] => 4
[3,4,2,1] => {{1,3},{2,4}}
=> [3,4,1,2] => 4
[4,1,2,3] => {{1,4},{2},{3}}
=> [4,2,3,1] => 3
[4,1,3,2] => {{1,4},{2},{3}}
=> [4,2,3,1] => 3
[4,2,1,3] => {{1,4},{2},{3}}
=> [4,2,3,1] => 3
[4,2,3,1] => {{1,4},{2},{3}}
=> [4,2,3,1] => 3
[4,3,1,2] => {{1,4},{2,3}}
=> [4,3,2,1] => 4
[4,3,2,1] => {{1,4},{2,3}}
=> [4,3,2,1] => 4
Description
The sorting index of a permutation.
The sorting index counts the total distance that symbols move during a selection sort of a permutation. This sorting algorithm swaps symbol n into index n and then recursively sorts the first n-1 symbols.
Compare this to [[St000018]], the number of inversions of a permutation, which is also the total distance that elements move during a bubble sort.
Matching statistic: St001821
Mp00240: Permutations —weak exceedance partition⟶ Set partitions
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001821: Signed permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00080: Set partitions —to permutation⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001821: Signed permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => {{1}}
=> [1] => [1] => 0
[1,2] => {{1},{2}}
=> [1,2] => [1,2] => 0
[2,1] => {{1,2}}
=> [2,1] => [2,1] => 1
[1,2,3] => {{1},{2},{3}}
=> [1,2,3] => [1,2,3] => 0
[1,3,2] => {{1},{2,3}}
=> [1,3,2] => [1,3,2] => 1
[2,1,3] => {{1,2},{3}}
=> [2,1,3] => [2,1,3] => 1
[2,3,1] => {{1,2,3}}
=> [2,3,1] => [2,3,1] => 2
[3,1,2] => {{1,3},{2}}
=> [3,2,1] => [3,2,1] => 2
[3,2,1] => {{1,3},{2}}
=> [3,2,1] => [3,2,1] => 2
[1,2,3,4] => {{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => {{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => 1
[1,3,2,4] => {{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => 1
[1,3,4,2] => {{1},{2,3,4}}
=> [1,3,4,2] => [1,3,4,2] => 2
[1,4,2,3] => {{1},{2,4},{3}}
=> [1,4,3,2] => [1,4,3,2] => 2
[1,4,3,2] => {{1},{2,4},{3}}
=> [1,4,3,2] => [1,4,3,2] => 2
[2,1,3,4] => {{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => 1
[2,1,4,3] => {{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => 2
[2,3,1,4] => {{1,2,3},{4}}
=> [2,3,1,4] => [2,3,1,4] => 2
[2,3,4,1] => {{1,2,3,4}}
=> [2,3,4,1] => [2,3,4,1] => 3
[2,4,1,3] => {{1,2,4},{3}}
=> [2,4,3,1] => [2,4,3,1] => 3
[2,4,3,1] => {{1,2,4},{3}}
=> [2,4,3,1] => [2,4,3,1] => 3
[3,1,2,4] => {{1,3},{2},{4}}
=> [3,2,1,4] => [3,2,1,4] => 2
[3,1,4,2] => {{1,3,4},{2}}
=> [3,2,4,1] => [3,2,4,1] => 3
[3,2,1,4] => {{1,3},{2},{4}}
=> [3,2,1,4] => [3,2,1,4] => 2
[3,2,4,1] => {{1,3,4},{2}}
=> [3,2,4,1] => [3,2,4,1] => 3
[3,4,1,2] => {{1,3},{2,4}}
=> [3,4,1,2] => [3,4,1,2] => 4
[3,4,2,1] => {{1,3},{2,4}}
=> [3,4,1,2] => [3,4,1,2] => 4
[4,1,2,3] => {{1,4},{2},{3}}
=> [4,2,3,1] => [4,2,3,1] => 3
[4,1,3,2] => {{1,4},{2},{3}}
=> [4,2,3,1] => [4,2,3,1] => 3
[4,2,1,3] => {{1,4},{2},{3}}
=> [4,2,3,1] => [4,2,3,1] => 3
[4,2,3,1] => {{1,4},{2},{3}}
=> [4,2,3,1] => [4,2,3,1] => 3
[4,3,1,2] => {{1,4},{2,3}}
=> [4,3,2,1] => [4,3,2,1] => 4
[4,3,2,1] => {{1,4},{2,3}}
=> [4,3,2,1] => [4,3,2,1] => 4
Description
The sorting index of a signed permutation.
A signed permutation $\sigma = [\sigma(1),\ldots,\sigma(n)]$ can be sorted $[1,\ldots,n]$ by signed transpositions in the following way:
First move $\pm n$ to its position and swap the sign if needed, then $\pm (n-1), \pm (n-2)$ and so on.
For example for $[2,-4,5,-1,-3]$ we have the swaps
$$
[2,-4,5,-1,-3] \rightarrow [2,-4,-3,-1,5] \rightarrow [2,1,-3,4,5] \rightarrow [2,1,3,4,5] \rightarrow [1,2,3,4,5]
$$
given by the signed transpositions $(3,5), (-2,4), (-3,3), (1,2)$.
If $(i_1,j_1),\ldots,(i_n,j_n)$ is the decomposition of $\sigma$ obtained this way (including trivial transpositions) then the sorting index of $\sigma$ is defined as
$$
\operatorname{sor}_B(\sigma) = \sum_{k=1}^{n-1} j_k - i_k - \chi(i_k < 0),
$$
where $\chi(i_k < 0)$ is 1 if $i_k$ is negative and 0 otherwise.
For $\sigma = [2,-4,5,-1,-3]$ we have
$$
\operatorname{sor}_B(\sigma) = (5-3) + (4-(-2)-1) + (3-(-3)-1) + (2-1) = 13.
$$
Matching statistic: St000728
(load all 20 compositions to match this statistic)
(load all 20 compositions to match this statistic)
Mp00240: Permutations —weak exceedance partition⟶ Set partitions
St000728: Set partitions ⟶ ℤResult quality: 97% ●values known / values provided: 97%●distinct values known / distinct values provided: 100%
St000728: Set partitions ⟶ ℤResult quality: 97% ●values known / values provided: 97%●distinct values known / distinct values provided: 100%
Values
[1] => {{1}}
=> ? = 0
[1,2] => {{1},{2}}
=> 0
[2,1] => {{1,2}}
=> 1
[1,2,3] => {{1},{2},{3}}
=> 0
[1,3,2] => {{1},{2,3}}
=> 1
[2,1,3] => {{1,2},{3}}
=> 1
[2,3,1] => {{1,2,3}}
=> 2
[3,1,2] => {{1,3},{2}}
=> 2
[3,2,1] => {{1,3},{2}}
=> 2
[1,2,3,4] => {{1},{2},{3},{4}}
=> 0
[1,2,4,3] => {{1},{2},{3,4}}
=> 1
[1,3,2,4] => {{1},{2,3},{4}}
=> 1
[1,3,4,2] => {{1},{2,3,4}}
=> 2
[1,4,2,3] => {{1},{2,4},{3}}
=> 2
[1,4,3,2] => {{1},{2,4},{3}}
=> 2
[2,1,3,4] => {{1,2},{3},{4}}
=> 1
[2,1,4,3] => {{1,2},{3,4}}
=> 2
[2,3,1,4] => {{1,2,3},{4}}
=> 2
[2,3,4,1] => {{1,2,3,4}}
=> 3
[2,4,1,3] => {{1,2,4},{3}}
=> 3
[2,4,3,1] => {{1,2,4},{3}}
=> 3
[3,1,2,4] => {{1,3},{2},{4}}
=> 2
[3,1,4,2] => {{1,3,4},{2}}
=> 3
[3,2,1,4] => {{1,3},{2},{4}}
=> 2
[3,2,4,1] => {{1,3,4},{2}}
=> 3
[3,4,1,2] => {{1,3},{2,4}}
=> 4
[3,4,2,1] => {{1,3},{2,4}}
=> 4
[4,1,2,3] => {{1,4},{2},{3}}
=> 3
[4,1,3,2] => {{1,4},{2},{3}}
=> 3
[4,2,1,3] => {{1,4},{2},{3}}
=> 3
[4,2,3,1] => {{1,4},{2},{3}}
=> 3
[4,3,1,2] => {{1,4},{2,3}}
=> 4
[4,3,2,1] => {{1,4},{2,3}}
=> 4
Description
The dimension of a set partition.
This is the sum of the lengths of the arcs of a set partition. Equivalently, one obtains that this is the sum of the maximal entries of the blocks minus the sum of the minimal entries of the blocks.
A slightly shifted definition of the dimension is [[St000572]].
Matching statistic: St000454
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 67% ●values known / values provided: 67%●distinct values known / distinct values provided: 80%
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 67% ●values known / values provided: 67%●distinct values known / distinct values provided: 80%
Values
[1] => ([],1)
=> [1] => ([],1)
=> 0
[1,2] => ([],2)
=> [2] => ([],2)
=> 0
[2,1] => ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 1
[1,2,3] => ([],3)
=> [3] => ([],3)
=> 0
[1,3,2] => ([(1,2)],3)
=> [1,2] => ([(1,2)],3)
=> 1
[2,1,3] => ([(1,2)],3)
=> [1,2] => ([(1,2)],3)
=> 1
[2,3,1] => ([(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[3,1,2] => ([(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> ? = 2
[1,2,3,4] => ([],4)
=> [4] => ([],4)
=> 0
[1,2,4,3] => ([(2,3)],4)
=> [1,3] => ([(2,3)],4)
=> 1
[1,3,2,4] => ([(2,3)],4)
=> [1,3] => ([(2,3)],4)
=> 1
[1,3,4,2] => ([(1,3),(2,3)],4)
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[1,4,2,3] => ([(1,3),(2,3)],4)
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> ? = 2
[2,1,3,4] => ([(2,3)],4)
=> [1,3] => ([(2,3)],4)
=> 1
[2,1,4,3] => ([(0,3),(1,2)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> ? = 2
[2,3,1,4] => ([(1,3),(2,3)],4)
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,1,2,4] => ([(1,3),(2,3)],4)
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> ? = 2
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 4
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001596
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00233: Dyck paths —skew partition⟶ Skew partitions
St001596: Skew partitions ⟶ ℤResult quality: 60% ●values known / values provided: 61%●distinct values known / distinct values provided: 60%
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00233: Dyck paths —skew partition⟶ Skew partitions
St001596: Skew partitions ⟶ ℤResult quality: 60% ●values known / values provided: 61%●distinct values known / distinct values provided: 60%
Values
[1] => [1,0]
=> [1,1,0,0]
=> [[2],[]]
=> 0
[1,2] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> [[3],[]]
=> 0
[2,1] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> 1
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> 0
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> 1
[2,1,3] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> 1
[2,3,1] => [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> 2
[3,1,2] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> 2
[3,2,1] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> 2
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> 2
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> 2
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> 2
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> ? = 3
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> ? = 3
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> ? = 3
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[4,3],[]]
=> 2
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> ? = 3
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[4,3],[]]
=> 2
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> ? = 3
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> ? = 4
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> ? = 4
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ? = 3
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ? = 3
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ? = 3
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ? = 3
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ? = 4
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ? = 4
Description
The number of two-by-two squares inside a skew partition.
This is, the number of cells $(i,j)$ in a skew partition for which the box $(i+1,j+1)$ is also a cell inside the skew partition.
Matching statistic: St001633
Values
[1] => ([],1)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[2,1] => ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[2,3,1] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[3,1,2] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[3,2,1] => ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 2
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 1
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 2
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 2
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ? = 2
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 3
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 3
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 3
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ? = 2
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 3
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 4
[3,4,2,1] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? = 4
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 3
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 3
[4,2,3,1] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? = 3
[4,3,1,2] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? = 4
[4,3,2,1] => ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 4
Description
The number of simple modules with projective dimension two in the incidence algebra of the poset.
Matching statistic: St001877
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Values
[1] => ([],1)
=> ([(0,1)],2)
=> ? = 0
[1,2] => ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0
[2,1] => ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,3,2] => ([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[2,3,1] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[3,1,2] => ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2
[3,2,1] => ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ? = 2
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 1
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 2
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 2
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ? = 2
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 3
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 3
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 2
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 3
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ? = 2
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 3
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 4
[3,4,2,1] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? = 4
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 3
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 3
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 3
[4,2,3,1] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? = 3
[4,3,1,2] => ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? = 4
[4,3,2,1] => ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 4
Description
Number of indecomposable injective modules with projective dimension 2.
The following 36 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000091The descent variation of a composition. St000173The segment statistic of a semistandard tableau. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. St001926Sparre Andersen's position of the maximum of a signed permutation. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001330The hat guessing number of a graph. St000264The girth of a graph, which is not a tree. St000302The determinant of the distance matrix of a connected graph. St000467The hyper-Wiener index of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000112The sum of the entries reduced by the index of their row in a semistandard tableau. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St000736The last entry in the first row of a semistandard tableau. St000177The number of free tiles in the pattern. St000178Number of free entries. St001520The number of strict 3-descents. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001948The number of augmented double ascents of a permutation. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001569The maximal modular displacement of a permutation. St001816Eigenvalues of the top-to-random operator acting on a simple module. St000075The orbit size of a standard tableau under promotion. St001235The global dimension of the corresponding Comp-Nakayama algebra.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!