searching the database
Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001685
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St001685: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St001685: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> [2,1] => 0
[2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 0
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 0
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 0
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 0
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => 0
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,6,5,2,1] => 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 0
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => 0
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,3,5,6,2,1] => 0
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => 3
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 3
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 0
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 0
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => 0
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,4,6,5,3,1] => 2
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,4,2,6,5,1] => 3
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 3
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 2
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 0
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,5,6,4,1] => 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 0
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,3,5,2,6,1] => 0
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5] => 4
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [4,6,5,3,2,1] => 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,3,4,6,5,2] => 3
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> [2,3,5,4,1,6] => 2
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 3
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 3
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [3,2,4,5,1,6] => 0
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 1
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 0
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [5,4,6,3,2,1] => 0
Description
The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation.
Matching statistic: St000143
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000143: Integer partitions ⟶ ℤResult quality: 65% ●values known / values provided: 65%●distinct values known / distinct values provided: 83%
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000143: Integer partitions ⟶ ℤResult quality: 65% ●values known / values provided: 65%●distinct values known / distinct values provided: 83%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> []
=> 0
[2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2]
=> 0
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> 0
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 0
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> 0
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> 0
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,2,1]
=> 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 0
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 0
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> 0
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [3,3,2,1]
=> 3
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> 3
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> 0
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> 0
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [4,3,2]
=> 0
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,2,1,1]
=> 2
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,3,1]
=> 3
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> 3
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> 2
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 0
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,2]
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 0
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,2]
=> 0
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [4,4,2,1]
=> 4
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [3,3,2,1,1]
=> 3
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> [5,2,2,1]
=> 2
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> 3
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> 3
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [5,3,2]
=> 0
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> 1
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> 2
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 0
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 0
[6,1,1,1,1]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,3,2,1,1,1]
=> ? = 3
[6,2,1,1,1]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [4,4,3,2,1,1]
=> ? = 4
[3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [5,4,3,1,1,1]
=> ? = 1
[6,2,2,1,1]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,4,2,1,1,1]
=> ? = 4
[4,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,1,0,0,0]
=> [4,3,3,1,1,1]
=> ? = 3
[6,4,1,1,1]
=> [1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [5,5,3,2,1,1]
=> ? = 5
[6,2,2,2,1]
=> [1,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [4,4,3,2,2,1]
=> ? = 4
[5,5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [6,3,3,2,1,1]
=> ? = 3
[5,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> [6,4,3,1,1,1]
=> ? = 1
[3,3,3,3,1]
=> [1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [5,4,2,2,2,1]
=> ? = 2
[3,3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [5,4,3,3,1,1]
=> ? = 3
[6,5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [3,3,3,2,1,1]
=> ? = 3
[6,4,2,1,1]
=> [1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [5,5,2,1,1,1]
=> ? = 5
[6,3,3,1,1]
=> [1,1,0,1,1,0,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [4,4,2,2,1,1]
=> ? = 4
[6,3,2,2,1]
=> [1,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,3,2,2,2,1]
=> ? = 3
[6,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [4,4,3,1,1,1]
=> ? = 4
[5,5,2,1,1]
=> [1,1,0,1,1,0,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [6,2,2,1,1,1]
=> ? = 2
[4,4,4,1,1]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [5,2,2,2,1,1]
=> ? = 2
[4,4,2,2,2]
=> [1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [5,3,3,1,1,1]
=> ? = 3
[4,3,3,3,1]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,2,2,2,1]
=> ? = 2
[4,3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [4,3,3,3,1,1]
=> ? = 3
[6,4,3,1,1]
=> [1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [5,5,4,2,1,1]
=> ? = 5
[6,4,2,2,1]
=> [1,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [5,5,3,2,2,1]
=> ? = 5
[6,3,3,2,1]
=> [1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [4,4,3,3,2,1]
=> ? = 4
[5,5,3,1,1]
=> [1,1,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [6,4,4,2,1,1]
=> ? = 4
[5,5,2,2,1]
=> [1,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [6,3,3,2,2,1]
=> ? = 3
[5,4,4,1,1]
=> [1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [6,5,2,2,1,1]
=> ? = 2
[5,4,2,2,2]
=> [1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [6,5,3,1,1,1]
=> ? = 1
[5,3,3,3,1]
=> [1,1,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [6,4,2,2,2,1]
=> ? = 2
[5,3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,1,1]
=> ? = 3
[4,4,4,2,1]
=> [1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [5,3,3,3,2,1]
=> ? = 3
[4,4,3,3,1]
=> [1,1,0,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,4,2,2,1]
=> ? = 4
[4,4,3,2,2]
=> [1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [5,4,4,3,1,1]
=> ? = 4
[6,5,3,1,1]
=> [1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [4,4,4,2,1,1]
=> ? = 4
[6,5,2,2,1]
=> [1,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [3,3,3,2,2,1]
=> ? = 3
[6,4,4,1,1]
=> [1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [5,5,2,2,1,1]
=> ? = 5
[6,4,3,2,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [5,5,4,3,2,1]
=> ? = 5
[6,4,2,2,2]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [5,5,3,1,1,1]
=> ? = 5
[6,3,3,3,1]
=> [1,1,0,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [4,4,2,2,2,1]
=> ? = 4
[6,3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [4,4,3,3,1,1]
=> ? = 4
[5,5,4,1,1]
=> [1,1,0,1,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [6,2,2,2,1,1]
=> ? = 2
[5,5,3,2,1]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [6,4,4,3,2,1]
=> ? = 4
[5,5,2,2,2]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [6,3,3,1,1,1]
=> ? = 3
[5,4,4,2,1]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [6,5,3,3,2,1]
=> ? = 3
[5,4,3,3,1]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,2,1]
=> ? = 2
[5,4,3,2,2]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,1,1]
=> ? = 1
[4,4,4,3,1]
=> [1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,2,2,2,1]
=> ? = 2
[4,4,4,2,2]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [5,3,3,3,1,1]
=> ? = 3
[4,4,3,3,2]
=> [1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,1,0,0]
=> [5,4,4,1,1,1]
=> ? = 4
[6,5,3,2,1]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [4,4,4,3,2,1]
=> ? = 4
Description
The largest repeated part of a partition.
If the parts of the partition are all distinct, the value of the statistic is defined to be zero.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!