searching the database
Your data matches 24 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001369
St001369: Finite Cartan types ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> 1 = 0 + 1
['A',2]
=> 1 = 0 + 1
['B',2]
=> 2 = 1 + 1
['G',2]
=> 3 = 2 + 1
['A',3]
=> 1 = 0 + 1
Description
The largest coefficient in the highest root in the root system of a Cartan type.
Matching statistic: St000149
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000149: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
St000149: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> 0
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> 0
Description
The number of cells of the partition whose leg is zero and arm is odd.
This statistic is equidistributed with [[St000143]], see [1].
Matching statistic: St000142
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00321: Integer partitions —2-conjugate⟶ Integer partitions
St000142: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00321: Integer partitions —2-conjugate⟶ Integer partitions
St000142: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [3]
=> 0
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [2,2,1,1]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [3,3]
=> 0
Description
The number of even parts of a partition.
Matching statistic: St000150
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
St000150: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00198: Posets —incomparability graph⟶ Graphs
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
St000150: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> ([],1)
=> [1]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [2,1]
=> 0
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [2,1,1]
=> 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> [2,1,1,1,1]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> 0
Description
The floored half-sum of the multiplicities of a partition.
This statistic is equidistributed with [[St000143]] and [[St000149]], see [1].
Matching statistic: St001031
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001031: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001031: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1,0,1,0]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> 0
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 0
Description
The height of the bicoloured Motzkin path associated with the Dyck path.
Matching statistic: St001252
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00321: Integer partitions —2-conjugate⟶ Integer partitions
St001252: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00321: Integer partitions —2-conjugate⟶ Integer partitions
St001252: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [3]
=> 0
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [2,2,1,1]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [3,3]
=> 0
Description
Half the sum of the even parts of a partition.
Matching statistic: St001646
Values
['A',1]
=> ([],1)
=> ([],1)
=> ([],1)
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 0
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(4,5)],6)
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
Description
The number of edges that can be added without increasing the maximal degree of a graph.
This statistic is (except for the degenerate case of two vertices) maximized by the star-graph on $n$ vertices, which has maximal degree $n-1$ and therefore has statistic $\binom{n-1}{2}$.
Matching statistic: St001657
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00321: Integer partitions —2-conjugate⟶ Integer partitions
St001657: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00321: Integer partitions —2-conjugate⟶ Integer partitions
St001657: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [3]
=> 0
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [2,2,1,1]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [3,3]
=> 0
Description
The number of twos in an integer partition.
The total number of twos in all partitions of $n$ is equal to the total number of singletons [[St001484]] in all partitions of $n-1$, see [1].
Matching statistic: St001873
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001873: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001873: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1,0,1,0]
=> 0
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> 0
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 2
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 0
Description
For a Nakayama algebra corresponding to a Dyck path, we define the matrix C with entries the Hom-spaces between $e_i J$ and $e_j J$ (the radical of the indecomposable projective modules).
The statistic gives half of the rank of the matrix C^t-C.
Matching statistic: St000549
Mp00148: Finite Cartan types —to root poset⟶ Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00321: Integer partitions —2-conjugate⟶ Integer partitions
St000549: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00321: Integer partitions —2-conjugate⟶ Integer partitions
St000549: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
['A',1]
=> ([],1)
=> [1]
=> [1]
=> 1 = 0 + 1
['A',2]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [3]
=> 1 = 0 + 1
['B',2]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [2,1,1]
=> 2 = 1 + 1
['G',2]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [2,2,1,1]
=> 3 = 2 + 1
['A',3]
=> ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [3,3]
=> 1 = 0 + 1
Description
The number of odd partial sums of an integer partition.
The following 14 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000785The number of distinct colouring schemes of a graph. St001503The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra. St001739The number of graphs with the same edge polytope as the given graph. St000478Another weight of a partition according to Alladi. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St000928The sum of the coefficients of the character polynomial of an integer partition. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001568The smallest positive integer that does not appear twice in the partition. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St001964The interval resolution global dimension of a poset. St001578The minimal number of edges to add or remove to make a graph a line graph. St001624The breadth of a lattice. St001783The number of odd automorphisms of a graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!