Your data matches 6 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001484
Mp00311: Plane partitions to partitionInteger partitions
St001484: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1]
=> 1
[[1],[1]]
=> [1,1]
=> 0
[[2]]
=> [2]
=> 1
[[1,1]]
=> [2]
=> 1
[[1],[1],[1]]
=> [1,1,1]
=> 0
[[2],[1]]
=> [2,1]
=> 2
[[1,1],[1]]
=> [2,1]
=> 2
[[3]]
=> [3]
=> 1
[[2,1]]
=> [3]
=> 1
[[1,1,1]]
=> [3]
=> 1
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> 0
[[2],[1],[1]]
=> [2,1,1]
=> 1
[[2],[2]]
=> [2,2]
=> 0
[[1,1],[1],[1]]
=> [2,1,1]
=> 1
[[1,1],[1,1]]
=> [2,2]
=> 0
[[3],[1]]
=> [3,1]
=> 2
[[2,1],[1]]
=> [3,1]
=> 2
[[1,1,1],[1]]
=> [3,1]
=> 2
[[4]]
=> [4]
=> 1
[[3,1]]
=> [4]
=> 1
[[2,2]]
=> [4]
=> 1
[[2,1,1]]
=> [4]
=> 1
[[1,1,1,1]]
=> [4]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> 1
[[3],[2]]
=> [3,2]
=> 2
[[2,1],[1],[1]]
=> [3,1,1]
=> 1
[[2,1],[2]]
=> [3,2]
=> 2
[[2,1],[1,1]]
=> [3,2]
=> 2
[[1,1,1],[1],[1]]
=> [3,1,1]
=> 1
[[1,1,1],[1,1]]
=> [3,2]
=> 2
[[4],[1]]
=> [4,1]
=> 2
[[3,1],[1]]
=> [4,1]
=> 2
[[2,2],[1]]
=> [4,1]
=> 2
[[2,1,1],[1]]
=> [4,1]
=> 2
[[1,1,1,1],[1]]
=> [4,1]
=> 2
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> 0
[[2],[2],[2]]
=> [2,2,2]
=> 0
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> 0
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> 0
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> 3
[[3],[3]]
=> [3,3]
=> 0
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> 3
[[2,1],[1,1],[1]]
=> [3,2,1]
=> 3
[[2,1],[2,1]]
=> [3,3]
=> 0
Description
The number of singletons of an integer partition. A singleton in an integer partition is a part that appear precisely once.
Matching statistic: St000445
Mp00311: Plane partitions to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St000445: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[[1],[1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[[2]]
=> [2]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[[1,1]]
=> [2]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[[1],[1],[1]]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
[[2],[1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[[1,1],[1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[[3]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[[2,1]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[[1,1,1]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 0
[[2],[1],[1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[[2],[2]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[[1,1],[1,1]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 0
[[3],[1]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
[[2,1],[1]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
[[1,1,1],[1]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
[[4]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[[3,1]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[[2,2]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[[2,1,1]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[[1,1,1,1]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[[3],[2]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[[2,1],[2]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[[2,1],[1,1]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[[1,1,1],[1,1]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[[4],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 2
[[3,1],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 2
[[2,2],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 2
[[2,1,1],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 2
[[1,1,1,1],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 2
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 0
[[2],[2],[2]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 0
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 0
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 0
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3
[[3],[3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 0
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3
[[2,1],[2,1]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 0
Description
The number of rises of length 1 of a Dyck path.
Matching statistic: St000932
Mp00311: Plane partitions to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00028: Dyck paths reverseDyck paths
St000932: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
[[1],[1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[[2]]
=> [2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[[1,1]]
=> [2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[[1],[1],[1]]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[[2],[1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2
[[1,1],[1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2
[[3]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[2,1]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[1,1,1]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
[[2],[1],[1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[[2],[2]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[[1,1],[1,1]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[[3],[1]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[[2,1],[1]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[[1,1,1],[1]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[[4]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[[3,1]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[[2,2]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[[2,1,1]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[[1,1,1,1]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[[3],[2]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[[2,1],[2]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[[2,1],[1,1]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[[1,1,1],[1,1]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[[4],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[[3,1],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[[2,2],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[[2,1,1],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[[1,1,1,1],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0
[[2],[2],[2]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[[3],[3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[[2,1],[2,1]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
Description
The number of occurrences of the pattern UDU in a Dyck path. The number of Dyck paths with statistic value 0 are counted by the Motzkin numbers [1].
Matching statistic: St001067
Mp00311: Plane partitions to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00028: Dyck paths reverseDyck paths
St001067: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
[[1],[1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[[2]]
=> [2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[[1,1]]
=> [2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[[1],[1],[1]]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[[2],[1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2
[[1,1],[1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2
[[3]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[2,1]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[1,1,1]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
[[2],[1],[1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[[2],[2]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[[1,1],[1,1]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[[3],[1]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[[2,1],[1]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[[1,1,1],[1]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[[4]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[[3,1]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[[2,2]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[[2,1,1]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[[1,1,1,1]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[[3],[2]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[[2,1],[2]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[[2,1],[1,1]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[[1,1,1],[1,1]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[[4],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[[3,1],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[[2,2],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[[2,1,1],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[[1,1,1,1],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0
[[2],[2],[2]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[[3],[3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[[2,1],[2,1]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
Description
The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra.
Matching statistic: St001223
Mp00311: Plane partitions to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00028: Dyck paths reverseDyck paths
St001223: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
[[1],[1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[[2]]
=> [2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[[1,1]]
=> [2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[[1],[1],[1]]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[[2],[1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2
[[1,1],[1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2
[[3]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[2,1]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[1,1,1]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
[[2],[1],[1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[[2],[2]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[[1,1],[1,1]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[[3],[1]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[[2,1],[1]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[[1,1,1],[1]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[[4]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[[3,1]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[[2,2]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[[2,1,1]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[[1,1,1,1]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[[3],[2]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[[2,1],[2]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[[2,1],[1,1]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[[1,1,1],[1,1]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[[4],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[[3,1],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[[2,2],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[[2,1,1],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[[1,1,1,1],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0
[[2],[2],[2]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[[3],[3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[[2,1],[2,1]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0
Description
Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless.
Matching statistic: St001640
Mp00311: Plane partitions to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00201: Dyck paths RingelPermutations
St001640: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1]
=> [1,0,1,0]
=> [3,1,2] => 1
[[1],[1]]
=> [1,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 0
[[2]]
=> [2]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => 1
[[1,1]]
=> [2]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => 1
[[1],[1],[1]]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 0
[[2],[1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 2
[[1,1],[1]]
=> [2,1]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 2
[[3]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 1
[[2,1]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 1
[[1,1,1]]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 1
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => 0
[[2],[1],[1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[[2],[2]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 0
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1
[[1,1],[1,1]]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 0
[[3],[1]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => 2
[[2,1],[1]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => 2
[[1,1,1],[1]]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => 2
[[4]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 1
[[3,1]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 1
[[2,2]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 1
[[2,1,1]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 1
[[1,1,1,1]]
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[[2],[2],[1]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1
[[3],[1],[1]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[[3],[2]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 2
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[[2,1],[2]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 2
[[2,1],[1,1]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 2
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
[[1,1,1],[1,1]]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 2
[[4],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => 2
[[3,1],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => 2
[[2,2],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => 2
[[2,1,1],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => 2
[[1,1,1,1],[1]]
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => 2
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => 0
[[2],[2],[2]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 0
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => 0
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 0
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => 1
[[3],[2],[1]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 3
[[3],[3]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 0
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 3
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 3
[[2,1],[2,1]]
=> [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 0
Description
The number of ascent tops in the permutation such that all smaller elements appear before.