Processing math: 100%

Your data matches 5 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001630
Mp00253: Decorated permutations permutationPermutations
Mp00065: Permutations permutation posetPosets
Mp00206: Posets antichains of maximal sizeLattices
St001630: Lattices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[+,+,+] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[-,+,+] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[+,-,+] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[+,+,-] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[-,-,+] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[-,+,-] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[+,-,-] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[-,-,-] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[+,+,+,+] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[-,+,+,+] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[+,-,+,+] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[+,+,-,+] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[+,+,+,-] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[-,-,+,+] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[-,+,-,+] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[-,+,+,-] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[+,-,-,+] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[+,-,+,-] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[+,+,-,-] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[-,-,-,+] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[-,-,+,-] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[-,+,-,-] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[+,-,-,-] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[-,-,-,-] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 2
[2,3,4,1] => [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[2,4,1,3] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[3,1,4,2] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[3,4,1,2] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[4,1,2,3] => [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> 1
[+,+,+,+,+] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[-,+,+,+,+] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[+,-,+,+,+] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[+,+,-,+,+] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[+,+,+,-,+] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[+,+,+,+,-] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[-,-,+,+,+] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[-,+,-,+,+] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[-,+,+,-,+] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[-,+,+,+,-] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[+,-,-,+,+] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[+,-,+,-,+] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[+,-,+,+,-] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[+,+,-,-,+] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[+,+,-,+,-] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[+,+,+,-,-] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[-,-,-,+,+] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[-,-,+,-,+] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[-,-,+,+,-] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[-,+,-,-,+] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[-,+,-,+,-] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
Description
The global dimension of the incidence algebra of the lattice over the rational numbers.
Mp00253: Decorated permutations permutationPermutations
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00008: Binary trees to complete treeOrdered trees
St000522: Ordered trees ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 100%
Values
[+,+,+] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 3 = 1 + 2
[-,+,+] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 3 = 1 + 2
[+,-,+] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 3 = 1 + 2
[+,+,-] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 3 = 1 + 2
[-,-,+] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 3 = 1 + 2
[-,+,-] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 3 = 1 + 2
[+,-,-] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 3 = 1 + 2
[-,-,-] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 3 = 1 + 2
[+,+,+,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 4 = 2 + 2
[-,+,+,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 4 = 2 + 2
[+,-,+,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 4 = 2 + 2
[+,+,-,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 4 = 2 + 2
[+,+,+,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 4 = 2 + 2
[-,-,+,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 4 = 2 + 2
[-,+,-,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 4 = 2 + 2
[-,+,+,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 4 = 2 + 2
[+,-,-,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 4 = 2 + 2
[+,-,+,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 4 = 2 + 2
[+,+,-,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 4 = 2 + 2
[-,-,-,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 4 = 2 + 2
[-,-,+,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 4 = 2 + 2
[-,+,-,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 4 = 2 + 2
[+,-,-,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 4 = 2 + 2
[-,-,-,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 4 = 2 + 2
[2,3,4,1] => [2,3,4,1] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? = 1 + 2
[2,4,1,3] => [2,4,1,3] => [[.,.],[[.,.],.]]
=> [[[],[]],[[[],[]],[]]]
=> ? = 1 + 2
[3,1,4,2] => [3,1,4,2] => [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> ? = 1 + 2
[3,4,1,2] => [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> ? = 2 + 2
[4,1,2,3] => [4,1,2,3] => [[.,[.,[.,.]]],.]
=> [[[],[[],[[],[]]]],[]]
=> ? = 1 + 2
[+,+,+,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[-,+,+,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[+,-,+,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[+,+,-,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[+,+,+,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[+,+,+,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[-,-,+,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[-,+,-,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[-,+,+,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[-,+,+,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[+,-,-,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[+,-,+,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[+,-,+,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[+,+,-,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[+,+,-,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[+,+,+,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[-,-,-,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[-,-,+,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[-,-,+,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[-,+,-,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[-,+,-,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[-,+,+,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[+,-,-,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[+,-,-,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[+,-,+,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[+,+,-,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[-,-,-,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[-,-,-,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[-,-,+,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[-,+,-,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[+,-,-,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[-,-,-,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 2
[+,3,4,5,2] => [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [[],[[[],[]],[[],[[],[]]]]]
=> ? = 1 + 2
[-,3,4,5,2] => [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [[],[[[],[]],[[],[[],[]]]]]
=> ? = 1 + 2
[+,3,5,2,4] => [1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> [[],[[[],[]],[[[],[]],[]]]]
=> ? = 1 + 2
[-,3,5,2,4] => [1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> [[],[[[],[]],[[[],[]],[]]]]
=> ? = 1 + 2
[+,4,2,5,3] => [1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> [[],[[[],[[],[]]],[[],[]]]]
=> ? = 1 + 2
[-,4,2,5,3] => [1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> [[],[[[],[[],[]]],[[],[]]]]
=> ? = 1 + 2
[+,4,5,2,3] => [1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [[],[[[],[[],[]]],[[],[]]]]
=> ? = 2 + 2
[-,4,5,2,3] => [1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [[],[[[],[[],[]]],[[],[]]]]
=> ? = 2 + 2
[+,5,2,3,4] => [1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]]
=> [[],[[[],[[],[[],[]]]],[]]]
=> ? = 1 + 2
[-,5,2,3,4] => [1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]]
=> [[],[[[],[[],[[],[]]]],[]]]
=> ? = 1 + 2
[2,1,4,5,3] => [2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> [[[],[]],[[[],[]],[[],[]]]]
=> ? = 1 + 2
[2,1,5,3,4] => [2,1,5,3,4] => [[.,.],[[.,[.,.]],.]]
=> [[[],[]],[[[],[[],[]]],[]]]
=> ? = 1 + 2
[2,3,1,5,4] => [2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> [[[],[]],[[],[[[],[]],[]]]]
=> ? = 1 + 2
Description
The number of 1-protected nodes of a rooted tree. This is the number of nodes with minimal distance one to a leaf.
Mp00253: Decorated permutations permutationPermutations
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00008: Binary trees to complete treeOrdered trees
St000521: Ordered trees ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 100%
Values
[+,+,+] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 1 + 3
[-,+,+] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 1 + 3
[+,-,+] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 1 + 3
[+,+,-] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 1 + 3
[-,-,+] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 1 + 3
[-,+,-] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 1 + 3
[+,-,-] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 1 + 3
[-,-,-] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 1 + 3
[+,+,+,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[-,+,+,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[+,-,+,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[+,+,-,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[+,+,+,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[-,-,+,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[-,+,-,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[-,+,+,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[+,-,-,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[+,-,+,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[+,+,-,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[-,-,-,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[-,-,+,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[-,+,-,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[+,-,-,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[-,-,-,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[2,3,4,1] => [2,3,4,1] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? = 1 + 3
[2,4,1,3] => [2,4,1,3] => [[.,.],[[.,.],.]]
=> [[[],[]],[[[],[]],[]]]
=> ? = 1 + 3
[3,1,4,2] => [3,1,4,2] => [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> ? = 1 + 3
[3,4,1,2] => [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> ? = 2 + 3
[4,1,2,3] => [4,1,2,3] => [[.,[.,[.,.]]],.]
=> [[[],[[],[[],[]]]],[]]
=> ? = 1 + 3
[+,+,+,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,+,+,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,-,+,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,+,-,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,+,+,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,+,+,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,-,+,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,+,-,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,+,+,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,+,+,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,-,-,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,-,+,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,-,+,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,+,-,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,+,-,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,+,+,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,-,-,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,-,+,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,-,+,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,+,-,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,+,-,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,+,+,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,-,-,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,-,-,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,-,+,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,+,-,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,-,-,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,-,-,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,-,+,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,+,-,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,-,-,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,-,-,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,3,4,5,2] => [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [[],[[[],[]],[[],[[],[]]]]]
=> ? = 1 + 3
[-,3,4,5,2] => [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [[],[[[],[]],[[],[[],[]]]]]
=> ? = 1 + 3
[+,3,5,2,4] => [1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> [[],[[[],[]],[[[],[]],[]]]]
=> ? = 1 + 3
[-,3,5,2,4] => [1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> [[],[[[],[]],[[[],[]],[]]]]
=> ? = 1 + 3
[+,4,2,5,3] => [1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> [[],[[[],[[],[]]],[[],[]]]]
=> ? = 1 + 3
[-,4,2,5,3] => [1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> [[],[[[],[[],[]]],[[],[]]]]
=> ? = 1 + 3
[+,4,5,2,3] => [1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [[],[[[],[[],[]]],[[],[]]]]
=> ? = 2 + 3
[-,4,5,2,3] => [1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [[],[[[],[[],[]]],[[],[]]]]
=> ? = 2 + 3
[+,5,2,3,4] => [1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]]
=> [[],[[[],[[],[[],[]]]],[]]]
=> ? = 1 + 3
[-,5,2,3,4] => [1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]]
=> [[],[[[],[[],[[],[]]]],[]]]
=> ? = 1 + 3
[2,1,4,5,3] => [2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> [[[],[]],[[[],[]],[[],[]]]]
=> ? = 1 + 3
[2,1,5,3,4] => [2,1,5,3,4] => [[.,.],[[.,[.,.]],.]]
=> [[[],[]],[[[],[[],[]]],[]]]
=> ? = 1 + 3
[2,3,1,5,4] => [2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> [[[],[]],[[],[[[],[]],[]]]]
=> ? = 1 + 3
Description
The number of distinct subtrees of an ordered tree. A subtree is specified by a node of the tree. Thus, the tree consisting of a single path has as many subtrees as nodes, whereas the tree of height two, having all leaves attached to the root, has only two distinct subtrees. Because we consider ordered trees, the tree [[[[]],[]],[[],[[]]]] on nine nodes has five distinct subtrees.
Mp00253: Decorated permutations permutationPermutations
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00008: Binary trees to complete treeOrdered trees
St000973: Ordered trees ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 100%
Values
[+,+,+] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 1 + 3
[-,+,+] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 1 + 3
[+,-,+] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 1 + 3
[+,+,-] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 1 + 3
[-,-,+] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 1 + 3
[-,+,-] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 1 + 3
[+,-,-] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 1 + 3
[-,-,-] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 1 + 3
[+,+,+,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[-,+,+,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[+,-,+,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[+,+,-,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[+,+,+,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[-,-,+,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[-,+,-,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[-,+,+,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[+,-,-,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[+,-,+,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[+,+,-,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[-,-,-,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[-,-,+,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[-,+,-,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[+,-,-,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[-,-,-,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[2,3,4,1] => [2,3,4,1] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? = 1 + 3
[2,4,1,3] => [2,4,1,3] => [[.,.],[[.,.],.]]
=> [[[],[]],[[[],[]],[]]]
=> ? = 1 + 3
[3,1,4,2] => [3,1,4,2] => [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> ? = 1 + 3
[3,4,1,2] => [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> ? = 2 + 3
[4,1,2,3] => [4,1,2,3] => [[.,[.,[.,.]]],.]
=> [[[],[[],[[],[]]]],[]]
=> ? = 1 + 3
[+,+,+,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,+,+,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,-,+,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,+,-,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,+,+,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,+,+,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,-,+,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,+,-,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,+,+,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,+,+,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,-,-,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,-,+,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,-,+,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,+,-,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,+,-,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,+,+,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,-,-,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,-,+,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,-,+,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,+,-,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,+,-,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,+,+,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,-,-,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,-,-,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,-,+,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,+,-,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,-,-,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,-,-,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,-,+,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,+,-,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,-,-,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,-,-,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,3,4,5,2] => [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [[],[[[],[]],[[],[[],[]]]]]
=> ? = 1 + 3
[-,3,4,5,2] => [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [[],[[[],[]],[[],[[],[]]]]]
=> ? = 1 + 3
[+,3,5,2,4] => [1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> [[],[[[],[]],[[[],[]],[]]]]
=> ? = 1 + 3
[-,3,5,2,4] => [1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> [[],[[[],[]],[[[],[]],[]]]]
=> ? = 1 + 3
[+,4,2,5,3] => [1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> [[],[[[],[[],[]]],[[],[]]]]
=> ? = 1 + 3
[-,4,2,5,3] => [1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> [[],[[[],[[],[]]],[[],[]]]]
=> ? = 1 + 3
[+,4,5,2,3] => [1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [[],[[[],[[],[]]],[[],[]]]]
=> ? = 2 + 3
[-,4,5,2,3] => [1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [[],[[[],[[],[]]],[[],[]]]]
=> ? = 2 + 3
[+,5,2,3,4] => [1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]]
=> [[],[[[],[[],[[],[]]]],[]]]
=> ? = 1 + 3
[-,5,2,3,4] => [1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]]
=> [[],[[[],[[],[[],[]]]],[]]]
=> ? = 1 + 3
[2,1,4,5,3] => [2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> [[[],[]],[[[],[]],[[],[]]]]
=> ? = 1 + 3
[2,1,5,3,4] => [2,1,5,3,4] => [[.,.],[[.,[.,.]],.]]
=> [[[],[]],[[[],[[],[]]],[]]]
=> ? = 1 + 3
[2,3,1,5,4] => [2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> [[[],[]],[[],[[[],[]],[]]]]
=> ? = 1 + 3
Description
The length of the boundary of an ordered tree. This is the sum of the number of edges to the left most and the right most leaf.
Mp00253: Decorated permutations permutationPermutations
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00008: Binary trees to complete treeOrdered trees
St000975: Ordered trees ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 100%
Values
[+,+,+] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 1 + 3
[-,+,+] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 1 + 3
[+,-,+] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 1 + 3
[+,+,-] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 1 + 3
[-,-,+] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 1 + 3
[-,+,-] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 1 + 3
[+,-,-] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 1 + 3
[-,-,-] => [1,2,3] => [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 4 = 1 + 3
[+,+,+,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[-,+,+,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[+,-,+,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[+,+,-,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[+,+,+,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[-,-,+,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[-,+,-,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[-,+,+,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[+,-,-,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[+,-,+,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[+,+,-,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[-,-,-,+] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[-,-,+,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[-,+,-,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[+,-,-,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[-,-,-,-] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 5 = 2 + 3
[2,3,4,1] => [2,3,4,1] => [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> ? = 1 + 3
[2,4,1,3] => [2,4,1,3] => [[.,.],[[.,.],.]]
=> [[[],[]],[[[],[]],[]]]
=> ? = 1 + 3
[3,1,4,2] => [3,1,4,2] => [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> ? = 1 + 3
[3,4,1,2] => [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> ? = 2 + 3
[4,1,2,3] => [4,1,2,3] => [[.,[.,[.,.]]],.]
=> [[[],[[],[[],[]]]],[]]
=> ? = 1 + 3
[+,+,+,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,+,+,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,-,+,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,+,-,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,+,+,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,+,+,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,-,+,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,+,-,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,+,+,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,+,+,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,-,-,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,-,+,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,-,+,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,+,-,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,+,-,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,+,+,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,-,-,+,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,-,+,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,-,+,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,+,-,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,+,-,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,+,+,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,-,-,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,-,-,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,-,+,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,+,-,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,-,-,-,+] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,-,-,+,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,-,+,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,+,-,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,-,-,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[-,-,-,-,-] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> ? = 1 + 3
[+,3,4,5,2] => [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [[],[[[],[]],[[],[[],[]]]]]
=> ? = 1 + 3
[-,3,4,5,2] => [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [[],[[[],[]],[[],[[],[]]]]]
=> ? = 1 + 3
[+,3,5,2,4] => [1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> [[],[[[],[]],[[[],[]],[]]]]
=> ? = 1 + 3
[-,3,5,2,4] => [1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> [[],[[[],[]],[[[],[]],[]]]]
=> ? = 1 + 3
[+,4,2,5,3] => [1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> [[],[[[],[[],[]]],[[],[]]]]
=> ? = 1 + 3
[-,4,2,5,3] => [1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> [[],[[[],[[],[]]],[[],[]]]]
=> ? = 1 + 3
[+,4,5,2,3] => [1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [[],[[[],[[],[]]],[[],[]]]]
=> ? = 2 + 3
[-,4,5,2,3] => [1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [[],[[[],[[],[]]],[[],[]]]]
=> ? = 2 + 3
[+,5,2,3,4] => [1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]]
=> [[],[[[],[[],[[],[]]]],[]]]
=> ? = 1 + 3
[-,5,2,3,4] => [1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]]
=> [[],[[[],[[],[[],[]]]],[]]]
=> ? = 1 + 3
[2,1,4,5,3] => [2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> [[[],[]],[[[],[]],[[],[]]]]
=> ? = 1 + 3
[2,1,5,3,4] => [2,1,5,3,4] => [[.,.],[[.,[.,.]],.]]
=> [[[],[]],[[[],[[],[]]],[]]]
=> ? = 1 + 3
[2,3,1,5,4] => [2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> [[[],[]],[[],[[[],[]],[]]]]
=> ? = 1 + 3
Description
The length of the boundary minus the length of the trunk of an ordered tree. This is the size of the set of edges which are either on the left most path or on the right most path from the root.