searching the database
Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001593
St001593: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1
[2]
=> 1
[1,1]
=> 0
[3]
=> 1
[2,1]
=> 1
[1,1,1]
=> 0
[4]
=> 1
[3,1]
=> 2
[2,2]
=> 0
[2,1,1]
=> 0
[1,1,1,1]
=> 0
[5]
=> 1
[4,1]
=> 3
[3,2]
=> 2
[3,1,1]
=> 0
[2,2,1]
=> 0
[2,1,1,1]
=> 0
[1,1,1,1,1]
=> 0
[6]
=> 1
[5,1]
=> 4
[4,2]
=> 5
[4,1,1]
=> 0
[3,3]
=> 0
[3,2,1]
=> 2
[3,1,1,1]
=> 0
[2,2,2]
=> 0
[2,2,1,1]
=> 0
[2,1,1,1,1]
=> 0
[1,1,1,1,1,1]
=> 0
[7]
=> 1
[6,1]
=> 5
[5,2]
=> 9
[5,1,1]
=> 0
[4,3]
=> 5
[4,2,1]
=> 7
[4,1,1,1]
=> 0
[3,3,1]
=> 0
[3,2,2]
=> 0
[3,2,1,1]
=> 0
[3,1,1,1,1]
=> 0
[2,2,2,1]
=> 0
[2,2,1,1,1]
=> 0
[2,1,1,1,1,1]
=> 0
[1,1,1,1,1,1,1]
=> 0
[8]
=> 1
[7,1]
=> 6
[6,2]
=> 14
[6,1,1]
=> 0
[5,3]
=> 14
[5,2,1]
=> 16
Description
This is the number of standard Young tableaux of the given shifted shape.
For an integer partition $\lambda = (\lambda_1,\dots,\lambda_k)$, the shifted diagram is obtained by moving the $i$-th row in the diagram $i-1$ boxes to the right, i.e.,
$$\lambda^∗ = \{(i, j) | 1 \leq i \leq k, i \leq j \leq \lambda_i + i − 1 \}.$$
In particular, this statistic is zero if and only if $\lambda_{i+1} = \lambda_i$ for some $i$.
Matching statistic: St001498
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001498: Dyck paths ⟶ ℤResult quality: 1% ●values known / values provided: 18%●distinct values known / distinct values provided: 1%
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001498: Dyck paths ⟶ ℤResult quality: 1% ●values known / values provided: 18%●distinct values known / distinct values provided: 1%
Values
[1]
=> [1,0,1,0]
=> [2,1] => [1,1,0,0]
=> ? = 1
[2]
=> [1,1,0,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> ? = 1
[1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> 0
[3]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> ? = 1
[2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> ? = 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 0
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> ? = 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 0
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 0
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 0
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 3
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? = 2
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 0
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 0
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> 0
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [1,1,0,1,0,1,0,1,0,1,0,0]
=> 0
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [6,2,1,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 4
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 5
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0]
=> 0
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 2
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> 0
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> 0
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0]
=> 0
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => [1,1,1,0,0,1,0,1,0,1,0,0]
=> 0
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> 0
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [8,1,2,3,4,5,6,7] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 5
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 9
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [6,2,3,1,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 5
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 7
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> 0
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> 0
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> 0
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> 0
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> 0
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,6,1] => [1,1,1,0,1,0,0,1,0,1,0,0]
=> 0
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1,2,3,4,5,6,7,8] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 1
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [8,2,1,3,4,5,6,7] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 6
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [7,3,1,2,4,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 14
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 14
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [6,3,2,1,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 16
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,1,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 0
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 12
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [5,2,3,4,6,1] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 0
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> 0
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> 0
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> 0
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [4,3,2,5,6,1] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> 0
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,6,7,1] => [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> 0
[2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,1,2] => [1,1,1,0,1,0,1,0,1,0,0,0]
=> 0
[2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [3,4,5,2,6,1] => [1,1,1,0,1,0,1,0,0,1,0,0]
=> 0
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [3,4,2,5,6,7,1] => [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> 0
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,1] => [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,1] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [10,1,2,3,4,5,6,7,8,9] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> ? = 1
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [9,2,1,3,4,5,6,7,8] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 7
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [8,3,1,2,4,5,6,7] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 20
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [8,2,3,1,4,5,6,7] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0
[6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [7,4,1,2,3,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 28
[6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [7,3,2,1,4,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 30
[6,1,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [7,2,3,4,1,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [6,5,1,2,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 14
[5,3,1]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [6,4,2,1,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 42
[5,2,2]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[5,2,1,1]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [6,3,2,4,1,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[5,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,5,1] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[4,4,1]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [5,6,2,1,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 0
[4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 12
[4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[4,2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [5,3,2,4,6,1] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 0
[4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [5,2,3,4,6,7,1] => [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> 0
[3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [4,5,6,1,2,3] => [1,1,1,1,0,1,0,1,0,0,0,0]
=> 0
[3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> 0
[3,3,1,1,1]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [4,5,2,3,6,1] => [1,1,1,1,0,1,0,0,0,1,0,0]
=> 0
[3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [4,3,5,6,1,2] => [1,1,1,1,0,0,1,0,1,0,0,0]
=> 0
[3,2,2,1,1]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [4,3,5,2,6,1] => [1,1,1,1,0,0,1,0,0,1,0,0]
=> 0
[3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [4,3,2,5,6,7,1] => [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> 0
[2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [3,4,5,6,2,1] => [1,1,1,0,1,0,1,0,1,0,0,0]
=> 0
[2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,4,5,2,6,7,1] => [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> 0
[5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [6,7,1,2,3,4,5] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 0
[5,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [6,2,3,4,5,7,1] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> 0
[4,4,2]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [5,6,3,1,2,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 0
[4,4,1,1]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [5,6,2,3,1,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 0
[4,3,3]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [5,4,6,1,2,3] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> 0
[4,3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [5,4,2,3,6,1] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 0
[4,2,2,2]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [5,3,4,6,1,2] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> 0
[4,2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [5,3,4,2,6,1] => [1,1,1,1,1,0,0,0,0,1,0,0]
=> 0
Description
The normalised height of a Nakayama algebra with magnitude 1.
We use the bijection (see code) suggested by Christian Stump, to have a bijection between such Nakayama algebras with magnitude 1 and Dyck paths. The normalised height is the height of the (periodic) Dyck path given by the top of the Auslander-Reiten quiver. Thus when having a CNakayama algebra it is the Loewy length minus the number of simple modules and for the LNakayama algebras it is the usual height.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!