Your data matches 108 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000197: Alternating sign matrices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> 1
[[1,0],[0,1]]
=> 2
[[0,1],[1,0]]
=> 2
[[1,0,0],[0,1,0],[0,0,1]]
=> 3
[[0,1,0],[1,0,0],[0,0,1]]
=> 3
[[1,0,0],[0,0,1],[0,1,0]]
=> 3
[[0,1,0],[1,-1,1],[0,1,0]]
=> 4
[[0,0,1],[1,0,0],[0,1,0]]
=> 3
[[0,1,0],[0,0,1],[1,0,0]]
=> 3
[[0,0,1],[0,1,0],[1,0,0]]
=> 3
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> 4
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> 4
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> 4
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> 4
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> 4
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> 4
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> 4
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> 4
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> 4
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> 4
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> 4
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> 4
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> 4
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> 4
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> 4
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> 4
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> 4
Description
The number of entries equal to positive one in the alternating sign matrix.
Mp00001: Alternating sign matrices to semistandard tableau via monotone trianglesSemistandard tableaux
Mp00076: Semistandard tableaux to Gelfand-Tsetlin patternGelfand-Tsetlin patterns
St000176: Gelfand-Tsetlin patterns ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [[1]]
=> 1
[[1,0],[0,1]]
=> [[1,1],[2]]
=> [[2,1],[2]]
=> 2
[[0,1],[1,0]]
=> [[1,2],[2]]
=> [[2,1],[1]]
=> 2
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> [[3,2,1],[3,2],[3]]
=> 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> [[3,2,1],[3,2],[2]]
=> 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> [[3,2,1],[3,1],[3]]
=> 3
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,1,2],[2,3],[3]]
=> [[3,2,1],[3,1],[2]]
=> 4
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> [[3,2,1],[2,1],[2]]
=> 3
[[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> [[3,2,1],[3,1],[1]]
=> 3
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> [[3,2,1],[2,1],[1]]
=> 3
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> [[4,3,2,1],[4,3,2],[4,3],[4]]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> [[4,3,2,1],[4,3,2],[4,3],[3]]
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> [[4,3,2,1],[4,3,2],[4,2],[4]]
=> 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> [[4,3,2,1],[4,3,2],[3,2],[3]]
=> 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> [[4,3,2,1],[4,3,2],[4,2],[2]]
=> 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> [[4,3,2,1],[4,3,2],[3,2],[2]]
=> 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[4,3],[4]]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[4,3],[3]]
=> 4
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[4,2],[4]]
=> 4
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> [[4,3,2,1],[3,2,1],[3,2],[3]]
=> 4
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[4,2],[2]]
=> 4
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> [[4,3,2,1],[3,2,1],[3,2],[2]]
=> 4
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[4,1],[4]]
=> 4
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[3,1],[3]]
=> 4
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[4,1],[4]]
=> 4
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[3,2,1],[3,1],[3]]
=> 4
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[2,1],[2]]
=> 4
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[3,2,1],[2,1],[2]]
=> 4
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[4,1],[1]]
=> 4
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> [[4,3,2,1],[4,3,1],[3,1],[1]]
=> 4
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[4,1],[1]]
=> 4
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[3,2,1],[3,1],[1]]
=> 4
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[4,2,1],[2,1],[1]]
=> 4
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> [[4,3,2,1],[3,2,1],[2,1],[1]]
=> 4
Description
The total number of tiles in the Gelfand-Tsetlin pattern. The tiling of a Gelfand-Tsetlin pattern is the finest partition of the entries in the pattern, such that adjacent (NW,NE,SW,SE) entries that are equal belong to the same part. These parts are called tiles, and each entry in a pattern belongs to exactly one tile.
Mp00001: Alternating sign matrices to semistandard tableau via monotone trianglesSemistandard tableaux
Mp00225: Semistandard tableaux weightInteger partitions
St000384: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1]
=> 1
[[1,0],[0,1]]
=> [[1,1],[2]]
=> [2,1]
=> 2
[[0,1],[1,0]]
=> [[1,2],[2]]
=> [2,1]
=> 2
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> [3,2,1]
=> 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> [3,2,1]
=> 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> [3,2,1]
=> 3
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,1,2],[2,3],[3]]
=> [2,2,2]
=> 4
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> [3,2,1]
=> 3
[[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> [3,2,1]
=> 3
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> [3,2,1]
=> 3
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> [4,3,2,1]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> [4,3,2,1]
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> [4,3,2,1]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> [4,3,2,1]
=> 4
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> 4
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> 4
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> 4
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> 4
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> 4
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> 4
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 4
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 4
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 4
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 4
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> 4
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> 4
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 4
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 4
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 4
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 4
Description
The maximal part of the shifted composition of an integer partition. A partition $\lambda = (\lambda_1,\ldots,\lambda_k)$ is shifted into a composition by adding $i-1$ to the $i$-th part. The statistic is then $\operatorname{max}_i\{ \lambda_i + i - 1 \}$. See also [[St000380]].
Mp00001: Alternating sign matrices to semistandard tableau via monotone trianglesSemistandard tableaux
Mp00225: Semistandard tableaux weightInteger partitions
St000380: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1]
=> 2 = 1 + 1
[[1,0],[0,1]]
=> [[1,1],[2]]
=> [2,1]
=> 3 = 2 + 1
[[0,1],[1,0]]
=> [[1,2],[2]]
=> [2,1]
=> 3 = 2 + 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> [3,2,1]
=> 4 = 3 + 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> [3,2,1]
=> 4 = 3 + 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> [3,2,1]
=> 4 = 3 + 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,1,2],[2,3],[3]]
=> [2,2,2]
=> 5 = 4 + 1
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> [3,2,1]
=> 4 = 3 + 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> [3,2,1]
=> 4 = 3 + 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> [3,2,1]
=> 4 = 3 + 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> [4,3,2,1]
=> 5 = 4 + 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> [4,3,2,1]
=> 5 = 4 + 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> 5 = 4 + 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> 5 = 4 + 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> 5 = 4 + 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> 5 = 4 + 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> [4,3,2,1]
=> 5 = 4 + 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> [4,3,2,1]
=> 5 = 4 + 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> 5 = 4 + 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> 5 = 4 + 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> 5 = 4 + 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> 5 = 4 + 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> 5 = 4 + 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> 5 = 4 + 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 5 = 4 + 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 5 = 4 + 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 5 = 4 + 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 5 = 4 + 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> 5 = 4 + 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> 5 = 4 + 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 5 = 4 + 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 5 = 4 + 1
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 5 = 4 + 1
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 5 = 4 + 1
Description
Half of the maximal perimeter of a rectangle fitting into the diagram of an integer partition. Put differently, this is the smallest number $n$ such that the partition fits into the triangular partition $(n-1,n-2,\dots,1)$.
Matching statistic: St000473
Mp00001: Alternating sign matrices to semistandard tableau via monotone trianglesSemistandard tableaux
Mp00225: Semistandard tableaux weightInteger partitions
St000473: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1]
=> 0 = 1 - 1
[[1,0],[0,1]]
=> [[1,1],[2]]
=> [2,1]
=> 1 = 2 - 1
[[0,1],[1,0]]
=> [[1,2],[2]]
=> [2,1]
=> 1 = 2 - 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> [3,2,1]
=> 2 = 3 - 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> [3,2,1]
=> 2 = 3 - 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> [3,2,1]
=> 2 = 3 - 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,1,2],[2,3],[3]]
=> [2,2,2]
=> 3 = 4 - 1
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> [3,2,1]
=> 2 = 3 - 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> [3,2,1]
=> 2 = 3 - 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> [3,2,1]
=> 2 = 3 - 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
Description
The number of parts of a partition that are strictly bigger than the number of ones. This is part of the definition of Dyson's crank of a partition, see [[St000474]].
Mp00001: Alternating sign matrices to semistandard tableau via monotone trianglesSemistandard tableaux
Mp00225: Semistandard tableaux weightInteger partitions
St001280: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1]
=> 0 = 1 - 1
[[1,0],[0,1]]
=> [[1,1],[2]]
=> [2,1]
=> 1 = 2 - 1
[[0,1],[1,0]]
=> [[1,2],[2]]
=> [2,1]
=> 1 = 2 - 1
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> [3,2,1]
=> 2 = 3 - 1
[[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> [3,2,1]
=> 2 = 3 - 1
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> [3,2,1]
=> 2 = 3 - 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,1,2],[2,3],[3]]
=> [2,2,2]
=> 3 = 4 - 1
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> [3,2,1]
=> 2 = 3 - 1
[[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> [3,2,1]
=> 2 = 3 - 1
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> [3,2,1]
=> 2 = 3 - 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 3 = 4 - 1
Description
The number of parts of an integer partition that are at least two.
Matching statistic: St000474
Mp00001: Alternating sign matrices to semistandard tableau via monotone trianglesSemistandard tableaux
Mp00225: Semistandard tableaux weightInteger partitions
St000474: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1]
=> -1 = 1 - 2
[[1,0],[0,1]]
=> [[1,1],[2]]
=> [2,1]
=> 0 = 2 - 2
[[0,1],[1,0]]
=> [[1,2],[2]]
=> [2,1]
=> 0 = 2 - 2
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> [3,2,1]
=> 1 = 3 - 2
[[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> [3,2,1]
=> 1 = 3 - 2
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> [3,2,1]
=> 1 = 3 - 2
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,1,2],[2,3],[3]]
=> [2,2,2]
=> 2 = 4 - 2
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> [3,2,1]
=> 1 = 3 - 2
[[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> [3,2,1]
=> 1 = 3 - 2
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> [3,2,1]
=> 1 = 3 - 2
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> [4,3,2,1]
=> 2 = 4 - 2
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> [4,3,2,1]
=> 2 = 4 - 2
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> 2 = 4 - 2
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> 2 = 4 - 2
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> 2 = 4 - 2
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> 2 = 4 - 2
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> [4,3,2,1]
=> 2 = 4 - 2
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> [4,3,2,1]
=> 2 = 4 - 2
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> 2 = 4 - 2
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> 2 = 4 - 2
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> 2 = 4 - 2
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> 2 = 4 - 2
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> 2 = 4 - 2
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> 2 = 4 - 2
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 2 = 4 - 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 2 = 4 - 2
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 2 = 4 - 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 2 = 4 - 2
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> 2 = 4 - 2
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> 2 = 4 - 2
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 2 = 4 - 2
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 2 = 4 - 2
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 2 = 4 - 2
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> 2 = 4 - 2
Description
Dyson's crank of a partition. Let $\lambda$ be a partition and let $o(\lambda)$ be the number of parts that are equal to 1 ([[St000475]]), and let $\mu(\lambda)$ be the number of parts that are strictly larger than $o(\lambda)$ ([[St000473]]). Dyson's crank is then defined as $$crank(\lambda) = \begin{cases} \text{ largest part of }\lambda & o(\lambda) = 0\\ \mu(\lambda) - o(\lambda) & o(\lambda) > 0. \end{cases}$$
Matching statistic: St000013
Mp00001: Alternating sign matrices to semistandard tableau via monotone trianglesSemistandard tableaux
Mp00225: Semistandard tableaux weightInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St000013: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1]
=> [1,0]
=> 1
[[1,0],[0,1]]
=> [[1,1],[2]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[[0,1],[1,0]]
=> [[1,2],[2]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,1,2],[2,3],[3]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 4
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
Description
The height of a Dyck path. The height of a Dyck path $D$ of semilength $n$ is defined as the maximal height of a peak of $D$. The height of $D$ at position $i$ is the number of up-steps minus the number of down-steps before position $i$.
Matching statistic: St001007
Mp00001: Alternating sign matrices to semistandard tableau via monotone trianglesSemistandard tableaux
Mp00225: Semistandard tableaux weightInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001007: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1]
=> [1,0]
=> 1
[[1,0],[0,1]]
=> [[1,1],[2]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[[0,1],[1,0]]
=> [[1,2],[2]]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,1,2],[2,3],[3]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 4
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
Description
Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path.
Mp00001: Alternating sign matrices to semistandard tableau via monotone trianglesSemistandard tableaux
Mp00225: Semistandard tableaux weightInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St001515: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [[1]]
=> [1]
=> [1,0,1,0]
=> 1
[[1,0],[0,1]]
=> [[1,1],[2]]
=> [2,1]
=> [1,0,1,0,1,0]
=> 2
[[0,1],[1,0]]
=> [[1,2],[2]]
=> [2,1]
=> [1,0,1,0,1,0]
=> 2
[[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
[[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
[[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
[[0,1,0],[1,-1,1],[0,1,0]]
=> [[1,1,2],[2,3],[3]]
=> [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 4
[[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
[[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
[[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
Description
The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule).
The following 98 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000024The number of double up and double down steps of a Dyck path. St000144The pyramid weight of the Dyck path. St000393The number of strictly increasing runs in a binary word. St000395The sum of the heights of the peaks of a Dyck path. St001018Sum of projective dimension of the indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001020Sum of the codominant dimensions of the non-projective indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001065Number of indecomposable reflexive modules in the corresponding Nakayama algebra. St001170Number of indecomposable injective modules whose socle has projective dimension at most g-1 when g denotes the global dimension in the corresponding Nakayama algebra. St001180Number of indecomposable injective modules with projective dimension at most 1. St001211The number of simple modules in the corresponding Nakayama algebra that have vanishing second Ext-group with the regular module. St001267The length of the Lyndon factorization of the binary word. St001492The number of simple modules that do not appear in the socle of the regular module or have no nontrivial selfextensions with the regular module in the corresponding Nakayama algebra. St000146The Andrews-Garvan crank of a partition. St000998Number of indecomposable projective modules with injective dimension smaller than or equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001650The order of Ringel's homological bijection associated to the linear Nakayama algebra corresponding to the Dyck path. St000967The value p(1) for the Coxeterpolynomial p of the corresponding LNakayama algebra. St001218Smallest index k greater than or equal to one such that the Coxeter matrix C of the corresponding Nakayama algebra has C^k=1. St000442The maximal area to the right of an up step of a Dyck path. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St000937The number of positive values of the symmetric group character corresponding to the partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St000219The number of occurrences of the pattern 231 in a permutation. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001645The pebbling number of a connected graph. St000834The number of right outer peaks of a permutation. St000443The number of long tunnels of a Dyck path. St000702The number of weak deficiencies of a permutation. St001014Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path. St001015Number of indecomposable injective modules with codominant dimension equal to one in the Nakayama algebra corresponding to the Dyck path. St001016Number of indecomposable injective modules with codominant dimension at most 1 in the Nakayama algebra corresponding to the Dyck path. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001297The number of indecomposable non-injective projective modules minus the number of indecomposable non-injective projective modules that have reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St000624The normalized sum of the minimal distances to a greater element. St000710The number of big deficiencies of a permutation. St000711The number of big exceedences of a permutation. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St000744The length of the path to the largest entry in a standard Young tableau. St000486The number of cycles of length at least 3 of a permutation. St000779The tier of a permutation. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001060The distinguishing index of a graph. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001621The number of atoms of a lattice. St001623The number of doubly irreducible elements of a lattice. St001626The number of maximal proper sublattices of a lattice. St001812The biclique partition number of a graph. St000550The number of modular elements of a lattice. St000551The number of left modular elements of a lattice. St001965The number of decreasable positions in the corner sum matrix of an alternating sign matrix. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001498The normalised height of a Nakayama algebra with magnitude 1. St000264The girth of a graph, which is not a tree. St000739The first entry in the last row of a semistandard tableau. St001401The number of distinct entries in a semistandard tableau. St000101The cocharge of a semistandard tableau. St000736The last entry in the first row of a semistandard tableau. St000102The charge of a semistandard tableau. St001556The number of inversions of the third entry of a permutation. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001960The number of descents of a permutation minus one if its first entry is not one. St000134The size of the orbit of an alternating sign matrix under gyration. St000942The number of critical left to right maxima of the parking functions. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001330The hat guessing number of a graph. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001569The maximal modular displacement of a permutation. St001624The breadth of a lattice. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St001686The order of promotion on a Gelfand-Tsetlin pattern. St001769The reflection length of a signed permutation. St001773The number of minimal elements in Bruhat order not less than the signed permutation. St001863The number of weak excedances of a signed permutation. St001864The number of excedances of a signed permutation. St001896The number of right descents of a signed permutations. St001905The number of preferred parking spots in a parking function less than the index of the car. St001946The number of descents in a parking function. St000074The number of special entries. St000152The number of boxed plus the number of special entries. St000454The largest eigenvalue of a graph if it is integral. St001171The vector space dimension of $Ext_A^1(I_o,A)$ when $I_o$ is the tilting module corresponding to the permutation $o$ in the Auslander algebra $A$ of $K[x]/(x^n)$. St001520The number of strict 3-descents. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001684The reduced word complexity of a permutation. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St001754The number of tolerances of a finite lattice. St001811The Castelnuovo-Mumford regularity of a permutation. St001823The Stasinski-Voll length of a signed permutation. St001856The number of edges in the reduced word graph of a permutation. St001926Sparre Andersen's position of the maximum of a signed permutation. St001935The number of ascents in a parking function. St001948The number of augmented double ascents of a permutation.