Identifier
-
Mp00001:
Alternating sign matrices
—to semistandard tableau via monotone triangles⟶
Semistandard tableaux
Mp00225: Semistandard tableaux —weight⟶ Integer partitions
St000474: Integer partitions ⟶ ℤ
Values
[[1]] => [[1]] => [1] => -1
[[1,0],[0,1]] => [[1,1],[2]] => [2,1] => 0
[[0,1],[1,0]] => [[1,2],[2]] => [2,1] => 0
[[1,0,0],[0,1,0],[0,0,1]] => [[1,1,1],[2,2],[3]] => [3,2,1] => 1
[[0,1,0],[1,0,0],[0,0,1]] => [[1,1,2],[2,2],[3]] => [3,2,1] => 1
[[1,0,0],[0,0,1],[0,1,0]] => [[1,1,1],[2,3],[3]] => [3,2,1] => 1
[[0,1,0],[1,-1,1],[0,1,0]] => [[1,1,2],[2,3],[3]] => [2,2,2] => 2
[[0,0,1],[1,0,0],[0,1,0]] => [[1,1,3],[2,3],[3]] => [3,2,1] => 1
[[0,1,0],[0,0,1],[1,0,0]] => [[1,2,2],[2,3],[3]] => [3,2,1] => 1
[[0,0,1],[0,1,0],[1,0,0]] => [[1,2,3],[2,3],[3]] => [3,2,1] => 1
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] => [[1,1,1,1],[2,2,2],[3,3],[4]] => [4,3,2,1] => 2
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]] => [[1,1,1,2],[2,2,2],[3,3],[4]] => [4,3,2,1] => 2
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]] => [[1,1,1,1],[2,2,3],[3,3],[4]] => [4,3,2,1] => 2
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]] => [[1,1,1,2],[2,2,3],[3,3],[4]] => [3,3,3,1] => 2
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]] => [[1,1,1,3],[2,2,3],[3,3],[4]] => [4,3,2,1] => 2
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]] => [[1,1,2,2],[2,2,3],[3,3],[4]] => [4,3,2,1] => 2
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]] => [[1,1,2,3],[2,2,3],[3,3],[4]] => [4,3,2,1] => 2
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]] => [[1,1,1,1],[2,2,2],[3,4],[4]] => [4,3,2,1] => 2
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] => [[1,1,1,2],[2,2,2],[3,4],[4]] => [4,3,2,1] => 2
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]] => [[1,1,1,1],[2,2,3],[3,4],[4]] => [4,2,2,2] => 4
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]] => [[1,1,1,2],[2,2,3],[3,4],[4]] => [3,3,2,2] => 3
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]] => [[1,1,1,3],[2,2,3],[3,4],[4]] => [3,3,2,2] => 3
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]] => [[1,1,2,2],[2,2,3],[3,4],[4]] => [4,2,2,2] => 4
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]] => [[1,1,2,3],[2,2,3],[3,4],[4]] => [3,3,2,2] => 3
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]] => [[1,1,1,1],[2,2,4],[3,4],[4]] => [4,3,2,1] => 2
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]] => [[1,1,1,2],[2,2,4],[3,4],[4]] => [3,3,3,1] => 2
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]] => [[1,1,1,3],[2,2,4],[3,4],[4]] => [3,3,2,2] => 3
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]] => [[1,1,1,4],[2,2,4],[3,4],[4]] => [4,3,2,1] => 2
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]] => [[1,1,2,2],[2,2,4],[3,4],[4]] => [4,3,2,1] => 2
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]] => [[1,1,2,3],[2,2,4],[3,4],[4]] => [3,3,2,2] => 3
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]] => [[1,1,2,4],[2,2,4],[3,4],[4]] => [4,3,2,1] => 2
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]] => [[1,1,1,1],[2,3,3],[3,4],[4]] => [4,3,2,1] => 2
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]] => [[1,1,1,2],[2,3,3],[3,4],[4]] => [3,3,2,2] => 3
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]] => [[1,1,1,3],[2,3,3],[3,4],[4]] => [4,3,2,1] => 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]] => [[1,1,2,2],[2,3,3],[3,4],[4]] => [3,3,2,2] => 3
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]] => [[1,1,2,3],[2,3,3],[3,4],[4]] => [4,2,2,2] => 4
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]] => [[1,1,1,1],[2,3,4],[3,4],[4]] => [4,3,2,1] => 2
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]] => [[1,1,1,2],[2,3,4],[3,4],[4]] => [3,3,2,2] => 3
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]] => [[1,1,1,3],[2,3,4],[3,4],[4]] => [3,3,3,1] => 2
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]] => [[1,1,1,4],[2,3,4],[3,4],[4]] => [4,3,2,1] => 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]] => [[1,1,2,2],[2,3,4],[3,4],[4]] => [3,3,2,2] => 3
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]] => [[1,1,2,3],[2,3,4],[3,4],[4]] => [3,3,2,2] => 3
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]] => [[1,1,2,4],[2,3,4],[3,4],[4]] => [4,2,2,2] => 4
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]] => [[1,1,3,3],[2,3,4],[3,4],[4]] => [4,3,2,1] => 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]] => [[1,1,3,4],[2,3,4],[3,4],[4]] => [4,3,2,1] => 2
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]] => [[1,2,2,2],[2,3,3],[3,4],[4]] => [4,3,2,1] => 2
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]] => [[1,2,2,3],[2,3,3],[3,4],[4]] => [4,3,2,1] => 2
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]] => [[1,2,2,2],[2,3,4],[3,4],[4]] => [4,3,2,1] => 2
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]] => [[1,2,2,3],[2,3,4],[3,4],[4]] => [3,3,3,1] => 2
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]] => [[1,2,2,4],[2,3,4],[3,4],[4]] => [4,3,2,1] => 2
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]] => [[1,2,3,3],[2,3,4],[3,4],[4]] => [4,3,2,1] => 2
[[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]] => [[1,2,3,4],[2,3,4],[3,4],[4]] => [4,3,2,1] => 2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
Dyson's crank of a partition.
Let $\lambda$ be a partition and let $o(\lambda)$ be the number of parts that are equal to 1 (St000475The number of parts equal to 1 in a partition.), and let $\mu(\lambda)$ be the number of parts that are strictly larger than $o(\lambda)$ (St000473The number of parts of a partition that are strictly bigger than the number of ones.). Dyson's crank is then defined as
$$crank(\lambda) = \begin{cases} \text{ largest part of }\lambda & o(\lambda) = 0\\ \mu(\lambda) - o(\lambda) & o(\lambda) > 0. \end{cases}$$
Let $\lambda$ be a partition and let $o(\lambda)$ be the number of parts that are equal to 1 (St000475The number of parts equal to 1 in a partition.), and let $\mu(\lambda)$ be the number of parts that are strictly larger than $o(\lambda)$ (St000473The number of parts of a partition that are strictly bigger than the number of ones.). Dyson's crank is then defined as
$$crank(\lambda) = \begin{cases} \text{ largest part of }\lambda & o(\lambda) = 0\\ \mu(\lambda) - o(\lambda) & o(\lambda) > 0. \end{cases}$$
Map
weight
Description
The weight of a semistandard tableau as an integer partition.
The weight (or content) of a semistandard tableaux $T$ with maximal entry $m$ is the weak composition $(\alpha_1, \dots, \alpha_m)$ such that $\alpha_i$ is the number of letters $i$ occurring in $T$.
This map returns the integer partition obtained by sorting the weight into decreasing order and omitting zeros.
Since semistandard tableaux are bigraded by the size of the partition and the maximal occurring entry, this map is not graded.
The weight (or content) of a semistandard tableaux $T$ with maximal entry $m$ is the weak composition $(\alpha_1, \dots, \alpha_m)$ such that $\alpha_i$ is the number of letters $i$ occurring in $T$.
This map returns the integer partition obtained by sorting the weight into decreasing order and omitting zeros.
Since semistandard tableaux are bigraded by the size of the partition and the maximal occurring entry, this map is not graded.
Map
to semistandard tableau via monotone triangles
Description
The semistandard tableau corresponding the monotone triangle of an alternating sign matrix.
This is obtained by interpreting each row of the monotone triangle as an integer partition, and filling the cells of the smallest partition with ones, the second smallest with twos, and so on.
This is obtained by interpreting each row of the monotone triangle as an integer partition, and filling the cells of the smallest partition with ones, the second smallest with twos, and so on.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!