Your data matches 11 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001499
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00121: Dyck paths Cori-Le Borgne involutionDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
St001499: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> 2
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> 2
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> 2
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 2
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> 3
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 2
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 3
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
Description
The number of indecomposable projective-injective modules of a magnitude 1 Nakayama algebra. We use the bijection in the code by Christian Stump to have a bijection to Dyck paths.
Matching statistic: St000098
Mp00179: Integer partitions to skew partitionSkew partitions
Mp00185: Skew partitions cell posetPosets
Mp00198: Posets incomparability graphGraphs
St000098: Graphs ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 67%
Values
[1]
=> [[1],[]]
=> ([],1)
=> ([],1)
=> 1
[2]
=> [[2],[]]
=> ([(0,1)],2)
=> ([],2)
=> 1
[1,1]
=> [[1,1],[]]
=> ([(0,1)],2)
=> ([],2)
=> 1
[3]
=> [[3],[]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
[2,1]
=> [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 2
[1,1,1]
=> [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
[4]
=> [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1
[3,1]
=> [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 2
[2,2]
=> [[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2
[2,1,1]
=> [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 2
[1,1,1,1]
=> [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1
[5]
=> [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1
[4,1]
=> [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
[3,2]
=> [[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
[3,1,1]
=> [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[2,2,1]
=> [[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
[2,1,1,1]
=> [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
[1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1
[6]
=> [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1
[5,1]
=> [[5,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[4,2]
=> [[4,2],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[4,1,1]
=> [[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[3,3]
=> [[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[3,2,1]
=> [[3,2,1],[]]
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[3,1,1,1]
=> [[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[2,2,1,1]
=> [[2,2,1,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1
[6,1]
=> [[6,1],[]]
=> ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2
[5,2]
=> [[5,2],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 2
[5,1,1]
=> [[5,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 2
[4,3]
=> [[4,3],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[4,2,1]
=> [[4,2,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 3
[4,1,1,1]
=> [[4,1,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 2
[3,3,1]
=> [[3,3,1],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> 3
[3,2,2]
=> [[3,2,2],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> 3
[3,2,1,1]
=> [[3,2,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 3
[3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 2
[2,2,2,1]
=> [[2,2,2,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 2
[2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2
[6,2]
=> [[6,2],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8)
=> ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[6,1,1]
=> [[6,1,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8)
=> ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[5,3]
=> [[5,3],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8)
=> ([(1,7),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
[5,2,1]
=> [[5,2,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(5,7),(6,1),(6,7)],8)
=> ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7)],8)
=> ? = 3
[5,1,1,1]
=> [[5,1,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8)
=> ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 2
[4,4]
=> [[4,4],[]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2
[4,3,1]
=> [[4,3,1],[]]
=> ([(0,4),(0,5),(3,2),(3,7),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ([(1,5),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(6,7)],8)
=> ? = 3
[4,2,2]
=> [[4,2,2],[]]
=> ([(0,4),(0,5),(1,7),(3,2),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ([(1,6),(1,7),(2,4),(2,5),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[4,2,1,1]
=> [[4,2,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(5,7),(6,4),(6,7)],8)
=> ([(1,2),(1,6),(1,7),(2,4),(2,5),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 3
[4,1,1,1,1]
=> [[4,1,1,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8)
=> ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 2
[3,3,2]
=> [[3,3,2],[]]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7)],8)
=> ([(1,4),(1,7),(2,3),(2,7),(3,6),(4,6),(5,6),(5,7),(6,7)],8)
=> ? = 3
[3,3,1,1]
=> [[3,3,1,1],[]]
=> ([(0,4),(0,5),(1,7),(3,2),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ([(1,6),(1,7),(2,4),(2,5),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[3,2,2,1]
=> [[3,2,2,1],[]]
=> ([(0,4),(0,5),(3,2),(3,7),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ([(1,5),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(6,7)],8)
=> ? = 3
[3,2,1,1,1]
=> [[3,2,1,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(5,7),(6,1),(6,7)],8)
=> ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7)],8)
=> ? = 3
[3,1,1,1,1,1]
=> [[3,1,1,1,1,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8)
=> ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[2,2,2,2]
=> [[2,2,2,2],[]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2
[2,2,2,1,1]
=> [[2,2,2,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8)
=> ([(1,7),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
[2,2,1,1,1,1]
=> [[2,2,1,1,1,1],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8)
=> ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[6,3]
=> [[6,3],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(4,8),(5,1),(6,4),(6,7),(7,8)],9)
=> ([(1,8),(2,7),(2,8),(3,4),(3,5),(3,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 2
[6,2,1]
=> [[6,2,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(6,8),(7,1),(7,8)],9)
=> ([(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,8)],9)
=> ? = 3
[6,1,1,1]
=> [[6,1,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,3),(5,2),(6,1),(7,6),(8,4)],9)
=> ([(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ? = 2
[5,4]
=> [[5,4],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,8),(4,1),(4,7),(5,3),(5,6),(6,8),(8,7)],9)
=> ([(1,8),(2,7),(3,6),(3,7),(4,5),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2
[5,3,1]
=> [[5,3,1],[]]
=> ([(0,5),(0,6),(3,4),(3,8),(4,2),(5,3),(5,7),(6,1),(6,7),(7,8)],9)
=> ([(1,7),(1,8),(2,5),(2,6),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 3
[5,2,2]
=> [[5,2,2],[]]
=> ([(0,5),(0,6),(2,8),(3,4),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8)],9)
=> ([(1,7),(1,8),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 2
[5,2,1,1]
=> [[5,2,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(6,8),(7,3),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(6,7),(6,8)],9)
=> ? = 3
[5,1,1,1,1]
=> [[5,1,1,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,6),(5,2),(6,1),(7,3),(8,4)],9)
=> ([(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8)],9)
=> ? = 2
[4,4,1]
=> [[4,4,1],[]]
=> ([(0,4),(0,5),(2,7),(3,2),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(8,7)],9)
=> ([(1,8),(2,6),(2,8),(3,7),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(7,8)],9)
=> ? = 3
[4,3,2]
=> [[4,3,2],[]]
=> ([(0,4),(0,5),(2,7),(3,1),(3,8),(4,2),(4,6),(5,3),(5,6),(6,7),(6,8)],9)
=> ([(1,5),(1,8),(2,3),(2,7),(2,8),(3,6),(3,7),(4,6),(4,7),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3
[4,3,1,1]
=> [[4,3,1,1],[]]
=> ([(0,5),(0,6),(3,1),(4,2),(4,8),(5,3),(5,7),(6,4),(6,7),(7,8)],9)
=> ([(1,6),(1,7),(1,8),(2,3),(2,7),(2,8),(3,5),(3,6),(4,5),(4,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 3
[4,2,2,1]
=> [[4,2,2,1],[]]
=> ([(0,5),(0,6),(3,1),(4,2),(4,8),(5,3),(5,7),(6,4),(6,7),(7,8)],9)
=> ([(1,6),(1,7),(1,8),(2,3),(2,7),(2,8),(3,5),(3,6),(4,5),(4,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 3
[4,2,1,1,1]
=> [[4,2,1,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(6,8),(7,3),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(6,7),(6,8)],9)
=> ? = 3
[4,1,1,1,1,1]
=> [[4,1,1,1,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,3),(5,2),(6,1),(7,6),(8,4)],9)
=> ([(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ? = 2
[3,3,3]
=> [[3,3,3],[]]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ? = 2
[3,3,2,1]
=> [[3,3,2,1],[]]
=> ([(0,4),(0,5),(2,7),(3,1),(3,8),(4,2),(4,6),(5,3),(5,6),(6,7),(6,8)],9)
=> ([(1,5),(1,8),(2,3),(2,7),(2,8),(3,6),(3,7),(4,6),(4,7),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3
[3,3,1,1,1]
=> [[3,3,1,1,1],[]]
=> ([(0,5),(0,6),(2,8),(3,4),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8)],9)
=> ([(1,7),(1,8),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 2
[3,2,2,2]
=> [[3,2,2,2],[]]
=> ([(0,4),(0,5),(2,7),(3,2),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(8,7)],9)
=> ([(1,8),(2,6),(2,8),(3,7),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(7,8)],9)
=> ? = 3
[3,2,2,1,1]
=> [[3,2,2,1,1],[]]
=> ([(0,5),(0,6),(3,4),(3,8),(4,2),(5,3),(5,7),(6,1),(6,7),(7,8)],9)
=> ([(1,7),(1,8),(2,5),(2,6),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 3
[3,2,1,1,1,1]
=> [[3,2,1,1,1,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(6,8),(7,1),(7,8)],9)
=> ([(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,8)],9)
=> ? = 3
[2,2,2,2,1]
=> [[2,2,2,2,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,8),(4,1),(4,7),(5,3),(5,6),(6,8),(8,7)],9)
=> ([(1,8),(2,7),(3,6),(3,7),(4,5),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2
[2,2,2,1,1,1]
=> [[2,2,2,1,1,1],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(4,8),(5,1),(6,4),(6,7),(7,8)],9)
=> ([(1,8),(2,7),(2,8),(3,4),(3,5),(3,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 2
[6,4]
=> [[6,4],[]]
=> ([(0,2),(0,6),(2,7),(3,1),(4,3),(4,8),(5,4),(5,9),(6,5),(6,7),(7,9),(9,8)],10)
=> ([(1,9),(2,7),(2,8),(3,6),(3,9),(4,5),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2
[6,3,1]
=> [[6,3,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(4,9),(5,2),(6,4),(6,8),(7,1),(7,8),(8,9)],10)
=> ([(1,8),(1,9),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,9)],10)
=> ? = 3
[6,2,2]
=> [[6,2,2],[]]
=> ([(0,6),(0,7),(2,9),(3,5),(4,3),(5,1),(6,4),(6,8),(7,2),(7,8),(8,9)],10)
=> ([(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,9)],10)
=> ? = 2
[6,2,1,1]
=> [[6,2,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,3),(5,2),(6,1),(7,6),(7,9),(8,4),(8,9)],10)
=> ([(1,6),(1,8),(1,9),(2,6),(2,7),(2,8),(2,9),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(7,8),(7,9)],10)
=> ? = 3
[6,1,1,1,1]
=> [[6,1,1,1,1],[]]
=> ([(0,8),(0,9),(3,7),(4,3),(5,6),(6,1),(7,2),(8,4),(9,5)],10)
=> ([(1,6),(1,7),(1,8),(1,9),(2,6),(2,7),(2,8),(2,9),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9)],10)
=> ? = 2
[5,5]
=> [[5,5],[]]
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(2,9),(3,8),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2
[5,4,1]
=> [[5,4,1],[]]
=> ([(0,5),(0,6),(3,4),(3,9),(4,2),(4,8),(5,3),(5,7),(6,1),(6,7),(7,9),(9,8)],10)
=> ([(1,7),(1,9),(2,8),(2,9),(3,6),(3,7),(3,9),(4,5),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(8,9)],10)
=> ? = 3
[5,3,2]
=> [[5,3,2],[]]
=> ([(0,5),(0,6),(2,9),(3,1),(4,3),(4,8),(5,4),(5,7),(6,2),(6,7),(7,8),(7,9)],10)
=> ([(1,6),(1,9),(2,3),(2,5),(2,6),(2,9),(3,4),(3,7),(3,8),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 3
[5,3,1,1]
=> [[5,3,1,1],[]]
=> ([(0,6),(0,7),(3,4),(3,9),(4,1),(5,2),(6,5),(6,8),(7,3),(7,8),(8,9)],10)
=> ([(1,4),(1,8),(1,9),(2,4),(2,7),(2,8),(2,9),(3,5),(3,6),(3,8),(3,9),(4,5),(4,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 3
[5,2,2,1]
=> [[5,2,2,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(5,9),(6,5),(6,8),(7,3),(7,8),(8,9)],10)
=> ([(1,3),(1,8),(1,9),(2,5),(2,6),(2,7),(2,9),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 3
[5,2,1,1,1]
=> [[5,2,1,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,6),(5,2),(6,1),(7,3),(7,9),(8,4),(8,9)],10)
=> ([(1,2),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,9),(7,9),(8,9)],10)
=> ? = 3
[5,1,1,1,1,1]
=> [[5,1,1,1,1,1],[]]
=> ([(0,8),(0,9),(3,7),(4,3),(5,6),(6,1),(7,2),(8,4),(9,5)],10)
=> ([(1,6),(1,7),(1,8),(1,9),(2,6),(2,7),(2,8),(2,9),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9)],10)
=> ? = 2
[4,3,2,1]
=> [[4,3,2,1],[]]
=> ([(0,5),(0,6),(3,2),(3,8),(4,1),(4,9),(5,3),(5,7),(6,4),(6,7),(7,8),(7,9)],10)
=> ([(1,2),(1,7),(1,9),(2,6),(2,8),(3,4),(3,6),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,9),(7,8),(8,9)],10)
=> 4
Description
The chromatic number of a graph. The minimal number of colors needed to color the vertices of the graph such that no two vertices which share an edge have the same color.
Mp00045: Integer partitions reading tableauStandard tableaux
Mp00084: Standard tableaux conjugateStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
St000862: Permutations ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 50%
Values
[1]
=> [[1]]
=> [[1]]
=> [1] => 1
[2]
=> [[1,2]]
=> [[1],[2]]
=> [2,1] => 1
[1,1]
=> [[1],[2]]
=> [[1,2]]
=> [1,2] => 1
[3]
=> [[1,2,3]]
=> [[1],[2],[3]]
=> [3,2,1] => 1
[2,1]
=> [[1,3],[2]]
=> [[1,2],[3]]
=> [3,1,2] => 2
[1,1,1]
=> [[1],[2],[3]]
=> [[1,2,3]]
=> [1,2,3] => 1
[4]
=> [[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 1
[3,1]
=> [[1,3,4],[2]]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 2
[2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> [2,4,1,3] => 2
[2,1,1]
=> [[1,4],[2],[3]]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 2
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,2,3,4]]
=> [1,2,3,4] => 1
[5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 1
[4,1]
=> [[1,3,4,5],[2]]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 2
[3,2]
=> [[1,2,5],[3,4]]
=> [[1,3],[2,4],[5]]
=> [5,2,4,1,3] => 2
[3,1,1]
=> [[1,4,5],[2],[3]]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 2
[2,2,1]
=> [[1,3],[2,5],[4]]
=> [[1,2,4],[3,5]]
=> [3,5,1,2,4] => 2
[2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => 2
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => 1
[6]
=> [[1,2,3,4,5,6]]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 1
[5,1]
=> [[1,3,4,5,6],[2]]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 2
[4,2]
=> [[1,2,5,6],[3,4]]
=> [[1,3],[2,4],[5],[6]]
=> [6,5,2,4,1,3] => 2
[4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 2
[3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> [3,6,2,5,1,4] => 2
[3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [[1,2,4],[3,5],[6]]
=> [6,3,5,1,2,4] => 3
[3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 2
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => 2
[2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6]]
=> [4,6,1,2,3,5] => 2
[2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => 2
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => 1
[6,1]
=> [[1,3,4,5,6,7],[2]]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => 2
[5,2]
=> [[1,2,5,6,7],[3,4]]
=> [[1,3],[2,4],[5],[6],[7]]
=> [7,6,5,2,4,1,3] => ? = 2
[5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => 2
[4,3]
=> [[1,2,3,7],[4,5,6]]
=> [[1,4],[2,5],[3,6],[7]]
=> [7,3,6,2,5,1,4] => ? = 2
[4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [[1,2,4],[3,5],[6],[7]]
=> [7,6,3,5,1,2,4] => ? = 3
[4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => 2
[3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> [[1,2,5],[3,6],[4,7]]
=> [4,7,3,6,1,2,5] => ? = 3
[3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [[1,3,5],[2,4,6],[7]]
=> [7,2,4,6,1,3,5] => ? = 3
[3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6],[7]]
=> [7,4,6,1,2,3,5] => ? = 3
[3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => 2
[2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [[1,2,4,6],[3,5,7]]
=> [3,5,7,1,2,4,6] => ? = 2
[2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [[1,2,3,4,6],[5,7]]
=> [5,7,1,2,3,4,6] => ? = 2
[2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6],[7]]
=> [7,1,2,3,4,5,6] => 2
[6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> [[1,3],[2,4],[5],[6],[7],[8]]
=> [8,7,6,5,2,4,1,3] => ? = 2
[6,1,1]
=> [[1,4,5,6,7,8],[2],[3]]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,1,2,3] => 2
[5,3]
=> [[1,2,3,7,8],[4,5,6]]
=> [[1,4],[2,5],[3,6],[7],[8]]
=> [8,7,3,6,2,5,1,4] => ? = 2
[5,2,1]
=> [[1,3,6,7,8],[2,5],[4]]
=> [[1,2,4],[3,5],[6],[7],[8]]
=> [8,7,6,3,5,1,2,4] => ? = 3
[5,1,1,1]
=> [[1,5,6,7,8],[2],[3],[4]]
=> [[1,2,3,4],[5],[6],[7],[8]]
=> [8,7,6,5,1,2,3,4] => 2
[4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> [[1,5],[2,6],[3,7],[4,8]]
=> [4,8,3,7,2,6,1,5] => ? = 2
[4,3,1]
=> [[1,3,4,8],[2,6,7],[5]]
=> [[1,2,5],[3,6],[4,7],[8]]
=> [8,4,7,3,6,1,2,5] => ? = 3
[4,2,2]
=> [[1,2,7,8],[3,4],[5,6]]
=> [[1,3,5],[2,4,6],[7],[8]]
=> [8,7,2,4,6,1,3,5] => ? = 2
[4,2,1,1]
=> [[1,4,7,8],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6],[7],[8]]
=> [8,7,4,6,1,2,3,5] => ? = 3
[4,1,1,1,1]
=> [[1,6,7,8],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6],[7],[8]]
=> [8,7,6,1,2,3,4,5] => 2
[3,3,2]
=> [[1,2,5],[3,4,8],[6,7]]
=> [[1,3,6],[2,4,7],[5,8]]
=> [5,8,2,4,7,1,3,6] => ? = 3
[3,3,1,1]
=> [[1,4,5],[2,7,8],[3],[6]]
=> [[1,2,3,6],[4,7],[5,8]]
=> [5,8,4,7,1,2,3,6] => ? = 2
[3,2,2,1]
=> [[1,3,8],[2,5],[4,7],[6]]
=> [[1,2,4,6],[3,5,7],[8]]
=> [8,3,5,7,1,2,4,6] => ? = 3
[3,2,1,1,1]
=> [[1,5,8],[2,7],[3],[4],[6]]
=> [[1,2,3,4,6],[5,7],[8]]
=> [8,5,7,1,2,3,4,6] => ? = 3
[3,1,1,1,1,1]
=> [[1,7,8],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6],[7],[8]]
=> [8,7,1,2,3,4,5,6] => 2
[2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [[1,3,5,7],[2,4,6,8]]
=> [2,4,6,8,1,3,5,7] => 2
[2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5],[7]]
=> [[1,2,3,5,7],[4,6,8]]
=> [4,6,8,1,2,3,5,7] => ? = 2
[2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> [[1,2,3,4,5,7],[6,8]]
=> [6,8,1,2,3,4,5,7] => ? = 2
[6,3]
=> [[1,2,3,7,8,9],[4,5,6]]
=> [[1,4],[2,5],[3,6],[7],[8],[9]]
=> [9,8,7,3,6,2,5,1,4] => ? = 2
[6,2,1]
=> [[1,3,6,7,8,9],[2,5],[4]]
=> [[1,2,4],[3,5],[6],[7],[8],[9]]
=> [9,8,7,6,3,5,1,2,4] => ? = 3
[6,1,1,1]
=> [[1,5,6,7,8,9],[2],[3],[4]]
=> [[1,2,3,4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,1,2,3,4] => 2
[5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> [[1,5],[2,6],[3,7],[4,8],[9]]
=> [9,4,8,3,7,2,6,1,5] => ? = 2
[5,3,1]
=> [[1,3,4,8,9],[2,6,7],[5]]
=> [[1,2,5],[3,6],[4,7],[8],[9]]
=> [9,8,4,7,3,6,1,2,5] => ? = 3
[5,2,2]
=> [[1,2,7,8,9],[3,4],[5,6]]
=> [[1,3,5],[2,4,6],[7],[8],[9]]
=> [9,8,7,2,4,6,1,3,5] => ? = 2
[5,2,1,1]
=> [[1,4,7,8,9],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6],[7],[8],[9]]
=> [9,8,7,4,6,1,2,3,5] => ? = 3
[5,1,1,1,1]
=> [[1,6,7,8,9],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6],[7],[8],[9]]
=> [9,8,7,6,1,2,3,4,5] => 2
[4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> [[1,2,6],[3,7],[4,8],[5,9]]
=> [5,9,4,8,3,7,1,2,6] => ? = 3
[4,3,2]
=> [[1,2,5,9],[3,4,8],[6,7]]
=> [[1,3,6],[2,4,7],[5,8],[9]]
=> [9,5,8,2,4,7,1,3,6] => ? = 3
[4,3,1,1]
=> [[1,4,5,9],[2,7,8],[3],[6]]
=> [[1,2,3,6],[4,7],[5,8],[9]]
=> [9,5,8,4,7,1,2,3,6] => ? = 3
[4,2,2,1]
=> [[1,3,8,9],[2,5],[4,7],[6]]
=> [[1,2,4,6],[3,5,7],[8],[9]]
=> [9,8,3,5,7,1,2,4,6] => ? = 3
[4,2,1,1,1]
=> [[1,5,8,9],[2,7],[3],[4],[6]]
=> [[1,2,3,4,6],[5,7],[8],[9]]
=> [9,8,5,7,1,2,3,4,6] => ? = 3
[4,1,1,1,1,1]
=> [[1,7,8,9],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6],[7],[8],[9]]
=> [9,8,7,1,2,3,4,5,6] => 2
[3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> [[1,4,7],[2,5,8],[3,6,9]]
=> [3,6,9,2,5,8,1,4,7] => ? = 2
[3,3,2,1]
=> [[1,3,6],[2,5,9],[4,8],[7]]
=> [[1,2,4,7],[3,5,8],[6,9]]
=> [6,9,3,5,8,1,2,4,7] => ? = 3
[3,3,1,1,1]
=> [[1,5,6],[2,8,9],[3],[4],[7]]
=> [[1,2,3,4,7],[5,8],[6,9]]
=> [6,9,5,8,1,2,3,4,7] => ? = 2
[3,2,2,2]
=> [[1,2,9],[3,4],[5,6],[7,8]]
=> [[1,3,5,7],[2,4,6,8],[9]]
=> [9,2,4,6,8,1,3,5,7] => ? = 3
[3,2,2,1,1]
=> [[1,4,9],[2,6],[3,8],[5],[7]]
=> [[1,2,3,5,7],[4,6,8],[9]]
=> [9,4,6,8,1,2,3,5,7] => ? = 3
[3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> [[1,2,3,4,5,7],[6,8],[9]]
=> [9,6,8,1,2,3,4,5,7] => ? = 3
[2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8]]
=> [[1,2,4,6,8],[3,5,7,9]]
=> [3,5,7,9,1,2,4,6,8] => ? = 2
[2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4],[6],[8]]
=> [[1,2,3,4,6,8],[5,7,9]]
=> [5,7,9,1,2,3,4,6,8] => ? = 2
[6,4]
=> [[1,2,3,4,9,10],[5,6,7,8]]
=> [[1,5],[2,6],[3,7],[4,8],[9],[10]]
=> [10,9,4,8,3,7,2,6,1,5] => ? = 2
[6,3,1]
=> [[1,3,4,8,9,10],[2,6,7],[5]]
=> [[1,2,5],[3,6],[4,7],[8],[9],[10]]
=> [10,9,8,4,7,3,6,1,2,5] => ? = 3
[6,2,2]
=> [[1,2,7,8,9,10],[3,4],[5,6]]
=> [[1,3,5],[2,4,6],[7],[8],[9],[10]]
=> [10,9,8,7,2,4,6,1,3,5] => ? = 2
[6,2,1,1]
=> [[1,4,7,8,9,10],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6],[7],[8],[9],[10]]
=> [10,9,8,7,4,6,1,2,3,5] => ? = 3
[6,1,1,1,1]
=> [[1,6,7,8,9,10],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6],[7],[8],[9],[10]]
=> [10,9,8,7,6,1,2,3,4,5] => 2
[5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> [[1,6],[2,7],[3,8],[4,9],[5,10]]
=> [5,10,4,9,3,8,2,7,1,6] => ? = 2
[5,4,1]
=> [[1,3,4,5,10],[2,7,8,9],[6]]
=> [[1,2,6],[3,7],[4,8],[5,9],[10]]
=> [10,5,9,4,8,3,7,1,2,6] => ? = 3
[5,3,2]
=> [[1,2,5,9,10],[3,4,8],[6,7]]
=> [[1,3,6],[2,4,7],[5,8],[9],[10]]
=> [10,9,5,8,2,4,7,1,3,6] => ? = 3
[5,3,1,1]
=> [[1,4,5,9,10],[2,7,8],[3],[6]]
=> [[1,2,3,6],[4,7],[5,8],[9],[10]]
=> [10,9,5,8,4,7,1,2,3,6] => ? = 3
[5,2,2,1]
=> [[1,3,8,9,10],[2,5],[4,7],[6]]
=> [[1,2,4,6],[3,5,7],[8],[9],[10]]
=> [10,9,8,3,5,7,1,2,4,6] => ? = 3
[5,2,1,1,1]
=> [[1,5,8,9,10],[2,7],[3],[4],[6]]
=> [[1,2,3,4,6],[5,7],[8],[9],[10]]
=> [10,9,8,5,7,1,2,3,4,6] => ? = 3
[5,1,1,1,1,1]
=> [[1,7,8,9,10],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6],[7],[8],[9],[10]]
=> [10,9,8,7,1,2,3,4,5,6] => 2
[2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10]]
=> [[1,3,5,7,9],[2,4,6,8,10]]
=> [2,4,6,8,10,1,3,5,7,9] => 2
Description
The number of parts of the shifted shape of a permutation. The diagram of a strict partition $\lambda_1 < \lambda_2 < \dots < \lambda_\ell$ of $n$ is a tableau with $\ell$ rows, the $i$-th row being indented by $i$ cells. A shifted standard Young tableau is a filling of such a diagram, where entries in rows and columns are strictly increasing. The shifted Robinson-Schensted algorithm [1] associates to a permutation a pair $(P, Q)$ of standard shifted Young tableaux of the same shape, where off-diagonal entries in $Q$ may be circled. This statistic records the number of parts of the shifted shape.
Matching statistic: St001085
Mp00045: Integer partitions reading tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
Mp00241: Permutations invert Laguerre heapPermutations
St001085: Permutations ⟶ ℤResult quality: 10% values known / values provided: 10%distinct values known / distinct values provided: 50%
Values
[1]
=> [[1]]
=> [1] => [1] => 0 = 1 - 1
[2]
=> [[1,2]]
=> [1,2] => [1,2] => 0 = 1 - 1
[1,1]
=> [[1],[2]]
=> [2,1] => [2,1] => 0 = 1 - 1
[3]
=> [[1,2,3]]
=> [1,2,3] => [1,2,3] => 0 = 1 - 1
[2,1]
=> [[1,3],[2]]
=> [2,1,3] => [2,1,3] => 1 = 2 - 1
[1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => [3,2,1] => 0 = 1 - 1
[4]
=> [[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => 0 = 1 - 1
[3,1]
=> [[1,3,4],[2]]
=> [2,1,3,4] => [2,1,3,4] => 1 = 2 - 1
[2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => [2,4,1,3] => 1 = 2 - 1
[2,1,1]
=> [[1,4],[2],[3]]
=> [3,2,1,4] => [3,2,1,4] => 1 = 2 - 1
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => 0 = 1 - 1
[4,1]
=> [[1,3,4,5],[2]]
=> [2,1,3,4,5] => [2,1,3,4,5] => 1 = 2 - 1
[3,2]
=> [[1,2,5],[3,4]]
=> [3,4,1,2,5] => [2,4,1,3,5] => 1 = 2 - 1
[3,1,1]
=> [[1,4,5],[2],[3]]
=> [3,2,1,4,5] => [3,2,1,4,5] => 1 = 2 - 1
[2,2,1]
=> [[1,3],[2,5],[4]]
=> [4,2,5,1,3] => [3,5,1,4,2] => 1 = 2 - 1
[2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [4,3,2,1,5] => [4,3,2,1,5] => 1 = 2 - 1
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [5,4,3,2,1] => 0 = 1 - 1
[6]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => 0 = 1 - 1
[5,1]
=> [[1,3,4,5,6],[2]]
=> [2,1,3,4,5,6] => [2,1,3,4,5,6] => 1 = 2 - 1
[4,2]
=> [[1,2,5,6],[3,4]]
=> [3,4,1,2,5,6] => [2,4,1,3,5,6] => 1 = 2 - 1
[4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [3,2,1,4,5,6] => [3,2,1,4,5,6] => 1 = 2 - 1
[3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => [2,3,6,1,4,5] => 1 = 2 - 1
[3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [4,2,5,1,3,6] => [3,5,1,4,2,6] => 2 = 3 - 1
[3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [4,3,2,1,5,6] => [4,3,2,1,5,6] => 1 = 2 - 1
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => [2,4,1,6,3,5] => 1 = 2 - 1
[2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [5,3,2,6,1,4] => [4,6,1,5,3,2] => 1 = 2 - 1
[2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [5,4,3,2,1,6] => [5,4,3,2,1,6] => 1 = 2 - 1
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => 0 = 1 - 1
[6,1]
=> [[1,3,4,5,6,7],[2]]
=> [2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => 1 = 2 - 1
[5,2]
=> [[1,2,5,6,7],[3,4]]
=> [3,4,1,2,5,6,7] => [2,4,1,3,5,6,7] => 1 = 2 - 1
[5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [3,2,1,4,5,6,7] => [3,2,1,4,5,6,7] => 1 = 2 - 1
[4,3]
=> [[1,2,3,7],[4,5,6]]
=> [4,5,6,1,2,3,7] => [2,3,6,1,4,5,7] => ? = 2 - 1
[4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [4,2,5,1,3,6,7] => [3,5,1,4,2,6,7] => ? = 3 - 1
[4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [4,3,2,1,5,6,7] => [4,3,2,1,5,6,7] => 1 = 2 - 1
[3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> [5,2,6,7,1,3,4] => [3,4,7,1,5,2,6] => ? = 3 - 1
[3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [5,6,3,4,1,2,7] => [2,4,1,6,3,5,7] => ? = 3 - 1
[3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7] => [4,6,1,5,3,2,7] => ? = 3 - 1
[3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [5,4,3,2,1,6,7] => [5,4,3,2,1,6,7] => 1 = 2 - 1
[2,2,2,1]
=> [[1,3],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3] => [3,5,1,7,2,6,4] => ? = 2 - 1
[2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5] => [5,7,1,6,4,3,2] => ? = 2 - 1
[2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1,7] => [6,5,4,3,2,1,7] => 1 = 2 - 1
[6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> [3,4,1,2,5,6,7,8] => [2,4,1,3,5,6,7,8] => ? = 2 - 1
[6,1,1]
=> [[1,4,5,6,7,8],[2],[3]]
=> [3,2,1,4,5,6,7,8] => [3,2,1,4,5,6,7,8] => 1 = 2 - 1
[5,3]
=> [[1,2,3,7,8],[4,5,6]]
=> [4,5,6,1,2,3,7,8] => [2,3,6,1,4,5,7,8] => ? = 2 - 1
[5,2,1]
=> [[1,3,6,7,8],[2,5],[4]]
=> [4,2,5,1,3,6,7,8] => [3,5,1,4,2,6,7,8] => ? = 3 - 1
[5,1,1,1]
=> [[1,5,6,7,8],[2],[3],[4]]
=> [4,3,2,1,5,6,7,8] => [4,3,2,1,5,6,7,8] => 1 = 2 - 1
[4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => [2,3,4,8,1,5,6,7] => ? = 2 - 1
[4,3,1]
=> [[1,3,4,8],[2,6,7],[5]]
=> [5,2,6,7,1,3,4,8] => [3,4,7,1,5,2,6,8] => ? = 3 - 1
[4,2,2]
=> [[1,2,7,8],[3,4],[5,6]]
=> [5,6,3,4,1,2,7,8] => [2,4,1,6,3,5,7,8] => ? = 2 - 1
[4,2,1,1]
=> [[1,4,7,8],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7,8] => [4,6,1,5,3,2,7,8] => ? = 3 - 1
[4,1,1,1,1]
=> [[1,6,7,8],[2],[3],[4],[5]]
=> [5,4,3,2,1,6,7,8] => [5,4,3,2,1,6,7,8] => 1 = 2 - 1
[3,3,2]
=> [[1,2,5],[3,4,8],[6,7]]
=> [6,7,3,4,8,1,2,5] => [2,5,8,1,4,7,3,6] => ? = 3 - 1
[3,3,1,1]
=> [[1,4,5],[2,7,8],[3],[6]]
=> [6,3,2,7,8,1,4,5] => [4,5,8,1,6,3,2,7] => ? = 2 - 1
[3,2,2,1]
=> [[1,3,8],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3,8] => [3,5,1,7,2,6,4,8] => ? = 3 - 1
[3,2,1,1,1]
=> [[1,5,8],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5,8] => [5,7,1,6,4,3,2,8] => ? = 3 - 1
[3,1,1,1,1,1]
=> [[1,7,8],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1,7,8] => [6,5,4,3,2,1,7,8] => 1 = 2 - 1
[2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => [2,4,1,6,3,8,5,7] => ? = 2 - 1
[2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5],[7]]
=> [7,5,3,8,2,6,1,4] => [4,6,1,8,2,7,5,3] => ? = 2 - 1
[2,2,1,1,1,1]
=> [[1,6],[2,8],[3],[4],[5],[7]]
=> [7,5,4,3,2,8,1,6] => [6,8,1,7,5,4,3,2] => ? = 2 - 1
[6,3]
=> [[1,2,3,7,8,9],[4,5,6]]
=> [4,5,6,1,2,3,7,8,9] => [2,3,6,1,4,5,7,8,9] => ? = 2 - 1
[6,2,1]
=> [[1,3,6,7,8,9],[2,5],[4]]
=> [4,2,5,1,3,6,7,8,9] => [3,5,1,4,2,6,7,8,9] => ? = 3 - 1
[6,1,1,1]
=> [[1,5,6,7,8,9],[2],[3],[4]]
=> [4,3,2,1,5,6,7,8,9] => [4,3,2,1,5,6,7,8,9] => 1 = 2 - 1
[5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4,9] => [2,3,4,8,1,5,6,7,9] => ? = 2 - 1
[5,3,1]
=> [[1,3,4,8,9],[2,6,7],[5]]
=> [5,2,6,7,1,3,4,8,9] => [3,4,7,1,5,2,6,8,9] => ? = 3 - 1
[5,2,2]
=> [[1,2,7,8,9],[3,4],[5,6]]
=> [5,6,3,4,1,2,7,8,9] => [2,4,1,6,3,5,7,8,9] => ? = 2 - 1
[5,2,1,1]
=> [[1,4,7,8,9],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7,8,9] => [4,6,1,5,3,2,7,8,9] => ? = 3 - 1
[5,1,1,1,1]
=> [[1,6,7,8,9],[2],[3],[4],[5]]
=> [5,4,3,2,1,6,7,8,9] => [5,4,3,2,1,6,7,8,9] => 1 = 2 - 1
[4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> [6,2,7,8,9,1,3,4,5] => [3,4,5,9,1,6,2,7,8] => ? = 3 - 1
[4,3,2]
=> [[1,2,5,9],[3,4,8],[6,7]]
=> [6,7,3,4,8,1,2,5,9] => [2,5,8,1,4,7,3,6,9] => ? = 3 - 1
[4,3,1,1]
=> [[1,4,5,9],[2,7,8],[3],[6]]
=> [6,3,2,7,8,1,4,5,9] => [4,5,8,1,6,3,2,7,9] => ? = 3 - 1
[4,2,2,1]
=> [[1,3,8,9],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3,8,9] => [3,5,1,7,2,6,4,8,9] => ? = 3 - 1
[4,2,1,1,1]
=> [[1,5,8,9],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5,8,9] => [5,7,1,6,4,3,2,8,9] => ? = 3 - 1
[4,1,1,1,1,1]
=> [[1,7,8,9],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1,7,8,9] => [6,5,4,3,2,1,7,8,9] => 1 = 2 - 1
[3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> [7,8,9,4,5,6,1,2,3] => [2,3,6,1,5,9,4,7,8] => ? = 2 - 1
[3,3,2,1]
=> [[1,3,6],[2,5,9],[4,8],[7]]
=> [7,4,8,2,5,9,1,3,6] => [3,6,9,1,5,8,2,7,4] => ? = 3 - 1
[3,3,1,1,1]
=> [[1,5,6],[2,8,9],[3],[4],[7]]
=> [7,4,3,2,8,9,1,5,6] => [5,6,9,1,7,4,3,2,8] => ? = 2 - 1
[3,2,2,2]
=> [[1,2,9],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2,9] => [2,4,1,6,3,8,5,7,9] => ? = 3 - 1
[3,2,2,1,1]
=> [[1,4,9],[2,6],[3,8],[5],[7]]
=> [7,5,3,8,2,6,1,4,9] => [4,6,1,8,2,7,5,3,9] => ? = 3 - 1
[3,2,1,1,1,1]
=> [[1,6,9],[2,8],[3],[4],[5],[7]]
=> [7,5,4,3,2,8,1,6,9] => [6,8,1,7,5,4,3,2,9] => ? = 3 - 1
[2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8]]
=> [8,6,9,4,7,2,5,1,3] => [3,5,1,7,2,9,4,8,6] => ? = 2 - 1
[2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4],[6],[8]]
=> [8,6,4,3,9,2,7,1,5] => [5,7,1,9,2,8,6,4,3] => ? = 2 - 1
[6,4]
=> [[1,2,3,4,9,10],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4,9,10] => [2,3,4,8,1,5,6,7,9,10] => ? = 2 - 1
[6,3,1]
=> [[1,3,4,8,9,10],[2,6,7],[5]]
=> [5,2,6,7,1,3,4,8,9,10] => [3,4,7,1,5,2,6,8,9,10] => ? = 3 - 1
[6,2,2]
=> [[1,2,7,8,9,10],[3,4],[5,6]]
=> [5,6,3,4,1,2,7,8,9,10] => [2,4,1,6,3,5,7,8,9,10] => ? = 2 - 1
[6,2,1,1]
=> [[1,4,7,8,9,10],[2,6],[3],[5]]
=> [5,3,2,6,1,4,7,8,9,10] => [4,6,1,5,3,2,7,8,9,10] => ? = 3 - 1
[6,1,1,1,1]
=> [[1,6,7,8,9,10],[2],[3],[4],[5]]
=> [5,4,3,2,1,6,7,8,9,10] => [5,4,3,2,1,6,7,8,9,10] => 1 = 2 - 1
[5,5]
=> [[1,2,3,4,5],[6,7,8,9,10]]
=> [6,7,8,9,10,1,2,3,4,5] => [2,3,4,5,10,1,6,7,8,9] => ? = 2 - 1
[5,4,1]
=> [[1,3,4,5,10],[2,7,8,9],[6]]
=> [6,2,7,8,9,1,3,4,5,10] => [3,4,5,9,1,6,2,7,8,10] => ? = 3 - 1
[5,3,2]
=> [[1,2,5,9,10],[3,4,8],[6,7]]
=> [6,7,3,4,8,1,2,5,9,10] => [2,5,8,1,4,7,3,6,9,10] => ? = 3 - 1
[5,3,1,1]
=> [[1,4,5,9,10],[2,7,8],[3],[6]]
=> [6,3,2,7,8,1,4,5,9,10] => [4,5,8,1,6,3,2,7,9,10] => ? = 3 - 1
[5,2,2,1]
=> [[1,3,8,9,10],[2,5],[4,7],[6]]
=> [6,4,7,2,5,1,3,8,9,10] => [3,5,1,7,2,6,4,8,9,10] => ? = 3 - 1
[5,2,1,1,1]
=> [[1,5,8,9,10],[2,7],[3],[4],[6]]
=> [6,4,3,2,7,1,5,8,9,10] => [5,7,1,6,4,3,2,8,9,10] => ? = 3 - 1
[5,1,1,1,1,1]
=> [[1,7,8,9,10],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1,7,8,9,10] => [6,5,4,3,2,1,7,8,9,10] => 1 = 2 - 1
Description
The number of occurrences of the vincular pattern |21-3 in a permutation. This is the number of occurrences of the pattern $213$, where the first matched entry is the first entry of the permutation and the other two matched entries are consecutive. In other words, this is the number of ascents whose bottom value is strictly smaller and the top value is strictly larger than the first entry of the permutation.
Matching statistic: St001029
Mp00179: Integer partitions to skew partitionSkew partitions
Mp00185: Skew partitions cell posetPosets
Mp00198: Posets incomparability graphGraphs
St001029: Graphs ⟶ ℤResult quality: 10% values known / values provided: 10%distinct values known / distinct values provided: 50%
Values
[1]
=> [[1],[]]
=> ([],1)
=> ([],1)
=> 1
[2]
=> [[2],[]]
=> ([(0,1)],2)
=> ([],2)
=> 1
[1,1]
=> [[1,1],[]]
=> ([(0,1)],2)
=> ([],2)
=> 1
[3]
=> [[3],[]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
[2,1]
=> [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 2
[1,1,1]
=> [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
[4]
=> [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1
[3,1]
=> [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 2
[2,2]
=> [[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2
[2,1,1]
=> [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 2
[1,1,1,1]
=> [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1
[5]
=> [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1
[4,1]
=> [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
[3,2]
=> [[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
[3,1,1]
=> [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[2,2,1]
=> [[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
[2,1,1,1]
=> [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
[1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1
[6]
=> [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1
[5,1]
=> [[5,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[4,2]
=> [[4,2],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[4,1,1]
=> [[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[3,3]
=> [[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[3,2,1]
=> [[3,2,1],[]]
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[3,1,1,1]
=> [[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[2,2,1,1]
=> [[2,2,1,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1
[6,1]
=> [[6,1],[]]
=> ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2
[5,2]
=> [[5,2],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 2
[5,1,1]
=> [[5,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 2
[4,3]
=> [[4,3],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[4,2,1]
=> [[4,2,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 3
[4,1,1,1]
=> [[4,1,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 2
[3,3,1]
=> [[3,3,1],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> 3
[3,2,2]
=> [[3,2,2],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> 3
[3,2,1,1]
=> [[3,2,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 3
[3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 2
[2,2,2,1]
=> [[2,2,2,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> 2
[2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 2
[2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2
[6,2]
=> [[6,2],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8)
=> ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[6,1,1]
=> [[6,1,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8)
=> ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[5,3]
=> [[5,3],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8)
=> ([(1,7),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
[5,2,1]
=> [[5,2,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(5,7),(6,1),(6,7)],8)
=> ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7)],8)
=> ? = 3
[5,1,1,1]
=> [[5,1,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8)
=> ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 2
[4,4]
=> [[4,4],[]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
[4,3,1]
=> [[4,3,1],[]]
=> ([(0,4),(0,5),(3,2),(3,7),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ([(1,5),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(6,7)],8)
=> ? = 3
[4,2,2]
=> [[4,2,2],[]]
=> ([(0,4),(0,5),(1,7),(3,2),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ([(1,6),(1,7),(2,4),(2,5),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[4,2,1,1]
=> [[4,2,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(5,7),(6,4),(6,7)],8)
=> ([(1,2),(1,6),(1,7),(2,4),(2,5),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 3
[4,1,1,1,1]
=> [[4,1,1,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8)
=> ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 2
[3,3,2]
=> [[3,3,2],[]]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7)],8)
=> ([(1,4),(1,7),(2,3),(2,7),(3,6),(4,6),(5,6),(5,7),(6,7)],8)
=> ? = 3
[3,3,1,1]
=> [[3,3,1,1],[]]
=> ([(0,4),(0,5),(1,7),(3,2),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ([(1,6),(1,7),(2,4),(2,5),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[3,2,2,1]
=> [[3,2,2,1],[]]
=> ([(0,4),(0,5),(3,2),(3,7),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ([(1,5),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(6,7)],8)
=> ? = 3
[3,2,1,1,1]
=> [[3,2,1,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(5,7),(6,1),(6,7)],8)
=> ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7)],8)
=> ? = 3
[3,1,1,1,1,1]
=> [[3,1,1,1,1,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8)
=> ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[2,2,2,2]
=> [[2,2,2,2],[]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
[2,2,2,1,1]
=> [[2,2,2,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8)
=> ([(1,7),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
[2,2,1,1,1,1]
=> [[2,2,1,1,1,1],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8)
=> ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[6,3]
=> [[6,3],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(4,8),(5,1),(6,4),(6,7),(7,8)],9)
=> ([(1,8),(2,7),(2,8),(3,4),(3,5),(3,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 2
[6,2,1]
=> [[6,2,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(6,8),(7,1),(7,8)],9)
=> ([(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,8)],9)
=> ? = 3
[6,1,1,1]
=> [[6,1,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,3),(5,2),(6,1),(7,6),(8,4)],9)
=> ([(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ? = 2
[5,4]
=> [[5,4],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,8),(4,1),(4,7),(5,3),(5,6),(6,8),(8,7)],9)
=> ([(1,8),(2,7),(3,6),(3,7),(4,5),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2
[5,3,1]
=> [[5,3,1],[]]
=> ([(0,5),(0,6),(3,4),(3,8),(4,2),(5,3),(5,7),(6,1),(6,7),(7,8)],9)
=> ([(1,7),(1,8),(2,5),(2,6),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 3
[5,2,2]
=> [[5,2,2],[]]
=> ([(0,5),(0,6),(2,8),(3,4),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8)],9)
=> ([(1,7),(1,8),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 2
[5,2,1,1]
=> [[5,2,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(6,8),(7,3),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(6,7),(6,8)],9)
=> ? = 3
[5,1,1,1,1]
=> [[5,1,1,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,6),(5,2),(6,1),(7,3),(8,4)],9)
=> ([(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8)],9)
=> ? = 2
[4,4,1]
=> [[4,4,1],[]]
=> ([(0,4),(0,5),(2,7),(3,2),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(8,7)],9)
=> ([(1,8),(2,6),(2,8),(3,7),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(7,8)],9)
=> ? = 3
[4,3,2]
=> [[4,3,2],[]]
=> ([(0,4),(0,5),(2,7),(3,1),(3,8),(4,2),(4,6),(5,3),(5,6),(6,7),(6,8)],9)
=> ([(1,5),(1,8),(2,3),(2,7),(2,8),(3,6),(3,7),(4,6),(4,7),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3
[4,3,1,1]
=> [[4,3,1,1],[]]
=> ([(0,5),(0,6),(3,1),(4,2),(4,8),(5,3),(5,7),(6,4),(6,7),(7,8)],9)
=> ([(1,6),(1,7),(1,8),(2,3),(2,7),(2,8),(3,5),(3,6),(4,5),(4,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 3
[4,2,2,1]
=> [[4,2,2,1],[]]
=> ([(0,5),(0,6),(3,1),(4,2),(4,8),(5,3),(5,7),(6,4),(6,7),(7,8)],9)
=> ([(1,6),(1,7),(1,8),(2,3),(2,7),(2,8),(3,5),(3,6),(4,5),(4,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 3
[4,2,1,1,1]
=> [[4,2,1,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(6,8),(7,3),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(6,7),(6,8)],9)
=> ? = 3
[4,1,1,1,1,1]
=> [[4,1,1,1,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,3),(5,2),(6,1),(7,6),(8,4)],9)
=> ([(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ? = 2
[3,3,3]
=> [[3,3,3],[]]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ? = 2
[3,3,2,1]
=> [[3,3,2,1],[]]
=> ([(0,4),(0,5),(2,7),(3,1),(3,8),(4,2),(4,6),(5,3),(5,6),(6,7),(6,8)],9)
=> ([(1,5),(1,8),(2,3),(2,7),(2,8),(3,6),(3,7),(4,6),(4,7),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3
[3,3,1,1,1]
=> [[3,3,1,1,1],[]]
=> ([(0,5),(0,6),(2,8),(3,4),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8)],9)
=> ([(1,7),(1,8),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 2
[3,2,2,2]
=> [[3,2,2,2],[]]
=> ([(0,4),(0,5),(2,7),(3,2),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(8,7)],9)
=> ([(1,8),(2,6),(2,8),(3,7),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(7,8)],9)
=> ? = 3
[3,2,2,1,1]
=> [[3,2,2,1,1],[]]
=> ([(0,5),(0,6),(3,4),(3,8),(4,2),(5,3),(5,7),(6,1),(6,7),(7,8)],9)
=> ([(1,7),(1,8),(2,5),(2,6),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 3
[3,2,1,1,1,1]
=> [[3,2,1,1,1,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(6,8),(7,1),(7,8)],9)
=> ([(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,8)],9)
=> ? = 3
[2,2,2,2,1]
=> [[2,2,2,2,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,8),(4,1),(4,7),(5,3),(5,6),(6,8),(8,7)],9)
=> ([(1,8),(2,7),(3,6),(3,7),(4,5),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2
[2,2,2,1,1,1]
=> [[2,2,2,1,1,1],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(4,8),(5,1),(6,4),(6,7),(7,8)],9)
=> ([(1,8),(2,7),(2,8),(3,4),(3,5),(3,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 2
[6,4]
=> [[6,4],[]]
=> ([(0,2),(0,6),(2,7),(3,1),(4,3),(4,8),(5,4),(5,9),(6,5),(6,7),(7,9),(9,8)],10)
=> ([(1,9),(2,7),(2,8),(3,6),(3,9),(4,5),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2
[6,3,1]
=> [[6,3,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(4,9),(5,2),(6,4),(6,8),(7,1),(7,8),(8,9)],10)
=> ([(1,8),(1,9),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,9)],10)
=> ? = 3
[6,2,2]
=> [[6,2,2],[]]
=> ([(0,6),(0,7),(2,9),(3,5),(4,3),(5,1),(6,4),(6,8),(7,2),(7,8),(8,9)],10)
=> ([(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,9)],10)
=> ? = 2
[6,2,1,1]
=> [[6,2,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,3),(5,2),(6,1),(7,6),(7,9),(8,4),(8,9)],10)
=> ([(1,6),(1,8),(1,9),(2,6),(2,7),(2,8),(2,9),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(7,8),(7,9)],10)
=> ? = 3
[6,1,1,1,1]
=> [[6,1,1,1,1],[]]
=> ([(0,8),(0,9),(3,7),(4,3),(5,6),(6,1),(7,2),(8,4),(9,5)],10)
=> ([(1,6),(1,7),(1,8),(1,9),(2,6),(2,7),(2,8),(2,9),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9)],10)
=> ? = 2
[5,5]
=> [[5,5],[]]
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(2,9),(3,8),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2
[5,4,1]
=> [[5,4,1],[]]
=> ([(0,5),(0,6),(3,4),(3,9),(4,2),(4,8),(5,3),(5,7),(6,1),(6,7),(7,9),(9,8)],10)
=> ([(1,7),(1,9),(2,8),(2,9),(3,6),(3,7),(3,9),(4,5),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(8,9)],10)
=> ? = 3
[5,3,2]
=> [[5,3,2],[]]
=> ([(0,5),(0,6),(2,9),(3,1),(4,3),(4,8),(5,4),(5,7),(6,2),(6,7),(7,8),(7,9)],10)
=> ([(1,6),(1,9),(2,3),(2,5),(2,6),(2,9),(3,4),(3,7),(3,8),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 3
[5,3,1,1]
=> [[5,3,1,1],[]]
=> ([(0,6),(0,7),(3,4),(3,9),(4,1),(5,2),(6,5),(6,8),(7,3),(7,8),(8,9)],10)
=> ([(1,4),(1,8),(1,9),(2,4),(2,7),(2,8),(2,9),(3,5),(3,6),(3,8),(3,9),(4,5),(4,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 3
[5,2,2,1]
=> [[5,2,2,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(5,9),(6,5),(6,8),(7,3),(7,8),(8,9)],10)
=> ([(1,3),(1,8),(1,9),(2,5),(2,6),(2,7),(2,9),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 3
Description
The size of the core of a graph. The core of the graph $G$ is the smallest graph $C$ such that there is a graph homomorphism from $G$ to $C$ and a graph homomorphism from $C$ to $G$.
Matching statistic: St000535
Mp00179: Integer partitions to skew partitionSkew partitions
Mp00185: Skew partitions cell posetPosets
Mp00198: Posets incomparability graphGraphs
St000535: Graphs ⟶ ℤResult quality: 10% values known / values provided: 10%distinct values known / distinct values provided: 50%
Values
[1]
=> [[1],[]]
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[2]
=> [[2],[]]
=> ([(0,1)],2)
=> ([],2)
=> 0 = 1 - 1
[1,1]
=> [[1,1],[]]
=> ([(0,1)],2)
=> ([],2)
=> 0 = 1 - 1
[3]
=> [[3],[]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0 = 1 - 1
[2,1]
=> [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[1,1,1]
=> [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0 = 1 - 1
[4]
=> [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = 1 - 1
[3,1]
=> [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[2,2]
=> [[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[2,1,1]
=> [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,1,1,1]
=> [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0 = 1 - 1
[5]
=> [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = 1 - 1
[4,1]
=> [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 1 = 2 - 1
[3,2]
=> [[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 1 = 2 - 1
[3,1,1]
=> [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 1 = 2 - 1
[2,2,1]
=> [[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 1 = 2 - 1
[2,1,1,1]
=> [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0 = 1 - 1
[6]
=> [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0 = 1 - 1
[5,1]
=> [[5,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[4,2]
=> [[4,2],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[4,1,1]
=> [[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 1 = 2 - 1
[3,3]
=> [[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1 = 2 - 1
[3,2,1]
=> [[3,2,1],[]]
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[3,1,1,1]
=> [[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 1 = 2 - 1
[2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1 = 2 - 1
[2,2,1,1]
=> [[2,2,1,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0 = 1 - 1
[6,1]
=> [[6,1],[]]
=> ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1 = 2 - 1
[5,2]
=> [[5,2],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 1 = 2 - 1
[5,1,1]
=> [[5,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 1 = 2 - 1
[4,3]
=> [[4,3],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> 1 = 2 - 1
[4,2,1]
=> [[4,2,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 2 = 3 - 1
[4,1,1,1]
=> [[4,1,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 1 = 2 - 1
[3,3,1]
=> [[3,3,1],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
[3,2,2]
=> [[3,2,2],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> 2 = 3 - 1
[3,2,1,1]
=> [[3,2,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 2 = 3 - 1
[3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 1 = 2 - 1
[2,2,2,1]
=> [[2,2,2,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> 1 = 2 - 1
[2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> 1 = 2 - 1
[2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1 = 2 - 1
[6,2]
=> [[6,2],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8)
=> ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2 - 1
[6,1,1]
=> [[6,1,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8)
=> ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2 - 1
[5,3]
=> [[5,3],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8)
=> ([(1,7),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2 - 1
[5,2,1]
=> [[5,2,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(5,7),(6,1),(6,7)],8)
=> ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7)],8)
=> ? = 3 - 1
[5,1,1,1]
=> [[5,1,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8)
=> ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 2 - 1
[4,4]
=> [[4,4],[]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2 - 1
[4,3,1]
=> [[4,3,1],[]]
=> ([(0,4),(0,5),(3,2),(3,7),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ([(1,5),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(6,7)],8)
=> ? = 3 - 1
[4,2,2]
=> [[4,2,2],[]]
=> ([(0,4),(0,5),(1,7),(3,2),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ([(1,6),(1,7),(2,4),(2,5),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2 - 1
[4,2,1,1]
=> [[4,2,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(5,7),(6,4),(6,7)],8)
=> ([(1,2),(1,6),(1,7),(2,4),(2,5),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 3 - 1
[4,1,1,1,1]
=> [[4,1,1,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8)
=> ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 2 - 1
[3,3,2]
=> [[3,3,2],[]]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7)],8)
=> ([(1,4),(1,7),(2,3),(2,7),(3,6),(4,6),(5,6),(5,7),(6,7)],8)
=> ? = 3 - 1
[3,3,1,1]
=> [[3,3,1,1],[]]
=> ([(0,4),(0,5),(1,7),(3,2),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ([(1,6),(1,7),(2,4),(2,5),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2 - 1
[3,2,2,1]
=> [[3,2,2,1],[]]
=> ([(0,4),(0,5),(3,2),(3,7),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ([(1,5),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(6,7)],8)
=> ? = 3 - 1
[3,2,1,1,1]
=> [[3,2,1,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(5,7),(6,1),(6,7)],8)
=> ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7)],8)
=> ? = 3 - 1
[3,1,1,1,1,1]
=> [[3,1,1,1,1,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8)
=> ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2 - 1
[2,2,2,2]
=> [[2,2,2,2],[]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2 - 1
[2,2,2,1,1]
=> [[2,2,2,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8)
=> ([(1,7),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2 - 1
[2,2,1,1,1,1]
=> [[2,2,1,1,1,1],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8)
=> ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2 - 1
[6,3]
=> [[6,3],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(4,8),(5,1),(6,4),(6,7),(7,8)],9)
=> ([(1,8),(2,7),(2,8),(3,4),(3,5),(3,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 2 - 1
[6,2,1]
=> [[6,2,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(6,8),(7,1),(7,8)],9)
=> ([(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,8)],9)
=> ? = 3 - 1
[6,1,1,1]
=> [[6,1,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,3),(5,2),(6,1),(7,6),(8,4)],9)
=> ([(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ? = 2 - 1
[5,4]
=> [[5,4],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,8),(4,1),(4,7),(5,3),(5,6),(6,8),(8,7)],9)
=> ([(1,8),(2,7),(3,6),(3,7),(4,5),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2 - 1
[5,3,1]
=> [[5,3,1],[]]
=> ([(0,5),(0,6),(3,4),(3,8),(4,2),(5,3),(5,7),(6,1),(6,7),(7,8)],9)
=> ([(1,7),(1,8),(2,5),(2,6),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 3 - 1
[5,2,2]
=> [[5,2,2],[]]
=> ([(0,5),(0,6),(2,8),(3,4),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8)],9)
=> ([(1,7),(1,8),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 2 - 1
[5,2,1,1]
=> [[5,2,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(6,8),(7,3),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(6,7),(6,8)],9)
=> ? = 3 - 1
[5,1,1,1,1]
=> [[5,1,1,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,6),(5,2),(6,1),(7,3),(8,4)],9)
=> ([(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8)],9)
=> ? = 2 - 1
[4,4,1]
=> [[4,4,1],[]]
=> ([(0,4),(0,5),(2,7),(3,2),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(8,7)],9)
=> ([(1,8),(2,6),(2,8),(3,7),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(7,8)],9)
=> ? = 3 - 1
[4,3,2]
=> [[4,3,2],[]]
=> ([(0,4),(0,5),(2,7),(3,1),(3,8),(4,2),(4,6),(5,3),(5,6),(6,7),(6,8)],9)
=> ([(1,5),(1,8),(2,3),(2,7),(2,8),(3,6),(3,7),(4,6),(4,7),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3 - 1
[4,3,1,1]
=> [[4,3,1,1],[]]
=> ([(0,5),(0,6),(3,1),(4,2),(4,8),(5,3),(5,7),(6,4),(6,7),(7,8)],9)
=> ([(1,6),(1,7),(1,8),(2,3),(2,7),(2,8),(3,5),(3,6),(4,5),(4,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 3 - 1
[4,2,2,1]
=> [[4,2,2,1],[]]
=> ([(0,5),(0,6),(3,1),(4,2),(4,8),(5,3),(5,7),(6,4),(6,7),(7,8)],9)
=> ([(1,6),(1,7),(1,8),(2,3),(2,7),(2,8),(3,5),(3,6),(4,5),(4,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 3 - 1
[4,2,1,1,1]
=> [[4,2,1,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(6,8),(7,3),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(6,7),(6,8)],9)
=> ? = 3 - 1
[4,1,1,1,1,1]
=> [[4,1,1,1,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,3),(5,2),(6,1),(7,6),(8,4)],9)
=> ([(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ? = 2 - 1
[3,3,3]
=> [[3,3,3],[]]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ? = 2 - 1
[3,3,2,1]
=> [[3,3,2,1],[]]
=> ([(0,4),(0,5),(2,7),(3,1),(3,8),(4,2),(4,6),(5,3),(5,6),(6,7),(6,8)],9)
=> ([(1,5),(1,8),(2,3),(2,7),(2,8),(3,6),(3,7),(4,6),(4,7),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3 - 1
[3,3,1,1,1]
=> [[3,3,1,1,1],[]]
=> ([(0,5),(0,6),(2,8),(3,4),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8)],9)
=> ([(1,7),(1,8),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 2 - 1
[3,2,2,2]
=> [[3,2,2,2],[]]
=> ([(0,4),(0,5),(2,7),(3,2),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(8,7)],9)
=> ([(1,8),(2,6),(2,8),(3,7),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(7,8)],9)
=> ? = 3 - 1
[3,2,2,1,1]
=> [[3,2,2,1,1],[]]
=> ([(0,5),(0,6),(3,4),(3,8),(4,2),(5,3),(5,7),(6,1),(6,7),(7,8)],9)
=> ([(1,7),(1,8),(2,5),(2,6),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 3 - 1
[3,2,1,1,1,1]
=> [[3,2,1,1,1,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(6,8),(7,1),(7,8)],9)
=> ([(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,8)],9)
=> ? = 3 - 1
[2,2,2,2,1]
=> [[2,2,2,2,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,8),(4,1),(4,7),(5,3),(5,6),(6,8),(8,7)],9)
=> ([(1,8),(2,7),(3,6),(3,7),(4,5),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2 - 1
[2,2,2,1,1,1]
=> [[2,2,2,1,1,1],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(4,8),(5,1),(6,4),(6,7),(7,8)],9)
=> ([(1,8),(2,7),(2,8),(3,4),(3,5),(3,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 2 - 1
[6,4]
=> [[6,4],[]]
=> ([(0,2),(0,6),(2,7),(3,1),(4,3),(4,8),(5,4),(5,9),(6,5),(6,7),(7,9),(9,8)],10)
=> ([(1,9),(2,7),(2,8),(3,6),(3,9),(4,5),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2 - 1
[6,3,1]
=> [[6,3,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(4,9),(5,2),(6,4),(6,8),(7,1),(7,8),(8,9)],10)
=> ([(1,8),(1,9),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,9)],10)
=> ? = 3 - 1
[6,2,2]
=> [[6,2,2],[]]
=> ([(0,6),(0,7),(2,9),(3,5),(4,3),(5,1),(6,4),(6,8),(7,2),(7,8),(8,9)],10)
=> ([(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,9)],10)
=> ? = 2 - 1
[6,2,1,1]
=> [[6,2,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,3),(5,2),(6,1),(7,6),(7,9),(8,4),(8,9)],10)
=> ([(1,6),(1,8),(1,9),(2,6),(2,7),(2,8),(2,9),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(7,8),(7,9)],10)
=> ? = 3 - 1
[6,1,1,1,1]
=> [[6,1,1,1,1],[]]
=> ([(0,8),(0,9),(3,7),(4,3),(5,6),(6,1),(7,2),(8,4),(9,5)],10)
=> ([(1,6),(1,7),(1,8),(1,9),(2,6),(2,7),(2,8),(2,9),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9)],10)
=> ? = 2 - 1
[5,5]
=> [[5,5],[]]
=> ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(2,9),(3,8),(4,7),(4,8),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2 - 1
[5,4,1]
=> [[5,4,1],[]]
=> ([(0,5),(0,6),(3,4),(3,9),(4,2),(4,8),(5,3),(5,7),(6,1),(6,7),(7,9),(9,8)],10)
=> ([(1,7),(1,9),(2,8),(2,9),(3,6),(3,7),(3,9),(4,5),(4,8),(4,9),(5,6),(5,7),(5,9),(6,8),(6,9),(7,8),(8,9)],10)
=> ? = 3 - 1
[5,3,2]
=> [[5,3,2],[]]
=> ([(0,5),(0,6),(2,9),(3,1),(4,3),(4,8),(5,4),(5,7),(6,2),(6,7),(7,8),(7,9)],10)
=> ([(1,6),(1,9),(2,3),(2,5),(2,6),(2,9),(3,4),(3,7),(3,8),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 3 - 1
[5,3,1,1]
=> [[5,3,1,1],[]]
=> ([(0,6),(0,7),(3,4),(3,9),(4,1),(5,2),(6,5),(6,8),(7,3),(7,8),(8,9)],10)
=> ([(1,4),(1,8),(1,9),(2,4),(2,7),(2,8),(2,9),(3,5),(3,6),(3,8),(3,9),(4,5),(4,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 3 - 1
[5,2,2,1]
=> [[5,2,2,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(5,9),(6,5),(6,8),(7,3),(7,8),(8,9)],10)
=> ([(1,3),(1,8),(1,9),(2,5),(2,6),(2,7),(2,9),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(4,8),(4,9),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 3 - 1
Description
The rank-width of a graph.
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
Mp00175: Permutations inverse Foata bijectionPermutations
St001741: Permutations ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 50%
Values
[1]
=> [[1]]
=> [1] => [1] => 1
[2]
=> [[1,2]]
=> [1,2] => [1,2] => 1
[1,1]
=> [[1],[2]]
=> [2,1] => [2,1] => 1
[3]
=> [[1,2,3]]
=> [1,2,3] => [1,2,3] => 1
[2,1]
=> [[1,2],[3]]
=> [3,1,2] => [1,3,2] => 2
[1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => [3,2,1] => 1
[4]
=> [[1,2,3,4]]
=> [1,2,3,4] => [1,2,3,4] => 1
[3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => [1,2,4,3] => 2
[2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => [3,1,4,2] => 2
[2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => [1,4,3,2] => 2
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => [4,3,2,1] => 1
[5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => [1,2,3,4,5] => 1
[4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => [1,2,3,5,4] => 2
[3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => [1,4,2,5,3] => 2
[3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => [1,2,5,4,3] => 2
[2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => [3,1,5,4,2] => 2
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => [1,5,4,3,2] => 2
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => [5,4,3,2,1] => 1
[6]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => 1
[5,1]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => [1,2,3,4,6,5] => 2
[4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => [1,2,5,3,6,4] => 2
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => [1,2,3,6,5,4] => 2
[3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => [4,1,5,2,6,3] => 2
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => [1,4,2,6,5,3] => 3
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => [1,2,6,5,4,3] => 2
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => [5,3,1,6,4,2] => 2
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => [3,1,6,5,4,2] => 2
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => [1,6,5,4,3,2] => 2
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => [6,5,4,3,2,1] => 1
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> [7,1,2,3,4,5,6] => [1,2,3,4,5,7,6] => 2
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> [6,7,1,2,3,4,5] => [1,2,3,6,4,7,5] => 2
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => [1,2,3,4,7,6,5] => 2
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> [5,6,7,1,2,3,4] => [1,5,2,6,3,7,4] => ? = 2
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => [1,2,5,3,7,6,4] => 3
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => [1,2,3,7,6,5,4] => 2
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => [4,1,5,2,7,6,3] => ? = 3
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => [1,6,4,2,7,5,3] => ? = 3
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => [1,4,2,7,6,5,3] => 3
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => [1,2,7,6,5,4,3] => 2
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => [5,3,1,7,6,4,2] => ? = 2
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => [3,1,7,6,5,4,2] => ? = 2
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => [1,7,6,5,4,3,2] => ? = 2
[6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> [7,8,1,2,3,4,5,6] => [1,2,3,4,7,5,8,6] => ? = 2
[6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> [8,7,1,2,3,4,5,6] => [1,2,3,4,5,8,7,6] => ? = 2
[5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> [6,7,8,1,2,3,4,5] => [1,2,6,3,7,4,8,5] => ? = 2
[5,2,1]
=> [[1,2,3,4,5],[6,7],[8]]
=> [8,6,7,1,2,3,4,5] => [1,2,3,6,4,8,7,5] => ? = 3
[5,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8]]
=> [8,7,6,1,2,3,4,5] => [1,2,3,4,8,7,6,5] => ? = 2
[4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => [5,1,6,2,7,3,8,4] => ? = 2
[4,3,1]
=> [[1,2,3,4],[5,6,7],[8]]
=> [8,5,6,7,1,2,3,4] => [1,5,2,6,3,8,7,4] => ? = 3
[4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> [7,8,5,6,1,2,3,4] => [1,2,7,5,3,8,6,4] => ? = 2
[4,2,1,1]
=> [[1,2,3,4],[5,6],[7],[8]]
=> [8,7,5,6,1,2,3,4] => [1,2,5,3,8,7,6,4] => ? = 3
[4,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8]]
=> [8,7,6,5,1,2,3,4] => [1,2,3,8,7,6,5,4] => ? = 2
[3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> [7,8,4,5,6,1,2,3] => [4,1,7,5,2,8,6,3] => ? = 3
[3,3,1,1]
=> [[1,2,3],[4,5,6],[7],[8]]
=> [8,7,4,5,6,1,2,3] => [4,1,5,2,8,7,6,3] => ? = 2
[3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> [8,6,7,4,5,1,2,3] => [1,6,4,2,8,7,5,3] => ? = 3
[3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> [8,7,6,4,5,1,2,3] => [1,4,2,8,7,6,5,3] => ? = 3
[3,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> [8,7,6,5,4,1,2,3] => [1,2,8,7,6,5,4,3] => ? = 2
[2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [7,8,5,6,3,4,1,2] => [7,5,3,1,8,6,4,2] => ? = 2
[2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [8,7,5,6,3,4,1,2] => [5,3,1,8,7,6,4,2] => ? = 2
[2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [8,7,6,5,3,4,1,2] => [3,1,8,7,6,5,4,2] => ? = 2
[6,3]
=> [[1,2,3,4,5,6],[7,8,9]]
=> [7,8,9,1,2,3,4,5,6] => [1,2,3,7,4,8,5,9,6] => ? = 2
[6,2,1]
=> [[1,2,3,4,5,6],[7,8],[9]]
=> [9,7,8,1,2,3,4,5,6] => [1,2,3,4,7,5,9,8,6] => ? = 3
[6,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9]]
=> [9,8,7,1,2,3,4,5,6] => [1,2,3,4,5,9,8,7,6] => ? = 2
[5,4]
=> [[1,2,3,4,5],[6,7,8,9]]
=> [6,7,8,9,1,2,3,4,5] => [1,6,2,7,3,8,4,9,5] => ? = 2
[5,3,1]
=> [[1,2,3,4,5],[6,7,8],[9]]
=> [9,6,7,8,1,2,3,4,5] => [1,2,6,3,7,4,9,8,5] => ? = 3
[5,2,2]
=> [[1,2,3,4,5],[6,7],[8,9]]
=> [8,9,6,7,1,2,3,4,5] => [1,2,3,8,6,4,9,7,5] => ? = 2
[5,2,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9]]
=> [9,8,6,7,1,2,3,4,5] => [1,2,3,6,4,9,8,7,5] => ? = 3
[5,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9]]
=> [9,8,7,6,1,2,3,4,5] => [1,2,3,4,9,8,7,6,5] => ? = 2
[4,4,1]
=> [[1,2,3,4],[5,6,7,8],[9]]
=> [9,5,6,7,8,1,2,3,4] => [5,1,6,2,7,3,9,8,4] => ? = 3
[4,3,2]
=> [[1,2,3,4],[5,6,7],[8,9]]
=> [8,9,5,6,7,1,2,3,4] => [1,5,2,8,6,3,9,7,4] => ? = 3
[4,3,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9]]
=> [9,8,5,6,7,1,2,3,4] => [1,5,2,6,3,9,8,7,4] => ? = 3
[4,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9]]
=> [9,7,8,5,6,1,2,3,4] => [1,2,7,5,3,9,8,6,4] => ? = 3
[4,2,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9]]
=> [9,8,7,5,6,1,2,3,4] => [1,2,5,3,9,8,7,6,4] => ? = 3
[4,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9]]
=> [9,8,7,6,5,1,2,3,4] => [1,2,3,9,8,7,6,5,4] => ? = 2
[3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> [7,8,9,4,5,6,1,2,3] => [7,4,1,8,5,2,9,6,3] => ? = 2
[3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9]]
=> [9,7,8,4,5,6,1,2,3] => [4,1,7,5,2,9,8,6,3] => ? = 3
[3,3,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9]]
=> [9,8,7,4,5,6,1,2,3] => [4,1,5,2,9,8,7,6,3] => ? = 2
[3,2,2,2]
=> [[1,2,3],[4,5],[6,7],[8,9]]
=> [8,9,6,7,4,5,1,2,3] => [1,8,6,4,2,9,7,5,3] => ? = 3
[3,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9]]
=> [9,8,6,7,4,5,1,2,3] => [1,6,4,2,9,8,7,5,3] => ? = 3
[3,2,1,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8],[9]]
=> [9,8,7,6,4,5,1,2,3] => [1,4,2,9,8,7,6,5,3] => ? = 3
[2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> [9,7,8,5,6,3,4,1,2] => [7,5,3,1,9,8,6,4,2] => ? = 2
[2,2,2,1,1,1]
=> [[1,2],[3,4],[5,6],[7],[8],[9]]
=> [9,8,7,5,6,3,4,1,2] => [5,3,1,9,8,7,6,4,2] => ? = 2
[6,4]
=> [[1,2,3,4,5,6],[7,8,9,10]]
=> [7,8,9,10,1,2,3,4,5,6] => [1,2,7,3,8,4,9,5,10,6] => ? = 2
[6,3,1]
=> [[1,2,3,4,5,6],[7,8,9],[10]]
=> [10,7,8,9,1,2,3,4,5,6] => [1,2,3,7,4,8,5,10,9,6] => ? = 3
[6,2,2]
=> [[1,2,3,4,5,6],[7,8],[9,10]]
=> [9,10,7,8,1,2,3,4,5,6] => [1,2,3,4,9,7,5,10,8,6] => ? = 2
[6,2,1,1]
=> [[1,2,3,4,5,6],[7,8],[9],[10]]
=> [10,9,7,8,1,2,3,4,5,6] => [1,2,3,4,7,5,10,9,8,6] => ? = 3
Description
The largest integer such that all patterns of this size are contained in the permutation.
Mp00179: Integer partitions to skew partitionSkew partitions
Mp00185: Skew partitions cell posetPosets
St000632: Posets ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 50%
Values
[1]
=> [[1],[]]
=> ([],1)
=> 0 = 1 - 1
[2]
=> [[2],[]]
=> ([(0,1)],2)
=> 0 = 1 - 1
[1,1]
=> [[1,1],[]]
=> ([(0,1)],2)
=> 0 = 1 - 1
[3]
=> [[3],[]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[2,1]
=> [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> 1 = 2 - 1
[1,1,1]
=> [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[4]
=> [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[3,1]
=> [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> 1 = 2 - 1
[2,2]
=> [[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[2,1,1]
=> [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> 1 = 2 - 1
[1,1,1,1]
=> [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[5]
=> [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[4,1]
=> [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 1 = 2 - 1
[3,2]
=> [[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 1 = 2 - 1
[3,1,1]
=> [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> 1 = 2 - 1
[2,2,1]
=> [[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 1 = 2 - 1
[2,1,1,1]
=> [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 1 = 2 - 1
[1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[6]
=> [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[5,1]
=> [[5,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> 1 = 2 - 1
[4,2]
=> [[4,2],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> 1 = 2 - 1
[4,1,1]
=> [[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 1 = 2 - 1
[3,3]
=> [[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 2 - 1
[3,2,1]
=> [[3,2,1],[]]
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> 2 = 3 - 1
[3,1,1,1]
=> [[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 1 = 2 - 1
[2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 2 - 1
[2,2,1,1]
=> [[2,2,1,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> 1 = 2 - 1
[2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> 1 = 2 - 1
[1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[6,1]
=> [[6,1],[]]
=> ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> 1 = 2 - 1
[5,2]
=> [[5,2],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> ? = 2 - 1
[5,1,1]
=> [[5,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> 1 = 2 - 1
[4,3]
=> [[4,3],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ? = 2 - 1
[4,2,1]
=> [[4,2,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ? = 3 - 1
[4,1,1,1]
=> [[4,1,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7)
=> 1 = 2 - 1
[3,3,1]
=> [[3,3,1],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ? = 3 - 1
[3,2,2]
=> [[3,2,2],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ? = 3 - 1
[3,2,1,1]
=> [[3,2,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ? = 3 - 1
[3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> 1 = 2 - 1
[2,2,2,1]
=> [[2,2,2,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ? = 2 - 1
[2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> ? = 2 - 1
[2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> 1 = 2 - 1
[6,2]
=> [[6,2],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8)
=> ? = 2 - 1
[6,1,1]
=> [[6,1,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8)
=> ? = 2 - 1
[5,3]
=> [[5,3],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8)
=> ? = 2 - 1
[5,2,1]
=> [[5,2,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(5,7),(6,1),(6,7)],8)
=> ? = 3 - 1
[5,1,1,1]
=> [[5,1,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8)
=> ? = 2 - 1
[4,4]
=> [[4,4],[]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
[4,3,1]
=> [[4,3,1],[]]
=> ([(0,4),(0,5),(3,2),(3,7),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ? = 3 - 1
[4,2,2]
=> [[4,2,2],[]]
=> ([(0,4),(0,5),(1,7),(3,2),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ? = 2 - 1
[4,2,1,1]
=> [[4,2,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(5,7),(6,4),(6,7)],8)
=> ? = 3 - 1
[4,1,1,1,1]
=> [[4,1,1,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8)
=> ? = 2 - 1
[3,3,2]
=> [[3,3,2],[]]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7)],8)
=> ? = 3 - 1
[3,3,1,1]
=> [[3,3,1,1],[]]
=> ([(0,4),(0,5),(1,7),(3,2),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ? = 2 - 1
[3,2,2,1]
=> [[3,2,2,1],[]]
=> ([(0,4),(0,5),(3,2),(3,7),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ? = 3 - 1
[3,2,1,1,1]
=> [[3,2,1,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(5,7),(6,1),(6,7)],8)
=> ? = 3 - 1
[3,1,1,1,1,1]
=> [[3,1,1,1,1,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8)
=> ? = 2 - 1
[2,2,2,2]
=> [[2,2,2,2],[]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 - 1
[2,2,2,1,1]
=> [[2,2,2,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8)
=> ? = 2 - 1
[2,2,1,1,1,1]
=> [[2,2,1,1,1,1],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8)
=> ? = 2 - 1
[6,3]
=> [[6,3],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(4,8),(5,1),(6,4),(6,7),(7,8)],9)
=> ? = 2 - 1
[6,2,1]
=> [[6,2,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(6,8),(7,1),(7,8)],9)
=> ? = 3 - 1
[6,1,1,1]
=> [[6,1,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,3),(5,2),(6,1),(7,6),(8,4)],9)
=> ? = 2 - 1
[5,4]
=> [[5,4],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,8),(4,1),(4,7),(5,3),(5,6),(6,8),(8,7)],9)
=> ? = 2 - 1
[5,3,1]
=> [[5,3,1],[]]
=> ([(0,5),(0,6),(3,4),(3,8),(4,2),(5,3),(5,7),(6,1),(6,7),(7,8)],9)
=> ? = 3 - 1
[5,2,2]
=> [[5,2,2],[]]
=> ([(0,5),(0,6),(2,8),(3,4),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8)],9)
=> ? = 2 - 1
[5,2,1,1]
=> [[5,2,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(6,8),(7,3),(7,8)],9)
=> ? = 3 - 1
[5,1,1,1,1]
=> [[5,1,1,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,6),(5,2),(6,1),(7,3),(8,4)],9)
=> ? = 2 - 1
[4,4,1]
=> [[4,4,1],[]]
=> ([(0,4),(0,5),(2,7),(3,2),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(8,7)],9)
=> ? = 3 - 1
[4,3,2]
=> [[4,3,2],[]]
=> ([(0,4),(0,5),(2,7),(3,1),(3,8),(4,2),(4,6),(5,3),(5,6),(6,7),(6,8)],9)
=> ? = 3 - 1
[4,3,1,1]
=> [[4,3,1,1],[]]
=> ([(0,5),(0,6),(3,1),(4,2),(4,8),(5,3),(5,7),(6,4),(6,7),(7,8)],9)
=> ? = 3 - 1
[4,2,2,1]
=> [[4,2,2,1],[]]
=> ([(0,5),(0,6),(3,1),(4,2),(4,8),(5,3),(5,7),(6,4),(6,7),(7,8)],9)
=> ? = 3 - 1
[4,2,1,1,1]
=> [[4,2,1,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(6,8),(7,3),(7,8)],9)
=> ? = 3 - 1
[4,1,1,1,1,1]
=> [[4,1,1,1,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,3),(5,2),(6,1),(7,6),(8,4)],9)
=> ? = 2 - 1
[3,3,3]
=> [[3,3,3],[]]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2 - 1
[3,3,2,1]
=> [[3,3,2,1],[]]
=> ([(0,4),(0,5),(2,7),(3,1),(3,8),(4,2),(4,6),(5,3),(5,6),(6,7),(6,8)],9)
=> ? = 3 - 1
[3,3,1,1,1]
=> [[3,3,1,1,1],[]]
=> ([(0,5),(0,6),(2,8),(3,4),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8)],9)
=> ? = 2 - 1
[3,2,2,2]
=> [[3,2,2,2],[]]
=> ([(0,4),(0,5),(2,7),(3,2),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(8,7)],9)
=> ? = 3 - 1
[3,2,2,1,1]
=> [[3,2,2,1,1],[]]
=> ([(0,5),(0,6),(3,4),(3,8),(4,2),(5,3),(5,7),(6,1),(6,7),(7,8)],9)
=> ? = 3 - 1
[3,2,1,1,1,1]
=> [[3,2,1,1,1,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(6,8),(7,1),(7,8)],9)
=> ? = 3 - 1
[2,2,2,2,1]
=> [[2,2,2,2,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,8),(4,1),(4,7),(5,3),(5,6),(6,8),(8,7)],9)
=> ? = 2 - 1
[2,2,2,1,1,1]
=> [[2,2,2,1,1,1],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(4,8),(5,1),(6,4),(6,7),(7,8)],9)
=> ? = 2 - 1
[6,4]
=> [[6,4],[]]
=> ([(0,2),(0,6),(2,7),(3,1),(4,3),(4,8),(5,4),(5,9),(6,5),(6,7),(7,9),(9,8)],10)
=> ? = 2 - 1
[6,3,1]
=> [[6,3,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(4,9),(5,2),(6,4),(6,8),(7,1),(7,8),(8,9)],10)
=> ? = 3 - 1
Description
The jump number of the poset. A jump in a linear extension $e_1, \dots, e_n$ of a poset $P$ is a pair $(e_i, e_{i+1})$ so that $e_{i+1}$ does not cover $e_i$ in $P$. The jump number of a poset is the minimal number of jumps in linear extensions of a poset.
Matching statistic: St001734
Mp00179: Integer partitions to skew partitionSkew partitions
Mp00185: Skew partitions cell posetPosets
Mp00198: Posets incomparability graphGraphs
St001734: Graphs ⟶ ℤResult quality: 7% values known / values provided: 7%distinct values known / distinct values provided: 50%
Values
[1]
=> [[1],[]]
=> ([],1)
=> ([],1)
=> 1
[2]
=> [[2],[]]
=> ([(0,1)],2)
=> ([],2)
=> 1
[1,1]
=> [[1,1],[]]
=> ([(0,1)],2)
=> ([],2)
=> 1
[3]
=> [[3],[]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
[2,1]
=> [[2,1],[]]
=> ([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> 2
[1,1,1]
=> [[1,1,1],[]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 1
[4]
=> [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1
[3,1]
=> [[3,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 2
[2,2]
=> [[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2
[2,1,1]
=> [[2,1,1],[]]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> 2
[1,1,1,1]
=> [[1,1,1,1],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1
[5]
=> [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1
[4,1]
=> [[4,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
[3,2]
=> [[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
[3,1,1]
=> [[3,1,1],[]]
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[2,2,1]
=> [[2,2,1],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
[2,1,1,1]
=> [[2,1,1,1],[]]
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2
[1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1
[6]
=> [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1
[5,1]
=> [[5,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[4,2]
=> [[4,2],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[4,1,1]
=> [[4,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[3,3]
=> [[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[3,2,1]
=> [[3,2,1],[]]
=> ([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3
[3,1,1,1]
=> [[3,1,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[2,2,2]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2
[2,2,1,1]
=> [[2,2,1,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> 2
[2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1
[6,1]
=> [[6,1],[]]
=> ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[5,2]
=> [[5,2],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
[5,1,1]
=> [[5,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
[4,3]
=> [[4,3],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
[4,2,1]
=> [[4,2,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[4,1,1,1]
=> [[4,1,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 2
[3,3,1]
=> [[3,3,1],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3
[3,2,2]
=> [[3,2,2],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ? = 3
[3,2,1,1]
=> [[3,2,1,1],[]]
=> ([(0,4),(0,5),(3,2),(4,3),(4,6),(5,1),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 3
[3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
[2,2,2,1]
=> [[2,2,2,1],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 2
[2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(4,1),(5,3),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
[2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[6,2]
=> [[6,2],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8)
=> ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[6,1,1]
=> [[6,1,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8)
=> ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[5,3]
=> [[5,3],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8)
=> ([(1,7),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
[5,2,1]
=> [[5,2,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(5,7),(6,1),(6,7)],8)
=> ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7)],8)
=> ? = 3
[5,1,1,1]
=> [[5,1,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8)
=> ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 2
[4,4]
=> [[4,4],[]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
[4,3,1]
=> [[4,3,1],[]]
=> ([(0,4),(0,5),(3,2),(3,7),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ([(1,5),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(6,7)],8)
=> ? = 3
[4,2,2]
=> [[4,2,2],[]]
=> ([(0,4),(0,5),(1,7),(3,2),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ([(1,6),(1,7),(2,4),(2,5),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[4,2,1,1]
=> [[4,2,1,1],[]]
=> ([(0,5),(0,6),(3,2),(4,1),(5,3),(5,7),(6,4),(6,7)],8)
=> ([(1,2),(1,6),(1,7),(2,4),(2,5),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 3
[4,1,1,1,1]
=> [[4,1,1,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(7,3)],8)
=> ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 2
[3,3,2]
=> [[3,3,2],[]]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7)],8)
=> ([(1,4),(1,7),(2,3),(2,7),(3,6),(4,6),(5,6),(5,7),(6,7)],8)
=> ? = 3
[3,3,1,1]
=> [[3,3,1,1],[]]
=> ([(0,4),(0,5),(1,7),(3,2),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ([(1,6),(1,7),(2,4),(2,5),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[3,2,2,1]
=> [[3,2,2,1],[]]
=> ([(0,4),(0,5),(3,2),(3,7),(4,3),(4,6),(5,1),(5,6),(6,7)],8)
=> ([(1,5),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(6,7)],8)
=> ? = 3
[3,2,1,1,1]
=> [[3,2,1,1,1],[]]
=> ([(0,5),(0,6),(3,4),(4,2),(5,3),(5,7),(6,1),(6,7)],8)
=> ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7)],8)
=> ? = 3
[3,1,1,1,1,1]
=> [[3,1,1,1,1,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(7,1)],8)
=> ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[2,2,2,2]
=> [[2,2,2,2],[]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
[2,2,2,1,1]
=> [[2,2,2,1,1],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,7),(4,1),(5,3),(5,6),(6,7)],8)
=> ([(1,7),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 2
[2,2,1,1,1,1]
=> [[2,2,1,1,1,1],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(5,1),(6,4),(6,7)],8)
=> ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[6,3]
=> [[6,3],[]]
=> ([(0,2),(0,6),(2,7),(3,5),(4,3),(4,8),(5,1),(6,4),(6,7),(7,8)],9)
=> ([(1,8),(2,7),(2,8),(3,4),(3,5),(3,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 2
[6,2,1]
=> [[6,2,1],[]]
=> ([(0,6),(0,7),(3,5),(4,3),(5,2),(6,4),(6,8),(7,1),(7,8)],9)
=> ([(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,8)],9)
=> ? = 3
[6,1,1,1]
=> [[6,1,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,3),(5,2),(6,1),(7,6),(8,4)],9)
=> ([(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ? = 2
[5,4]
=> [[5,4],[]]
=> ([(0,2),(0,5),(2,6),(3,4),(3,8),(4,1),(4,7),(5,3),(5,6),(6,8),(8,7)],9)
=> ([(1,8),(2,7),(3,6),(3,7),(4,5),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2
[5,3,1]
=> [[5,3,1],[]]
=> ([(0,5),(0,6),(3,4),(3,8),(4,2),(5,3),(5,7),(6,1),(6,7),(7,8)],9)
=> ([(1,7),(1,8),(2,5),(2,6),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 3
[5,2,2]
=> [[5,2,2],[]]
=> ([(0,5),(0,6),(2,8),(3,4),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8)],9)
=> ([(1,7),(1,8),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 2
[5,2,1,1]
=> [[5,2,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(6,8),(7,3),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(6,7),(6,8)],9)
=> ? = 3
[5,1,1,1,1]
=> [[5,1,1,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,6),(5,2),(6,1),(7,3),(8,4)],9)
=> ([(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8)],9)
=> ? = 2
[4,4,1]
=> [[4,4,1],[]]
=> ([(0,4),(0,5),(2,7),(3,2),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(8,7)],9)
=> ([(1,8),(2,6),(2,8),(3,7),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(7,8)],9)
=> ? = 3
[4,3,2]
=> [[4,3,2],[]]
=> ([(0,4),(0,5),(2,7),(3,1),(3,8),(4,2),(4,6),(5,3),(5,6),(6,7),(6,8)],9)
=> ([(1,5),(1,8),(2,3),(2,7),(2,8),(3,6),(3,7),(4,6),(4,7),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3
[4,3,1,1]
=> [[4,3,1,1],[]]
=> ([(0,5),(0,6),(3,1),(4,2),(4,8),(5,3),(5,7),(6,4),(6,7),(7,8)],9)
=> ([(1,6),(1,7),(1,8),(2,3),(2,7),(2,8),(3,5),(3,6),(4,5),(4,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 3
[4,2,2,1]
=> [[4,2,2,1],[]]
=> ([(0,5),(0,6),(3,1),(4,2),(4,8),(5,3),(5,7),(6,4),(6,7),(7,8)],9)
=> ([(1,6),(1,7),(1,8),(2,3),(2,7),(2,8),(3,5),(3,6),(4,5),(4,6),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 3
[4,2,1,1,1]
=> [[4,2,1,1,1],[]]
=> ([(0,6),(0,7),(3,4),(4,1),(5,2),(6,5),(6,8),(7,3),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(6,7),(6,8)],9)
=> ? = 3
[4,1,1,1,1,1]
=> [[4,1,1,1,1,1],[]]
=> ([(0,7),(0,8),(3,5),(4,3),(5,2),(6,1),(7,6),(8,4)],9)
=> ([(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> ? = 2
[3,3,3]
=> [[3,3,3],[]]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ? = 2
[3,3,2,1]
=> [[3,3,2,1],[]]
=> ([(0,4),(0,5),(2,7),(3,1),(3,8),(4,2),(4,6),(5,3),(5,6),(6,7),(6,8)],9)
=> ([(1,5),(1,8),(2,3),(2,7),(2,8),(3,6),(3,7),(4,6),(4,7),(4,8),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 3
[3,3,1,1,1]
=> [[3,3,1,1,1],[]]
=> ([(0,5),(0,6),(2,8),(3,4),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8)],9)
=> ([(1,7),(1,8),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 2
[3,2,2,2]
=> [[3,2,2,2],[]]
=> ([(0,4),(0,5),(2,7),(3,2),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(8,7)],9)
=> ([(1,8),(2,6),(2,8),(3,7),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(7,8)],9)
=> ? = 3
[3,2,2,1,1]
=> [[3,2,2,1,1],[]]
=> ([(0,5),(0,6),(3,4),(3,8),(4,2),(5,3),(5,7),(6,1),(6,7),(7,8)],9)
=> ([(1,7),(1,8),(2,5),(2,6),(2,8),(3,4),(3,7),(3,8),(4,5),(4,6),(4,8),(5,7),(5,8),(6,7),(6,8)],9)
=> ? = 3
Description
The lettericity of a graph. Let $D$ be a digraph on $k$ vertices, possibly with loops and let $w$ be a word of length $n$ whose letters are vertices of $D$. The letter graph corresponding to $D$ and $w$ is the graph with vertex set $\{1,\dots,n\}$ whose edges are the pairs $(i,j)$ with $i < j$ sucht that $(w_i, w_j)$ is a (directed) edge of $D$.
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00294: Standard tableaux peak compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001330: Graphs ⟶ ℤResult quality: 6% values known / values provided: 6%distinct values known / distinct values provided: 33%
Values
[1]
=> [[1]]
=> [1] => ([],1)
=> 1
[2]
=> [[1,2]]
=> [2] => ([],2)
=> 1
[1,1]
=> [[1],[2]]
=> [2] => ([],2)
=> 1
[3]
=> [[1,2,3]]
=> [3] => ([],3)
=> 1
[2,1]
=> [[1,2],[3]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,1,1]
=> [[1],[2],[3]]
=> [3] => ([],3)
=> 1
[4]
=> [[1,2,3,4]]
=> [4] => ([],4)
=> 1
[3,1]
=> [[1,2,3],[4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[2,2]
=> [[1,2],[3,4]]
=> [2,2] => ([(1,3),(2,3)],4)
=> 2
[2,1,1]
=> [[1,2],[3],[4]]
=> [2,2] => ([(1,3),(2,3)],4)
=> 2
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4] => ([],4)
=> 1
[5]
=> [[1,2,3,4,5]]
=> [5] => ([],5)
=> 1
[4,1]
=> [[1,2,3,4],[5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[3,2]
=> [[1,2,3],[4,5]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2
[3,1,1]
=> [[1,2,3],[4],[5]]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2
[2,2,1]
=> [[1,2],[3,4],[5]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [2,3] => ([(2,4),(3,4)],5)
=> 2
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5] => ([],5)
=> 1
[6]
=> [[1,2,3,4,5,6]]
=> [6] => ([],6)
=> 1
[5,1]
=> [[1,2,3,4,5],[6]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[4,2]
=> [[1,2,3,4],[5,6]]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2
[3,3]
=> [[1,2,3],[4,5,6]]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 2
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> 2
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [2,4] => ([(3,5),(4,5)],6)
=> 2
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6] => ([],6)
=> 1
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 2
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [5,2] => ([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [4,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ? = 2
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [2,2,2,1] => ([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [2,5] => ([(4,6),(5,6)],7)
=> ? = 2
[6,2]
=> [[1,2,3,4,5,6],[7,8]]
=> [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 2
[6,1,1]
=> [[1,2,3,4,5,6],[7],[8]]
=> [6,2] => ([(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 2
[5,3]
=> [[1,2,3,4,5],[6,7,8]]
=> [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 2
[5,2,1]
=> [[1,2,3,4,5],[6,7],[8]]
=> [5,2,1] => ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[5,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8]]
=> [5,3] => ([(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 2
[4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 2
[4,3,1]
=> [[1,2,3,4],[5,6,7],[8]]
=> [4,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> [4,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[4,2,1,1]
=> [[1,2,3,4],[5,6],[7],[8]]
=> [4,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[4,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8]]
=> [4,4] => ([(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 2
[3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> [3,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[3,3,1,1]
=> [[1,2,3],[4,5,6],[7],[8]]
=> [3,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> [3,2,2,1] => ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[3,2,1,1,1]
=> [[1,2,3],[4,5],[6],[7],[8]]
=> [3,2,3] => ([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[3,1,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7],[8]]
=> [3,5] => ([(4,7),(5,7),(6,7)],8)
=> ? = 2
[2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[2,2,2,1,1]
=> [[1,2],[3,4],[5,6],[7],[8]]
=> [2,2,2,2] => ([(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[2,2,1,1,1,1]
=> [[1,2],[3,4],[5],[6],[7],[8]]
=> [2,2,4] => ([(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[6,3]
=> [[1,2,3,4,5,6],[7,8,9]]
=> [6,3] => ([(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ? = 2
[6,2,1]
=> [[1,2,3,4,5,6],[7,8],[9]]
=> [6,2,1] => ([(0,8),(1,7),(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 3
[6,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9]]
=> [6,3] => ([(2,8),(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ? = 2
[5,4]
=> [[1,2,3,4,5],[6,7,8,9]]
=> [5,4] => ([(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ? = 2
[5,3,1]
=> [[1,2,3,4,5],[6,7,8],[9]]
=> [5,3,1] => ([(0,8),(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 3
[5,2,2]
=> [[1,2,3,4,5],[6,7],[8,9]]
=> [5,2,2] => ([(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2
[5,2,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9]]
=> [5,2,2] => ([(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 3
[5,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9]]
=> [5,4] => ([(3,8),(4,8),(5,8),(6,8),(7,8)],9)
=> ? = 2
[4,4,1]
=> [[1,2,3,4],[5,6,7,8],[9]]
=> [4,4,1] => ([(0,8),(1,8),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 3
[4,3,2]
=> [[1,2,3,4],[5,6,7],[8,9]]
=> [4,3,2] => ([(1,8),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 3
[4,3,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9]]
=> [4,3,2] => ([(1,8),(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 3
[4,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9]]
=> [4,2,2,1] => ([(0,8),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 3
[4,2,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9]]
=> [4,2,3] => ([(2,8),(3,7),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 3
[4,1,1,1,1,1]
=> [[1,2,3,4],[5],[6],[7],[8],[9]]
=> [4,5] => ([(4,8),(5,8),(6,8),(7,8)],9)
=> ? = 2
[3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> [3,3,3] => ([(2,8),(3,8),(4,7),(4,8),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2
[3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9]]
=> [3,3,2,1] => ([(0,8),(1,7),(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 3
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
The following 1 statistic also match your data. Click on any of them to see the details.
St000455The second largest eigenvalue of a graph if it is integral.