searching the database
Your data matches 129 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001462
(load all 23 compositions to match this statistic)
(load all 23 compositions to match this statistic)
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00059: Permutations —Robinson-Schensted insertion tableau⟶ Standard tableaux
St001462: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00059: Permutations —Robinson-Schensted insertion tableau⟶ Standard tableaux
St001462: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [[1]]
=> 1
[1,2] => [1,2] => [[1,2]]
=> 2
[2,1] => [2,1] => [[1],[2]]
=> 1
[1,2,3] => [1,2,3] => [[1,2,3]]
=> 3
[1,3,2] => [1,3,2] => [[1,2],[3]]
=> 2
[2,1,3] => [2,1,3] => [[1,3],[2]]
=> 2
[2,3,1] => [3,2,1] => [[1],[2],[3]]
=> 1
[3,1,2] => [3,2,1] => [[1],[2],[3]]
=> 1
[3,2,1] => [3,2,1] => [[1],[2],[3]]
=> 1
[1,2,3,4] => [1,2,3,4] => [[1,2,3,4]]
=> 4
[1,2,4,3] => [1,2,4,3] => [[1,2,3],[4]]
=> 3
[1,3,2,4] => [1,3,2,4] => [[1,2,4],[3]]
=> 3
[1,3,4,2] => [1,4,3,2] => [[1,2],[3],[4]]
=> 2
[1,4,2,3] => [1,4,3,2] => [[1,2],[3],[4]]
=> 2
[1,4,3,2] => [1,4,3,2] => [[1,2],[3],[4]]
=> 2
[2,1,3,4] => [2,1,3,4] => [[1,3,4],[2]]
=> 3
[2,1,4,3] => [2,1,4,3] => [[1,3],[2,4]]
=> 2
[2,3,1,4] => [3,2,1,4] => [[1,4],[2],[3]]
=> 2
[2,3,4,1] => [4,2,3,1] => [[1,3],[2],[4]]
=> 1
[2,4,1,3] => [3,4,1,2] => [[1,2],[3,4]]
=> 1
[2,4,3,1] => [4,3,2,1] => [[1],[2],[3],[4]]
=> 1
[3,1,2,4] => [3,2,1,4] => [[1,4],[2],[3]]
=> 2
[3,1,4,2] => [4,2,3,1] => [[1,3],[2],[4]]
=> 1
[3,2,1,4] => [3,2,1,4] => [[1,4],[2],[3]]
=> 2
[3,2,4,1] => [4,2,3,1] => [[1,3],[2],[4]]
=> 1
[3,4,1,2] => [4,3,2,1] => [[1],[2],[3],[4]]
=> 1
[3,4,2,1] => [4,3,2,1] => [[1],[2],[3],[4]]
=> 1
[4,1,2,3] => [4,2,3,1] => [[1,3],[2],[4]]
=> 1
[4,1,3,2] => [4,2,3,1] => [[1,3],[2],[4]]
=> 1
[4,2,1,3] => [4,3,2,1] => [[1],[2],[3],[4]]
=> 1
[4,2,3,1] => [4,3,2,1] => [[1],[2],[3],[4]]
=> 1
[4,3,1,2] => [4,3,2,1] => [[1],[2],[3],[4]]
=> 1
[4,3,2,1] => [4,3,2,1] => [[1],[2],[3],[4]]
=> 1
[1,2,3,4,5] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 5
[1,2,3,5,4] => [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 4
[1,2,4,3,5] => [1,2,4,3,5] => [[1,2,3,5],[4]]
=> 4
[1,2,4,5,3] => [1,2,5,4,3] => [[1,2,3],[4],[5]]
=> 3
[1,2,5,3,4] => [1,2,5,4,3] => [[1,2,3],[4],[5]]
=> 3
[1,2,5,4,3] => [1,2,5,4,3] => [[1,2,3],[4],[5]]
=> 3
[1,3,2,4,5] => [1,3,2,4,5] => [[1,2,4,5],[3]]
=> 4
[1,3,2,5,4] => [1,3,2,5,4] => [[1,2,4],[3,5]]
=> 3
[1,3,4,2,5] => [1,4,3,2,5] => [[1,2,5],[3],[4]]
=> 3
[1,3,4,5,2] => [1,5,3,4,2] => [[1,2,4],[3],[5]]
=> 2
[1,3,5,2,4] => [1,4,5,2,3] => [[1,2,3],[4,5]]
=> 2
[1,3,5,4,2] => [1,5,4,3,2] => [[1,2],[3],[4],[5]]
=> 2
[1,4,2,3,5] => [1,4,3,2,5] => [[1,2,5],[3],[4]]
=> 3
[1,4,2,5,3] => [1,5,3,4,2] => [[1,2,4],[3],[5]]
=> 2
[1,4,3,2,5] => [1,4,3,2,5] => [[1,2,5],[3],[4]]
=> 3
[1,4,3,5,2] => [1,5,3,4,2] => [[1,2,4],[3],[5]]
=> 2
[1,4,5,2,3] => [1,5,4,3,2] => [[1,2],[3],[4],[5]]
=> 2
Description
The number of factors of a standard tableaux under concatenation.
The concatenation of two standard Young tableaux T1 and T2 is obtained by adding the largest entry of T1 to each entry of T2, and then appending the rows of the result to T1, see [1, dfn 2.10].
This statistic returns the maximal number of standard tableaux such that their concatenation is the given tableau.
Matching statistic: St000011
(load all 127 compositions to match this statistic)
(load all 127 compositions to match this statistic)
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000011: Dyck paths ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000011: Dyck paths ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => [1,0]
=> 1
[1,2] => [1,2] => [1,2] => [1,0,1,0]
=> 2
[2,1] => [2,1] => [2,1] => [1,1,0,0]
=> 1
[1,2,3] => [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 3
[1,3,2] => [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 2
[2,1,3] => [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 2
[2,3,1] => [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> 1
[3,1,2] => [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> 1
[3,2,1] => [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 4
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 3
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 3
[1,3,4,2] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[1,4,2,3] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[1,4,3,2] => [1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 3
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2
[2,3,1,4] => [3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2
[2,3,4,1] => [4,2,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 1
[2,4,1,3] => [3,4,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 1
[2,4,3,1] => [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 1
[3,1,2,4] => [3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2
[3,1,4,2] => [4,2,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 1
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2
[3,2,4,1] => [4,2,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 1
[3,4,1,2] => [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 1
[3,4,2,1] => [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 1
[4,1,2,3] => [4,2,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 1
[4,1,3,2] => [4,2,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 1
[4,2,1,3] => [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 1
[4,2,3,1] => [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 1
[4,3,1,2] => [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 1
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 4
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 4
[1,2,4,5,3] => [1,2,5,4,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,2,5,3,4] => [1,2,5,4,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 4
[1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> 3
[1,3,4,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 3
[1,3,4,5,2] => [1,5,3,4,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,3,5,2,4] => [1,4,5,2,3] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,3,5,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,4,2,3,5] => [1,4,3,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 3
[1,4,2,5,3] => [1,5,3,4,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 3
[1,4,3,5,2] => [1,5,3,4,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,4,5,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,2,4,3,8,7,6,5] => [1,2,4,3,8,7,6,5] => [1,2,4,3,8,7,6,5] => [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,2,4,3,7,8,6,5] => [1,2,4,3,8,7,6,5] => [1,2,4,3,8,7,6,5] => [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,2,4,3,6,8,7,5] => [1,2,4,3,8,7,6,5] => [1,2,4,3,8,7,6,5] => [1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 4
[3,2,1,4,8,7,6,5] => [3,2,1,4,8,7,6,5] => [3,2,1,4,8,7,6,5] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3
[3,2,1,4,7,8,6,5] => [3,2,1,4,8,7,6,5] => [3,2,1,4,8,7,6,5] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3
[3,2,1,4,6,8,7,5] => [3,2,1,4,8,7,6,5] => [3,2,1,4,8,7,6,5] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3
[3,2,1,4,7,6,8,5] => [3,2,1,4,8,6,7,5] => [3,2,1,4,8,7,6,5] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3
[3,2,1,4,6,7,8,5] => [3,2,1,4,8,6,7,5] => [3,2,1,4,8,7,6,5] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3
[2,3,1,4,8,7,6,5] => [3,2,1,4,8,7,6,5] => [3,2,1,4,8,7,6,5] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3
[2,3,1,4,7,8,6,5] => [3,2,1,4,8,7,6,5] => [3,2,1,4,8,7,6,5] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3
[2,3,1,4,7,6,8,5] => [3,2,1,4,8,6,7,5] => [3,2,1,4,8,7,6,5] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3
[2,3,1,4,6,7,8,5] => [3,2,1,4,8,6,7,5] => [3,2,1,4,8,7,6,5] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 3
[1,3,2,4,8,7,6,5] => [1,3,2,4,8,7,6,5] => [1,3,2,4,8,7,6,5] => [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,3,2,4,6,8,7,5] => [1,3,2,4,8,7,6,5] => [1,3,2,4,8,7,6,5] => [1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
[2,1,3,4,8,7,6,5] => [2,1,3,4,8,7,6,5] => [2,1,3,4,8,7,6,5] => [1,1,0,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
[2,1,3,4,7,8,6,5] => [2,1,3,4,8,7,6,5] => [2,1,3,4,8,7,6,5] => [1,1,0,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
[2,1,3,4,7,6,8,5] => [2,1,3,4,8,6,7,5] => [2,1,3,4,8,7,6,5] => [1,1,0,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
[2,1,3,4,6,7,8,5] => [2,1,3,4,8,6,7,5] => [2,1,3,4,8,7,6,5] => [1,1,0,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4
[1,5,4,3,2,8,7,6] => [1,5,4,3,2,8,7,6] => [1,5,4,3,2,8,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 3
[1,5,4,3,2,7,8,6] => [1,5,4,3,2,8,7,6] => [1,5,4,3,2,8,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 3
[1,4,5,3,2,8,7,6] => [1,5,4,3,2,8,7,6] => [1,5,4,3,2,8,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 3
[1,4,5,3,2,7,8,6] => [1,5,4,3,2,8,7,6] => [1,5,4,3,2,8,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 3
[1,3,5,4,2,7,8,6] => [1,5,4,3,2,8,7,6] => [1,5,4,3,2,8,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 3
[1,4,3,5,2,8,7,6] => [1,5,3,4,2,8,7,6] => [1,5,4,3,2,8,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 3
[1,4,3,5,2,7,8,6] => [1,5,3,4,2,8,7,6] => [1,5,4,3,2,8,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 3
[1,3,4,5,2,8,7,6] => [1,5,3,4,2,8,7,6] => [1,5,4,3,2,8,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 3
[1,3,4,5,2,7,8,6] => [1,5,3,4,2,8,7,6] => [1,5,4,3,2,8,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 3
[1,2,5,4,3,8,7,6] => [1,2,5,4,3,8,7,6] => [1,2,5,4,3,8,7,6] => [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 4
[1,2,5,4,3,7,8,6] => [1,2,5,4,3,8,7,6] => [1,2,5,4,3,8,7,6] => [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 4
[1,2,4,5,3,8,7,6] => [1,2,5,4,3,8,7,6] => [1,2,5,4,3,8,7,6] => [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 4
[1,2,4,5,3,7,8,6] => [1,2,5,4,3,8,7,6] => [1,2,5,4,3,8,7,6] => [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 4
[1,3,2,5,4,8,7,6] => [1,3,2,5,4,8,7,6] => [1,3,2,5,4,8,7,6] => [1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 4
[1,3,2,5,4,7,8,6] => [1,3,2,5,4,8,7,6] => [1,3,2,5,4,8,7,6] => [1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 4
[2,1,3,5,4,8,7,6] => [2,1,3,5,4,8,7,6] => [2,1,3,5,4,8,7,6] => [1,1,0,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 4
[2,1,3,5,4,7,8,6] => [2,1,3,5,4,8,7,6] => [2,1,3,5,4,8,7,6] => [1,1,0,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 4
[1,2,3,5,4,8,7,6] => [1,2,3,5,4,8,7,6] => [1,2,3,5,4,8,7,6] => [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,2,3,5,4,7,8,6] => [1,2,3,5,4,8,7,6] => [1,2,3,5,4,8,7,6] => [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[4,3,2,1,5,8,7,6] => [4,3,2,1,5,8,7,6] => [4,3,2,1,5,8,7,6] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 3
[4,3,2,1,5,7,8,6] => [4,3,2,1,5,8,7,6] => [4,3,2,1,5,8,7,6] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 3
[3,4,2,1,5,8,7,6] => [4,3,2,1,5,8,7,6] => [4,3,2,1,5,8,7,6] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 3
[2,4,3,1,5,8,7,6] => [4,3,2,1,5,8,7,6] => [4,3,2,1,5,8,7,6] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 3
[1,4,3,2,5,8,7,6] => [1,4,3,2,5,8,7,6] => [1,4,3,2,5,8,7,6] => [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 4
[1,4,3,2,5,7,8,6] => [1,4,3,2,5,8,7,6] => [1,4,3,2,5,8,7,6] => [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 4
[1,3,4,2,5,8,7,6] => [1,4,3,2,5,8,7,6] => [1,4,3,2,5,8,7,6] => [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 4
[1,3,4,2,5,7,8,6] => [1,4,3,2,5,8,7,6] => [1,4,3,2,5,8,7,6] => [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 4
[2,1,4,3,5,8,7,6] => [2,1,4,3,5,8,7,6] => [2,1,4,3,5,8,7,6] => [1,1,0,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 4
[2,1,4,3,5,7,8,6] => [2,1,4,3,5,8,7,6] => [2,1,4,3,5,8,7,6] => [1,1,0,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 4
[1,2,4,3,5,8,7,6] => [1,2,4,3,5,8,7,6] => [1,2,4,3,5,8,7,6] => [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 5
[1,2,4,3,5,7,8,6] => [1,2,4,3,5,8,7,6] => [1,2,4,3,5,8,7,6] => [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 5
[3,2,1,4,5,8,7,6] => [3,2,1,4,5,8,7,6] => [3,2,1,4,5,8,7,6] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 4
Description
The number of touch points (or returns) of a Dyck path.
This is the number of points, excluding the origin, where the Dyck path has height 0.
Matching statistic: St000382
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00102: Dyck paths —rise composition⟶ Integer compositions
St000382: Integer compositions ⟶ ℤResult quality: 98% ●values known / values provided: 98%●distinct values known / distinct values provided: 100%
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00102: Dyck paths —rise composition⟶ Integer compositions
St000382: Integer compositions ⟶ ℤResult quality: 98% ●values known / values provided: 98%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1,0]
=> [1] => 1
[1,2] => [1,0,1,0]
=> [1,1,0,0]
=> [2] => 2
[2,1] => [1,1,0,0]
=> [1,0,1,0]
=> [1,1] => 1
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3] => 3
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [2,1] => 2
[2,1,3] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2,1] => 2
[2,3,1] => [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,2] => 1
[3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1] => 1
[3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1] => 1
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4] => 4
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,1] => 3
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1] => 3
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,2] => 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1,1] => 2
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1,1] => 2
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => 3
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,1,1] => 2
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,2,1] => 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,2,1] => 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => 2
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => 2
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5] => 5
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,1] => 4
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,1] => 4
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,2] => 3
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,1,1] => 3
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,1,1] => 3
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1] => 4
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1,1] => 3
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2] => 3
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3] => 2
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => 2
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => 2
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,1,1] => 3
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => 2
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,1,1] => 3
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => 2
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => 2
[8,6,4,5,3,7,2,1] => ?
=> ?
=> ? => ? = 1
[6,5,7,4,3,8,2,1] => ?
=> ?
=> ? => ? = 1
[4,5,6,3,7,8,2,1] => ?
=> ?
=> ? => ? = 1
[8,7,6,4,2,3,5,1] => ?
=> ?
=> ? => ? = 1
[8,6,7,4,2,3,5,1] => ?
=> ?
=> ? => ? = 1
[8,6,4,5,2,3,7,1] => ?
=> ?
=> ? => ? = 1
[5,6,7,4,3,2,8,1] => ?
=> ?
=> ? => ? = 1
[6,5,4,7,3,2,8,1] => ?
=> ?
=> ? => ? = 1
[5,6,7,3,4,2,8,1] => ?
=> ?
=> ? => ? = 1
[4,3,5,6,7,2,8,1] => ?
=> ?
=> ? => ? = 1
[5,6,2,3,4,7,8,1] => ?
=> ?
=> ? => ? = 1
[5,6,7,3,4,8,1,2] => ?
=> ?
=> ? => ? = 1
[6,5,3,4,7,8,1,2] => ?
=> ?
=> ? => ? = 1
[8,6,5,7,4,2,1,3] => ?
=> ?
=> ? => ? = 1
[8,6,7,4,5,2,1,3] => ?
=> ?
=> ? => ? = 1
[8,6,5,4,7,2,1,3] => ?
=> ?
=> ? => ? = 1
[8,6,4,5,7,2,1,3] => ?
=> ?
=> ? => ? = 1
[8,6,7,4,2,3,1,5] => ?
=> ?
=> ? => ? = 1
[8,6,4,3,5,2,1,7] => ?
=> ?
=> ? => ? = 1
[8,6,4,5,2,3,1,7] => ?
=> ?
=> ? => ? = 1
[8,6,4,3,2,5,1,7] => ?
=> ?
=> ? => ? = 1
[8,6,4,5,2,1,3,7] => ?
=> ?
=> ? => ? = 1
[7,5,4,2,3,6,1,8] => ?
=> ?
=> ? => ? = 2
[5,6,1,2,3,4,7,8] => ?
=> ?
=> ? => ? = 3
[5,4,7,8,6,3,2,1] => ?
=> ?
=> ? => ? = 1
[5,6,4,8,7,3,2,1] => ?
=> ?
=> ? => ? = 1
[4,3,7,8,6,5,2,1] => ?
=> ?
=> ? => ? = 1
[3,6,5,4,8,7,2,1] => ?
=> ?
=> ? => ? = 1
[3,2,7,8,6,5,4,1] => ?
=> ?
=> ? => ? = 1
[3,2,6,5,8,7,4,1] => ?
=> ?
=> ? => ? = 1
[2,3,4,7,8,6,5,1] => ?
=> ?
=> ? => ? = 1
[3,5,4,6,2,8,7,1] => ?
=> ?
=> ? => ? = 1
[3,4,5,6,2,8,7,1] => ?
=> ?
=> ? => ? = 1
[1,5,6,4,7,8,3,2] => ?
=> ?
=> ? => ? = 2
[1,5,6,7,4,3,8,2] => ?
=> ?
=> ? => ? = 2
[2,1,4,7,6,8,5,3] => ?
=> ?
=> ? => ? = 2
[1,2,7,6,8,5,4,3] => ?
=> ?
=> ? => ? = 3
[1,2,4,7,6,8,5,3] => ?
=> ?
=> ? => ? = 3
[1,2,5,6,4,7,8,3] => ?
=> ?
=> ? => ? = 3
[1,2,4,6,5,7,8,3] => ?
=> ?
=> ? => ? = 3
[2,3,1,7,8,6,5,4] => ?
=> ?
=> ? => ? = 2
[2,1,3,6,7,8,5,4] => ?
=> ?
=> ? => ? = 3
[2,1,3,5,7,6,8,4] => ?
=> ?
=> ? => ? = 3
[3,4,2,1,5,8,7,6] => ?
=> ?
=> ? => ? = 3
[3,4,2,1,5,6,8,7] => ?
=> ?
=> ? => ? = 4
[1,4,5,6,7,3,2,8] => ?
=> ?
=> ? => ? = 3
[1,8,4,5,6,3,7,2] => ?
=> ?
=> ? => ? = 2
[2,1,7,5,4,6,8,3] => ?
=> ?
=> ? => ? = 2
[8,2,5,4,7,6,3,1] => ?
=> ?
=> ? => ? = 1
[2,4,5,8,1,3,6,7] => ?
=> ?
=> ? => ? = 1
Description
The first part of an integer composition.
Matching statistic: St000439
(load all 16 compositions to match this statistic)
(load all 16 compositions to match this statistic)
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St000439: Dyck paths ⟶ ℤResult quality: 97% ●values known / values provided: 97%●distinct values known / distinct values provided: 100%
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St000439: Dyck paths ⟶ ℤResult quality: 97% ●values known / values provided: 97%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> [1,0]
=> 2 = 1 + 1
[1,2] => [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 3 = 2 + 1
[2,1] => [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 4 = 3 + 1
[1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 3 = 2 + 1
[2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 3 = 2 + 1
[2,3,1] => [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 1 + 1
[3,1,2] => [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 1 + 1
[3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[1,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[1,3,4,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,4,2,3] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[2,3,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[2,3,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[2,4,1,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[2,4,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[3,1,2,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[3,1,4,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[3,2,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[3,4,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[3,4,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[4,1,2,3] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[4,1,3,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[4,2,1,3] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[4,2,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[4,3,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 6 = 5 + 1
[1,2,3,5,4] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 5 = 4 + 1
[1,2,4,3,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 5 = 4 + 1
[1,2,4,5,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 4 = 3 + 1
[1,2,5,3,4] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 4 = 3 + 1
[1,2,5,4,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 4 = 3 + 1
[1,3,2,4,5] => [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 5 = 4 + 1
[1,3,2,5,4] => [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 4 = 3 + 1
[1,3,4,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 4 = 3 + 1
[1,3,4,5,2] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,3,5,2,4] => [1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,3,5,4,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,4,2,3,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 4 = 3 + 1
[1,4,2,5,3] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,4,3,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 4 = 3 + 1
[1,4,3,5,2] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,4,5,2,3] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[5,4,3,2,1,6,7,8] => [5,4,3,2,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[4,5,3,2,1,6,7,8] => [5,4,3,2,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[5,3,4,2,1,6,7,8] => [5,4,3,2,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[4,3,5,2,1,6,7,8] => [5,4,3,2,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[3,4,5,2,1,6,7,8] => [5,4,3,2,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[5,4,2,3,1,6,7,8] => [5,4,3,2,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[4,5,2,3,1,6,7,8] => [5,4,3,2,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[5,3,2,4,1,6,7,8] => [5,4,3,2,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[5,2,3,4,1,6,7,8] => [5,4,3,2,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[4,3,2,5,1,6,7,8] => [5,3,2,4,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[3,4,2,5,1,6,7,8] => [5,3,2,4,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[4,2,3,5,1,6,7,8] => [5,3,2,4,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[3,2,4,5,1,6,7,8] => [5,2,3,4,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[2,3,4,5,1,6,7,8] => [5,2,3,4,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[5,4,3,1,2,6,7,8] => [5,4,3,2,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[5,3,4,1,2,6,7,8] => [5,4,3,2,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[4,3,5,1,2,6,7,8] => [5,4,3,2,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[3,4,5,1,2,6,7,8] => [5,4,3,2,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[5,4,2,1,3,6,7,8] => [5,4,3,2,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[4,5,2,1,3,6,7,8] => [5,4,3,2,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[5,4,1,2,3,6,7,8] => [5,4,3,2,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[4,5,1,2,3,6,7,8] => [5,4,3,2,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[5,3,2,1,4,6,7,8] => [5,4,3,2,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[5,2,3,1,4,6,7,8] => [5,4,3,2,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[5,3,1,2,4,6,7,8] => [5,4,3,2,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[5,2,1,3,4,6,7,8] => [5,3,2,4,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[5,1,2,3,4,6,7,8] => [5,2,3,4,1,6,7,8] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 4 + 1
[4,3,2,1,5,6,7,8] => [4,3,2,1,5,6,7,8] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 5 + 1
[3,4,2,1,5,6,7,8] => [4,3,2,1,5,6,7,8] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 5 + 1
[4,2,3,1,5,6,7,8] => [4,3,2,1,5,6,7,8] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 5 + 1
[3,2,4,1,5,6,7,8] => [4,2,3,1,5,6,7,8] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 5 + 1
[2,3,4,1,5,6,7,8] => [4,2,3,1,5,6,7,8] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 5 + 1
[4,3,1,2,5,6,7,8] => [4,3,2,1,5,6,7,8] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 5 + 1
[3,4,1,2,5,6,7,8] => [4,3,2,1,5,6,7,8] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 5 + 1
[4,2,1,3,5,6,7,8] => [4,3,2,1,5,6,7,8] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 5 + 1
[4,1,2,3,5,6,7,8] => [4,2,3,1,5,6,7,8] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 5 + 1
[3,2,1,4,5,6,7,8] => [3,2,1,4,5,6,7,8] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 6 + 1
[2,3,1,4,5,6,7,8] => [3,2,1,4,5,6,7,8] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 6 + 1
[3,1,2,4,5,6,7,8] => [3,2,1,4,5,6,7,8] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 6 + 1
[1,2,3,8,7,6,5,4] => [1,2,3,8,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 4 + 1
[1,2,3,7,8,6,5,4] => [1,2,3,8,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 4 + 1
[1,2,3,6,8,7,5,4] => [1,2,3,8,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 4 + 1
[1,2,3,7,6,8,5,4] => [1,2,3,8,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 4 + 1
[1,2,3,6,7,8,5,4] => [1,2,3,8,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 4 + 1
[1,2,3,5,8,7,6,4] => [1,2,3,8,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 4 + 1
[1,2,3,5,7,8,6,4] => [1,2,3,8,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 4 + 1
[1,2,3,6,5,8,7,4] => [1,2,3,8,5,7,6,4] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 4 + 1
[1,2,3,5,6,8,7,4] => [1,2,3,8,5,7,6,4] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 4 + 1
[1,2,3,7,6,5,8,4] => [1,2,3,8,6,5,7,4] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 4 + 1
[1,2,3,6,7,5,8,4] => [1,2,3,8,6,5,7,4] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 4 + 1
Description
The position of the first down step of a Dyck path.
Matching statistic: St000245
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
St000245: Permutations ⟶ ℤResult quality: 95% ●values known / values provided: 95%●distinct values known / distinct values provided: 100%
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
St000245: Permutations ⟶ ℤResult quality: 95% ●values known / values provided: 95%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => [1] => 0 = 1 - 1
[1,2] => [1,2] => [1,2] => [1,2] => 1 = 2 - 1
[2,1] => [2,1] => [2,1] => [2,1] => 0 = 1 - 1
[1,2,3] => [1,2,3] => [1,2,3] => [1,2,3] => 2 = 3 - 1
[1,3,2] => [1,3,2] => [1,3,2] => [1,3,2] => 1 = 2 - 1
[2,1,3] => [2,1,3] => [2,1,3] => [2,1,3] => 1 = 2 - 1
[2,3,1] => [3,2,1] => [3,2,1] => [3,2,1] => 0 = 1 - 1
[3,1,2] => [3,2,1] => [3,2,1] => [3,2,1] => 0 = 1 - 1
[3,2,1] => [3,2,1] => [3,2,1] => [3,2,1] => 0 = 1 - 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 3 = 4 - 1
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 2 = 3 - 1
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 2 = 3 - 1
[1,3,4,2] => [1,4,3,2] => [1,4,3,2] => [1,4,3,2] => 1 = 2 - 1
[1,4,2,3] => [1,4,3,2] => [1,4,3,2] => [1,4,3,2] => 1 = 2 - 1
[1,4,3,2] => [1,4,3,2] => [1,4,3,2] => [1,4,3,2] => 1 = 2 - 1
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 2 = 3 - 1
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 1 = 2 - 1
[2,3,1,4] => [3,2,1,4] => [3,2,1,4] => [3,2,1,4] => 1 = 2 - 1
[2,3,4,1] => [4,2,3,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[2,4,1,3] => [3,4,1,2] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[2,4,3,1] => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[3,1,2,4] => [3,2,1,4] => [3,2,1,4] => [3,2,1,4] => 1 = 2 - 1
[3,1,4,2] => [4,2,3,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => [3,2,1,4] => 1 = 2 - 1
[3,2,4,1] => [4,2,3,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[3,4,1,2] => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[3,4,2,1] => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[4,1,2,3] => [4,2,3,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[4,1,3,2] => [4,2,3,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[4,2,1,3] => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[4,2,3,1] => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[4,3,1,2] => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 4 = 5 - 1
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => 3 = 4 - 1
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 3 = 4 - 1
[1,2,4,5,3] => [1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => 2 = 3 - 1
[1,2,5,3,4] => [1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => 2 = 3 - 1
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => 2 = 3 - 1
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 3 = 4 - 1
[1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 2 = 3 - 1
[1,3,4,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => 2 = 3 - 1
[1,3,4,5,2] => [1,5,3,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => 1 = 2 - 1
[1,3,5,2,4] => [1,4,5,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => 1 = 2 - 1
[1,3,5,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => 1 = 2 - 1
[1,4,2,3,5] => [1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => 2 = 3 - 1
[1,4,2,5,3] => [1,5,3,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => 1 = 2 - 1
[1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => 2 = 3 - 1
[1,4,3,5,2] => [1,5,3,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => 1 = 2 - 1
[1,4,5,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => 1 = 2 - 1
[1,3,4,5,2,6,7] => [1,5,3,4,2,6,7] => [1,5,4,3,2,6,7] => [1,5,4,3,2,6,7] => ? = 4 - 1
[1,3,4,5,2,7,6] => [1,5,3,4,2,7,6] => [1,5,4,3,2,7,6] => [1,5,4,3,2,7,6] => ? = 3 - 1
[1,3,4,5,6,2,7] => [1,6,3,4,5,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,3,4,6,2,5,7] => [1,5,3,6,2,4,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,3,4,6,5,2,7] => [1,6,3,5,4,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,3,5,2,4,6,7] => [1,4,5,2,3,6,7] => [1,5,4,3,2,6,7] => [1,5,4,3,2,6,7] => ? = 4 - 1
[1,3,5,2,4,7,6] => [1,4,5,2,3,7,6] => [1,5,4,3,2,7,6] => [1,5,4,3,2,7,6] => ? = 3 - 1
[1,3,5,2,6,4,7] => [1,4,6,2,5,3,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,3,5,4,2,6,7] => [1,5,4,3,2,6,7] => [1,5,4,3,2,6,7] => [1,5,4,3,2,6,7] => ? = 4 - 1
[1,3,5,4,2,7,6] => [1,5,4,3,2,7,6] => [1,5,4,3,2,7,6] => [1,5,4,3,2,7,6] => ? = 3 - 1
[1,3,5,4,6,2,7] => [1,6,4,3,5,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,3,5,6,2,4,7] => [1,5,6,4,2,3,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,3,5,6,4,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,3,6,2,4,5,7] => [1,4,6,2,5,3,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,3,6,2,5,4,7] => [1,4,6,2,5,3,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,3,6,4,2,5,7] => [1,5,6,4,2,3,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,3,6,4,5,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,3,6,5,2,4,7] => [1,5,6,4,2,3,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,3,6,5,4,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,4,2,5,3,6,7] => [1,5,3,4,2,6,7] => [1,5,4,3,2,6,7] => [1,5,4,3,2,6,7] => ? = 4 - 1
[1,4,2,5,3,7,6] => [1,5,3,4,2,7,6] => [1,5,4,3,2,7,6] => [1,5,4,3,2,7,6] => ? = 3 - 1
[1,4,2,5,6,3,7] => [1,6,3,4,5,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,4,2,6,3,5,7] => [1,5,3,6,2,4,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,4,2,6,5,3,7] => [1,6,3,5,4,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,4,3,5,2,6,7] => [1,5,3,4,2,6,7] => [1,5,4,3,2,6,7] => [1,5,4,3,2,6,7] => ? = 4 - 1
[1,4,3,5,2,7,6] => [1,5,3,4,2,7,6] => [1,5,4,3,2,7,6] => [1,5,4,3,2,7,6] => ? = 3 - 1
[1,4,3,5,6,2,7] => [1,6,3,4,5,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,4,3,6,2,5,7] => [1,5,3,6,2,4,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,4,3,6,5,2,7] => [1,6,3,5,4,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,4,5,2,3,6,7] => [1,5,4,3,2,6,7] => [1,5,4,3,2,6,7] => [1,5,4,3,2,6,7] => ? = 4 - 1
[1,4,5,2,3,7,6] => [1,5,4,3,2,7,6] => [1,5,4,3,2,7,6] => [1,5,4,3,2,7,6] => ? = 3 - 1
[1,4,5,2,6,3,7] => [1,6,4,3,5,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,4,5,3,2,6,7] => [1,5,4,3,2,6,7] => [1,5,4,3,2,6,7] => [1,5,4,3,2,6,7] => ? = 4 - 1
[1,4,5,3,2,7,6] => [1,5,4,3,2,7,6] => [1,5,4,3,2,7,6] => [1,5,4,3,2,7,6] => ? = 3 - 1
[1,4,5,3,6,2,7] => [1,6,4,3,5,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,4,5,6,2,3,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,4,5,6,3,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,4,6,2,3,5,7] => [1,5,6,4,2,3,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,4,6,2,5,3,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,4,6,3,2,5,7] => [1,5,6,4,2,3,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,4,6,3,5,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,4,6,5,2,3,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,4,6,5,3,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,5,2,3,4,6,7] => [1,5,3,4,2,6,7] => [1,5,4,3,2,6,7] => [1,5,4,3,2,6,7] => ? = 4 - 1
[1,5,2,3,4,7,6] => [1,5,3,4,2,7,6] => [1,5,4,3,2,7,6] => [1,5,4,3,2,7,6] => ? = 3 - 1
[1,5,2,3,6,4,7] => [1,6,3,4,5,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,5,2,4,3,6,7] => [1,5,3,4,2,6,7] => [1,5,4,3,2,6,7] => [1,5,4,3,2,6,7] => ? = 4 - 1
[1,5,2,4,3,7,6] => [1,5,3,4,2,7,6] => [1,5,4,3,2,7,6] => [1,5,4,3,2,7,6] => ? = 3 - 1
[1,5,2,4,6,3,7] => [1,6,3,4,5,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
[1,5,2,6,3,4,7] => [1,6,3,5,4,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 3 - 1
Description
The number of ascents of a permutation.
Matching statistic: St000153
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
St000153: Permutations ⟶ ℤResult quality: 95% ●values known / values provided: 95%●distinct values known / distinct values provided: 100%
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
St000153: Permutations ⟶ ℤResult quality: 95% ●values known / values provided: 95%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => [1] => 1
[1,2] => [1,2] => [1,2] => [1,2] => 2
[2,1] => [2,1] => [2,1] => [2,1] => 1
[1,2,3] => [1,2,3] => [1,2,3] => [1,2,3] => 3
[1,3,2] => [1,3,2] => [1,3,2] => [1,3,2] => 2
[2,1,3] => [2,1,3] => [2,1,3] => [2,1,3] => 2
[2,3,1] => [3,2,1] => [3,2,1] => [3,2,1] => 1
[3,1,2] => [3,2,1] => [3,2,1] => [3,2,1] => 1
[3,2,1] => [3,2,1] => [3,2,1] => [3,2,1] => 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 4
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 3
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 3
[1,3,4,2] => [1,4,3,2] => [1,4,3,2] => [1,4,3,2] => 2
[1,4,2,3] => [1,4,3,2] => [1,4,3,2] => [1,4,3,2] => 2
[1,4,3,2] => [1,4,3,2] => [1,4,3,2] => [1,4,3,2] => 2
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 3
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 2
[2,3,1,4] => [3,2,1,4] => [3,2,1,4] => [3,2,1,4] => 2
[2,3,4,1] => [4,2,3,1] => [4,3,2,1] => [4,3,2,1] => 1
[2,4,1,3] => [3,4,1,2] => [4,3,2,1] => [4,3,2,1] => 1
[2,4,3,1] => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 1
[3,1,2,4] => [3,2,1,4] => [3,2,1,4] => [3,2,1,4] => 2
[3,1,4,2] => [4,2,3,1] => [4,3,2,1] => [4,3,2,1] => 1
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => [3,2,1,4] => 2
[3,2,4,1] => [4,2,3,1] => [4,3,2,1] => [4,3,2,1] => 1
[3,4,1,2] => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 1
[3,4,2,1] => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 1
[4,1,2,3] => [4,2,3,1] => [4,3,2,1] => [4,3,2,1] => 1
[4,1,3,2] => [4,2,3,1] => [4,3,2,1] => [4,3,2,1] => 1
[4,2,1,3] => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 1
[4,2,3,1] => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 1
[4,3,1,2] => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 1
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => 4
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 4
[1,2,4,5,3] => [1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => 3
[1,2,5,3,4] => [1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => 3
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => 3
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 4
[1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 3
[1,3,4,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => 3
[1,3,4,5,2] => [1,5,3,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => 2
[1,3,5,2,4] => [1,4,5,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => 2
[1,3,5,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => 2
[1,4,2,3,5] => [1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => 3
[1,4,2,5,3] => [1,5,3,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => 2
[1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => 3
[1,4,3,5,2] => [1,5,3,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => 2
[1,4,5,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => 2
[1,2,3,4,6,7,5] => [1,2,3,4,7,6,5] => [1,2,3,4,7,6,5] => [1,2,3,4,7,6,5] => ? = 5
[1,2,3,4,7,5,6] => [1,2,3,4,7,6,5] => [1,2,3,4,7,6,5] => [1,2,3,4,7,6,5] => ? = 5
[1,2,3,4,7,6,5] => [1,2,3,4,7,6,5] => [1,2,3,4,7,6,5] => [1,2,3,4,7,6,5] => ? = 5
[1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => ? = 6
[1,2,3,5,4,7,6] => [1,2,3,5,4,7,6] => [1,2,3,5,4,7,6] => [1,2,3,5,4,7,6] => ? = 5
[1,2,3,5,6,4,7] => [1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => ? = 5
[1,2,3,5,6,7,4] => [1,2,3,7,5,6,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4
[1,2,3,5,7,4,6] => [1,2,3,6,7,4,5] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4
[1,2,3,5,7,6,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4
[1,2,3,6,4,5,7] => [1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => ? = 5
[1,2,3,6,4,7,5] => [1,2,3,7,5,6,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4
[1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => ? = 5
[1,2,3,6,5,7,4] => [1,2,3,7,5,6,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4
[1,2,3,6,7,4,5] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4
[1,2,3,6,7,5,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4
[1,2,3,7,4,5,6] => [1,2,3,7,5,6,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4
[1,2,3,7,4,6,5] => [1,2,3,7,5,6,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4
[1,2,3,7,5,4,6] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4
[1,2,3,7,5,6,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4
[1,2,3,7,6,4,5] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4
[1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4
[1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => ? = 6
[1,2,4,3,5,7,6] => [1,2,4,3,5,7,6] => [1,2,4,3,5,7,6] => [1,2,4,3,5,7,6] => ? = 5
[1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => ? = 5
[1,2,4,3,6,7,5] => [1,2,4,3,7,6,5] => [1,2,4,3,7,6,5] => [1,2,4,3,7,6,5] => ? = 4
[1,2,4,3,7,5,6] => [1,2,4,3,7,6,5] => [1,2,4,3,7,6,5] => [1,2,4,3,7,6,5] => ? = 4
[1,2,4,3,7,6,5] => [1,2,4,3,7,6,5] => [1,2,4,3,7,6,5] => [1,2,4,3,7,6,5] => ? = 4
[1,2,4,5,3,6,7] => [1,2,5,4,3,6,7] => [1,2,5,4,3,6,7] => [1,2,5,4,3,6,7] => ? = 5
[1,2,4,5,3,7,6] => [1,2,5,4,3,7,6] => [1,2,5,4,3,7,6] => [1,2,5,4,3,7,6] => ? = 4
[1,2,4,5,6,3,7] => [1,2,6,4,5,3,7] => [1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => ? = 4
[1,2,4,5,6,7,3] => [1,2,7,4,5,6,3] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3
[1,2,4,5,7,3,6] => [1,2,6,4,7,3,5] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3
[1,2,4,5,7,6,3] => [1,2,7,4,6,5,3] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3
[1,2,4,6,3,5,7] => [1,2,5,6,3,4,7] => [1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => ? = 4
[1,2,4,6,3,7,5] => [1,2,5,7,3,6,4] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3
[1,2,4,6,5,3,7] => [1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => ? = 4
[1,2,4,6,5,7,3] => [1,2,7,5,4,6,3] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3
[1,2,4,6,7,3,5] => [1,2,6,7,5,3,4] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3
[1,2,4,6,7,5,3] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3
[1,2,4,7,3,5,6] => [1,2,5,7,3,6,4] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3
[1,2,4,7,3,6,5] => [1,2,5,7,3,6,4] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3
[1,2,4,7,5,3,6] => [1,2,6,7,5,3,4] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3
[1,2,4,7,5,6,3] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3
[1,2,4,7,6,3,5] => [1,2,6,7,5,3,4] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3
[1,2,4,7,6,5,3] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3
[1,2,5,3,4,6,7] => [1,2,5,4,3,6,7] => [1,2,5,4,3,6,7] => [1,2,5,4,3,6,7] => ? = 5
[1,2,5,3,4,7,6] => [1,2,5,4,3,7,6] => [1,2,5,4,3,7,6] => [1,2,5,4,3,7,6] => ? = 4
[1,2,5,3,6,4,7] => [1,2,6,4,5,3,7] => [1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => ? = 4
[1,2,5,3,6,7,4] => [1,2,7,4,5,6,3] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3
[1,2,5,3,7,4,6] => [1,2,6,4,7,3,5] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3
Description
The number of adjacent cycles of a permutation.
This is the number of cycles of the permutation of the form (i,i+1,i+2,...i+k) which includes the fixed points (i).
Matching statistic: St000672
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
St000672: Permutations ⟶ ℤResult quality: 95% ●values known / values provided: 95%●distinct values known / distinct values provided: 100%
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
St000672: Permutations ⟶ ℤResult quality: 95% ●values known / values provided: 95%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => [1] => 0 = 1 - 1
[1,2] => [1,2] => [1,2] => [1,2] => 1 = 2 - 1
[2,1] => [2,1] => [2,1] => [2,1] => 0 = 1 - 1
[1,2,3] => [1,2,3] => [1,2,3] => [1,2,3] => 2 = 3 - 1
[1,3,2] => [1,3,2] => [1,3,2] => [1,3,2] => 1 = 2 - 1
[2,1,3] => [2,1,3] => [2,1,3] => [2,1,3] => 1 = 2 - 1
[2,3,1] => [3,2,1] => [3,2,1] => [3,2,1] => 0 = 1 - 1
[3,1,2] => [3,2,1] => [3,2,1] => [3,2,1] => 0 = 1 - 1
[3,2,1] => [3,2,1] => [3,2,1] => [3,2,1] => 0 = 1 - 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 3 = 4 - 1
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 2 = 3 - 1
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 2 = 3 - 1
[1,3,4,2] => [1,4,3,2] => [1,4,3,2] => [1,4,3,2] => 1 = 2 - 1
[1,4,2,3] => [1,4,3,2] => [1,4,3,2] => [1,4,3,2] => 1 = 2 - 1
[1,4,3,2] => [1,4,3,2] => [1,4,3,2] => [1,4,3,2] => 1 = 2 - 1
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 2 = 3 - 1
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 1 = 2 - 1
[2,3,1,4] => [3,2,1,4] => [3,2,1,4] => [3,2,1,4] => 1 = 2 - 1
[2,3,4,1] => [4,2,3,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[2,4,1,3] => [3,4,1,2] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[2,4,3,1] => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[3,1,2,4] => [3,2,1,4] => [3,2,1,4] => [3,2,1,4] => 1 = 2 - 1
[3,1,4,2] => [4,2,3,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => [3,2,1,4] => 1 = 2 - 1
[3,2,4,1] => [4,2,3,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[3,4,1,2] => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[3,4,2,1] => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[4,1,2,3] => [4,2,3,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[4,1,3,2] => [4,2,3,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[4,2,1,3] => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[4,2,3,1] => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[4,3,1,2] => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 0 = 1 - 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 4 = 5 - 1
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => 3 = 4 - 1
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 3 = 4 - 1
[1,2,4,5,3] => [1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => 2 = 3 - 1
[1,2,5,3,4] => [1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => 2 = 3 - 1
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => 2 = 3 - 1
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 3 = 4 - 1
[1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 2 = 3 - 1
[1,3,4,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => 2 = 3 - 1
[1,3,4,5,2] => [1,5,3,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => 1 = 2 - 1
[1,3,5,2,4] => [1,4,5,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => 1 = 2 - 1
[1,3,5,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => 1 = 2 - 1
[1,4,2,3,5] => [1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => 2 = 3 - 1
[1,4,2,5,3] => [1,5,3,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => 1 = 2 - 1
[1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => 2 = 3 - 1
[1,4,3,5,2] => [1,5,3,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => 1 = 2 - 1
[1,4,5,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => 1 = 2 - 1
[1,2,3,4,6,7,5] => [1,2,3,4,7,6,5] => [1,2,3,4,7,6,5] => [1,2,3,4,7,6,5] => ? = 5 - 1
[1,2,3,4,7,5,6] => [1,2,3,4,7,6,5] => [1,2,3,4,7,6,5] => [1,2,3,4,7,6,5] => ? = 5 - 1
[1,2,3,4,7,6,5] => [1,2,3,4,7,6,5] => [1,2,3,4,7,6,5] => [1,2,3,4,7,6,5] => ? = 5 - 1
[1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => ? = 6 - 1
[1,2,3,5,4,7,6] => [1,2,3,5,4,7,6] => [1,2,3,5,4,7,6] => [1,2,3,5,4,7,6] => ? = 5 - 1
[1,2,3,5,6,4,7] => [1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => ? = 5 - 1
[1,2,3,5,6,7,4] => [1,2,3,7,5,6,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4 - 1
[1,2,3,5,7,4,6] => [1,2,3,6,7,4,5] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4 - 1
[1,2,3,5,7,6,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4 - 1
[1,2,3,6,4,5,7] => [1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => ? = 5 - 1
[1,2,3,6,4,7,5] => [1,2,3,7,5,6,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4 - 1
[1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => ? = 5 - 1
[1,2,3,6,5,7,4] => [1,2,3,7,5,6,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4 - 1
[1,2,3,6,7,4,5] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4 - 1
[1,2,3,6,7,5,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4 - 1
[1,2,3,7,4,5,6] => [1,2,3,7,5,6,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4 - 1
[1,2,3,7,4,6,5] => [1,2,3,7,5,6,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4 - 1
[1,2,3,7,5,4,6] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4 - 1
[1,2,3,7,5,6,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4 - 1
[1,2,3,7,6,4,5] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4 - 1
[1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 4 - 1
[1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => ? = 6 - 1
[1,2,4,3,5,7,6] => [1,2,4,3,5,7,6] => [1,2,4,3,5,7,6] => [1,2,4,3,5,7,6] => ? = 5 - 1
[1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => ? = 5 - 1
[1,2,4,3,6,7,5] => [1,2,4,3,7,6,5] => [1,2,4,3,7,6,5] => [1,2,4,3,7,6,5] => ? = 4 - 1
[1,2,4,3,7,5,6] => [1,2,4,3,7,6,5] => [1,2,4,3,7,6,5] => [1,2,4,3,7,6,5] => ? = 4 - 1
[1,2,4,3,7,6,5] => [1,2,4,3,7,6,5] => [1,2,4,3,7,6,5] => [1,2,4,3,7,6,5] => ? = 4 - 1
[1,2,4,5,3,6,7] => [1,2,5,4,3,6,7] => [1,2,5,4,3,6,7] => [1,2,5,4,3,6,7] => ? = 5 - 1
[1,2,4,5,3,7,6] => [1,2,5,4,3,7,6] => [1,2,5,4,3,7,6] => [1,2,5,4,3,7,6] => ? = 4 - 1
[1,2,4,5,6,3,7] => [1,2,6,4,5,3,7] => [1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => ? = 4 - 1
[1,2,4,5,6,7,3] => [1,2,7,4,5,6,3] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3 - 1
[1,2,4,5,7,3,6] => [1,2,6,4,7,3,5] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3 - 1
[1,2,4,5,7,6,3] => [1,2,7,4,6,5,3] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3 - 1
[1,2,4,6,3,5,7] => [1,2,5,6,3,4,7] => [1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => ? = 4 - 1
[1,2,4,6,3,7,5] => [1,2,5,7,3,6,4] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3 - 1
[1,2,4,6,5,3,7] => [1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => ? = 4 - 1
[1,2,4,6,5,7,3] => [1,2,7,5,4,6,3] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3 - 1
[1,2,4,6,7,3,5] => [1,2,6,7,5,3,4] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3 - 1
[1,2,4,6,7,5,3] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3 - 1
[1,2,4,7,3,5,6] => [1,2,5,7,3,6,4] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3 - 1
[1,2,4,7,3,6,5] => [1,2,5,7,3,6,4] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3 - 1
[1,2,4,7,5,3,6] => [1,2,6,7,5,3,4] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3 - 1
[1,2,4,7,5,6,3] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3 - 1
[1,2,4,7,6,3,5] => [1,2,6,7,5,3,4] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3 - 1
[1,2,4,7,6,5,3] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3 - 1
[1,2,5,3,4,6,7] => [1,2,5,4,3,6,7] => [1,2,5,4,3,6,7] => [1,2,5,4,3,6,7] => ? = 5 - 1
[1,2,5,3,4,7,6] => [1,2,5,4,3,7,6] => [1,2,5,4,3,7,6] => [1,2,5,4,3,7,6] => ? = 4 - 1
[1,2,5,3,6,4,7] => [1,2,6,4,5,3,7] => [1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => ? = 4 - 1
[1,2,5,3,6,7,4] => [1,2,7,4,5,6,3] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3 - 1
[1,2,5,3,7,4,6] => [1,2,6,4,7,3,5] => [1,2,7,6,5,4,3] => [1,2,7,6,5,4,3] => ? = 3 - 1
Description
The number of minimal elements in Bruhat order not less than the permutation.
The minimal elements in question are biGrassmannian, that is
1…r a+1…b r+1…a b+1…
for some (r,a,b).
This is also the size of Fulton's essential set of the reverse permutation, according to [ex.4.7, 2].
Matching statistic: St000237
(load all 13 compositions to match this statistic)
(load all 13 compositions to match this statistic)
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
St000237: Permutations ⟶ ℤResult quality: 87% ●values known / values provided: 87%●distinct values known / distinct values provided: 100%
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
St000237: Permutations ⟶ ℤResult quality: 87% ●values known / values provided: 87%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> [1] => 0 = 1 - 1
[1,2] => [1,2] => [1,0,1,0]
=> [2,1] => 1 = 2 - 1
[2,1] => [2,1] => [1,1,0,0]
=> [1,2] => 0 = 1 - 1
[1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> [2,3,1] => 2 = 3 - 1
[1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1 = 2 - 1
[2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> [1,3,2] => 1 = 2 - 1
[2,3,1] => [3,2,1] => [1,1,1,0,0,0]
=> [1,2,3] => 0 = 1 - 1
[3,1,2] => [3,2,1] => [1,1,1,0,0,0]
=> [1,2,3] => 0 = 1 - 1
[3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> [1,2,3] => 0 = 1 - 1
[1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 3 = 4 - 1
[1,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 2 = 3 - 1
[1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2 = 3 - 1
[1,3,4,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1 = 2 - 1
[1,4,2,3] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1 = 2 - 1
[1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1 = 2 - 1
[2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 2 = 3 - 1
[2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1 = 2 - 1
[2,3,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1 = 2 - 1
[2,3,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[2,4,1,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => 0 = 1 - 1
[2,4,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[3,1,2,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1 = 2 - 1
[3,1,4,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1 = 2 - 1
[3,2,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[3,4,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[3,4,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[4,1,2,3] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[4,1,3,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[4,2,1,3] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[4,2,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[4,3,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0 = 1 - 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => 4 = 5 - 1
[1,2,3,5,4] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => 3 = 4 - 1
[1,2,4,3,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => 3 = 4 - 1
[1,2,4,5,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => 2 = 3 - 1
[1,2,5,3,4] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => 2 = 3 - 1
[1,2,5,4,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => 2 = 3 - 1
[1,3,2,4,5] => [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => 3 = 4 - 1
[1,3,2,5,4] => [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => 2 = 3 - 1
[1,3,4,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => 2 = 3 - 1
[1,3,4,5,2] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => 1 = 2 - 1
[1,3,5,2,4] => [1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => 1 = 2 - 1
[1,3,5,4,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => 1 = 2 - 1
[1,4,2,3,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => 2 = 3 - 1
[1,4,2,5,3] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => 1 = 2 - 1
[1,4,3,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => 2 = 3 - 1
[1,4,3,5,2] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => 1 = 2 - 1
[1,4,5,2,3] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => 1 = 2 - 1
[1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,4,1,6,7,5] => ? = 6 - 1
[1,2,3,5,4,7,6] => [1,2,3,5,4,7,6] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 5 - 1
[1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,3,1,5,6,7,4] => ? = 6 - 1
[1,2,4,3,5,7,6] => [1,2,4,3,5,7,6] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 5 - 1
[1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,3,1,5,4,7,6] => ? = 5 - 1
[1,2,4,3,6,7,5] => [1,2,4,3,7,6,5] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,3,1,5,4,6,7] => ? = 4 - 1
[1,2,4,3,7,5,6] => [1,2,4,3,7,6,5] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,3,1,5,4,6,7] => ? = 4 - 1
[1,2,4,3,7,6,5] => [1,2,4,3,7,6,5] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,3,1,5,4,6,7] => ? = 4 - 1
[1,2,4,5,3,6,7] => [1,2,5,4,3,6,7] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,3,1,4,6,7,5] => ? = 5 - 1
[1,2,4,5,3,7,6] => [1,2,5,4,3,7,6] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,3,1,4,6,5,7] => ? = 4 - 1
[1,2,4,5,6,3,7] => [1,2,6,4,5,3,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,3,1,4,5,7,6] => ? = 4 - 1
[1,2,4,5,7,3,6] => [1,2,6,4,7,3,5] => [1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [2,3,1,7,4,5,6] => ? = 3 - 1
[1,2,4,6,3,5,7] => [1,2,5,6,3,4,7] => [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,3,6,1,4,7,5] => ? = 4 - 1
[1,2,4,6,3,7,5] => [1,2,5,7,3,6,4] => [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,3,6,1,4,5,7] => ? = 3 - 1
[1,2,4,6,5,3,7] => [1,2,6,5,4,3,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,3,1,4,5,7,6] => ? = 4 - 1
[1,2,4,6,7,3,5] => [1,2,6,7,5,3,4] => [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,3,7,1,4,5,6] => ? = 3 - 1
[1,2,4,7,3,5,6] => [1,2,5,7,3,6,4] => [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,3,6,1,4,5,7] => ? = 3 - 1
[1,2,4,7,3,6,5] => [1,2,5,7,3,6,4] => [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,3,6,1,4,5,7] => ? = 3 - 1
[1,2,4,7,5,3,6] => [1,2,6,7,5,3,4] => [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,3,7,1,4,5,6] => ? = 3 - 1
[1,2,4,7,6,3,5] => [1,2,6,7,5,3,4] => [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,3,7,1,4,5,6] => ? = 3 - 1
[1,2,5,3,4,6,7] => [1,2,5,4,3,6,7] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,3,1,4,6,7,5] => ? = 5 - 1
[1,2,5,3,4,7,6] => [1,2,5,4,3,7,6] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,3,1,4,6,5,7] => ? = 4 - 1
[1,2,5,3,6,4,7] => [1,2,6,4,5,3,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,3,1,4,5,7,6] => ? = 4 - 1
[1,2,5,3,7,4,6] => [1,2,6,4,7,3,5] => [1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [2,3,1,7,4,5,6] => ? = 3 - 1
[1,2,5,4,3,6,7] => [1,2,5,4,3,6,7] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,3,1,4,6,7,5] => ? = 5 - 1
[1,2,5,4,3,7,6] => [1,2,5,4,3,7,6] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,3,1,4,6,5,7] => ? = 4 - 1
[1,2,5,4,6,3,7] => [1,2,6,4,5,3,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,3,1,4,5,7,6] => ? = 4 - 1
[1,2,5,4,7,3,6] => [1,2,6,4,7,3,5] => [1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [2,3,1,7,4,5,6] => ? = 3 - 1
[1,2,5,6,3,4,7] => [1,2,6,5,4,3,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,3,1,4,5,7,6] => ? = 4 - 1
[1,2,5,6,4,3,7] => [1,2,6,5,4,3,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,3,1,4,5,7,6] => ? = 4 - 1
[1,2,5,7,3,4,6] => [1,2,6,7,5,3,4] => [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,3,7,1,4,5,6] => ? = 3 - 1
[1,2,5,7,4,3,6] => [1,2,6,7,5,3,4] => [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,3,7,1,4,5,6] => ? = 3 - 1
[1,2,6,3,4,5,7] => [1,2,6,4,5,3,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,3,1,4,5,7,6] => ? = 4 - 1
[1,2,6,3,5,4,7] => [1,2,6,4,5,3,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,3,1,4,5,7,6] => ? = 4 - 1
[1,2,6,4,3,5,7] => [1,2,6,5,4,3,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,3,1,4,5,7,6] => ? = 4 - 1
[1,2,6,4,5,3,7] => [1,2,6,5,4,3,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,3,1,4,5,7,6] => ? = 4 - 1
[1,2,6,5,3,4,7] => [1,2,6,5,4,3,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,3,1,4,5,7,6] => ? = 4 - 1
[1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,3,1,4,5,7,6] => ? = 4 - 1
[1,3,2,4,5,6,7] => [1,3,2,4,5,6,7] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 6 - 1
[1,3,2,4,5,7,6] => [1,3,2,4,5,7,6] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 5 - 1
[1,3,2,4,6,5,7] => [1,3,2,4,6,5,7] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3,7,6] => ? = 5 - 1
[1,3,2,4,6,7,5] => [1,3,2,4,7,6,5] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,4,5,3,6,7] => ? = 4 - 1
[1,3,2,4,7,5,6] => [1,3,2,4,7,6,5] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,4,5,3,6,7] => ? = 4 - 1
[1,3,2,4,7,6,5] => [1,3,2,4,7,6,5] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,4,5,3,6,7] => ? = 4 - 1
[1,3,2,5,4,6,7] => [1,3,2,5,4,6,7] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,6,7,5] => ? = 5 - 1
[1,3,2,5,4,7,6] => [1,3,2,5,4,7,6] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5,7] => ? = 4 - 1
[1,3,2,5,6,4,7] => [1,3,2,6,5,4,7] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,4,3,5,7,6] => ? = 4 - 1
[1,3,2,5,6,7,4] => [1,3,2,7,5,6,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => ? = 3 - 1
[1,3,2,5,7,4,6] => [1,3,2,6,7,4,5] => [1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,1,4,7,3,5,6] => ? = 3 - 1
[1,3,2,5,7,6,4] => [1,3,2,7,6,5,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => ? = 3 - 1
Description
The number of small exceedances.
This is the number of indices i such that πi=i+1.
Matching statistic: St000546
(load all 356 compositions to match this statistic)
(load all 356 compositions to match this statistic)
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
St000546: Permutations ⟶ ℤResult quality: 86% ●values known / values provided: 86%●distinct values known / distinct values provided: 100%
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
St000546: Permutations ⟶ ℤResult quality: 86% ●values known / values provided: 86%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => [1] => 0 = 1 - 1
[1,2] => [1,2] => [1,2] => [2,1] => 1 = 2 - 1
[2,1] => [2,1] => [2,1] => [1,2] => 0 = 1 - 1
[1,2,3] => [1,2,3] => [1,2,3] => [3,2,1] => 2 = 3 - 1
[1,3,2] => [1,3,2] => [1,3,2] => [3,1,2] => 1 = 2 - 1
[2,1,3] => [2,1,3] => [2,1,3] => [2,3,1] => 1 = 2 - 1
[2,3,1] => [3,2,1] => [3,2,1] => [1,2,3] => 0 = 1 - 1
[3,1,2] => [3,2,1] => [3,2,1] => [1,2,3] => 0 = 1 - 1
[3,2,1] => [3,2,1] => [3,2,1] => [1,2,3] => 0 = 1 - 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => [4,3,2,1] => 3 = 4 - 1
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => [4,3,1,2] => 2 = 3 - 1
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => [4,2,3,1] => 2 = 3 - 1
[1,3,4,2] => [1,4,3,2] => [1,4,3,2] => [4,1,2,3] => 1 = 2 - 1
[1,4,2,3] => [1,4,3,2] => [1,4,3,2] => [4,1,2,3] => 1 = 2 - 1
[1,4,3,2] => [1,4,3,2] => [1,4,3,2] => [4,1,2,3] => 1 = 2 - 1
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => [3,4,2,1] => 2 = 3 - 1
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => [3,4,1,2] => 1 = 2 - 1
[2,3,1,4] => [3,2,1,4] => [3,2,1,4] => [2,3,4,1] => 1 = 2 - 1
[2,3,4,1] => [4,2,3,1] => [4,3,2,1] => [1,2,3,4] => 0 = 1 - 1
[2,4,1,3] => [3,4,1,2] => [4,3,2,1] => [1,2,3,4] => 0 = 1 - 1
[2,4,3,1] => [4,3,2,1] => [4,3,2,1] => [1,2,3,4] => 0 = 1 - 1
[3,1,2,4] => [3,2,1,4] => [3,2,1,4] => [2,3,4,1] => 1 = 2 - 1
[3,1,4,2] => [4,2,3,1] => [4,3,2,1] => [1,2,3,4] => 0 = 1 - 1
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => [2,3,4,1] => 1 = 2 - 1
[3,2,4,1] => [4,2,3,1] => [4,3,2,1] => [1,2,3,4] => 0 = 1 - 1
[3,4,1,2] => [4,3,2,1] => [4,3,2,1] => [1,2,3,4] => 0 = 1 - 1
[3,4,2,1] => [4,3,2,1] => [4,3,2,1] => [1,2,3,4] => 0 = 1 - 1
[4,1,2,3] => [4,2,3,1] => [4,3,2,1] => [1,2,3,4] => 0 = 1 - 1
[4,1,3,2] => [4,2,3,1] => [4,3,2,1] => [1,2,3,4] => 0 = 1 - 1
[4,2,1,3] => [4,3,2,1] => [4,3,2,1] => [1,2,3,4] => 0 = 1 - 1
[4,2,3,1] => [4,3,2,1] => [4,3,2,1] => [1,2,3,4] => 0 = 1 - 1
[4,3,1,2] => [4,3,2,1] => [4,3,2,1] => [1,2,3,4] => 0 = 1 - 1
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => [1,2,3,4] => 0 = 1 - 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 4 = 5 - 1
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => [5,4,3,1,2] => 3 = 4 - 1
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => [5,4,2,3,1] => 3 = 4 - 1
[1,2,4,5,3] => [1,2,5,4,3] => [1,2,5,4,3] => [5,4,1,2,3] => 2 = 3 - 1
[1,2,5,3,4] => [1,2,5,4,3] => [1,2,5,4,3] => [5,4,1,2,3] => 2 = 3 - 1
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => [5,4,1,2,3] => 2 = 3 - 1
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => [5,3,4,2,1] => 3 = 4 - 1
[1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => [5,3,4,1,2] => 2 = 3 - 1
[1,3,4,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => [5,2,3,4,1] => 2 = 3 - 1
[1,3,4,5,2] => [1,5,3,4,2] => [1,5,4,3,2] => [5,1,2,3,4] => 1 = 2 - 1
[1,3,5,2,4] => [1,4,5,2,3] => [1,5,4,3,2] => [5,1,2,3,4] => 1 = 2 - 1
[1,3,5,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => [5,1,2,3,4] => 1 = 2 - 1
[1,4,2,3,5] => [1,4,3,2,5] => [1,4,3,2,5] => [5,2,3,4,1] => 2 = 3 - 1
[1,4,2,5,3] => [1,5,3,4,2] => [1,5,4,3,2] => [5,1,2,3,4] => 1 = 2 - 1
[1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => [5,2,3,4,1] => 2 = 3 - 1
[1,4,3,5,2] => [1,5,3,4,2] => [1,5,4,3,2] => [5,1,2,3,4] => 1 = 2 - 1
[1,4,5,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => [5,1,2,3,4] => 1 = 2 - 1
[1,2,3,4,6,5,7] => [1,2,3,4,6,5,7] => [1,2,3,4,6,5,7] => [7,6,5,4,2,3,1] => ? = 6 - 1
[1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => [7,6,5,3,4,2,1] => ? = 6 - 1
[1,2,3,5,6,4,7] => [1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => [7,6,5,2,3,4,1] => ? = 5 - 1
[1,2,3,6,4,5,7] => [1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => [7,6,5,2,3,4,1] => ? = 5 - 1
[1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => [7,6,5,2,3,4,1] => ? = 5 - 1
[1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => [7,6,4,5,3,2,1] => ? = 6 - 1
[1,2,4,3,5,7,6] => [1,2,4,3,5,7,6] => [1,2,4,3,5,7,6] => [7,6,4,5,3,1,2] => ? = 5 - 1
[1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => [7,6,4,5,2,3,1] => ? = 5 - 1
[1,2,4,5,3,6,7] => [1,2,5,4,3,6,7] => [1,2,5,4,3,6,7] => [7,6,3,4,5,2,1] => ? = 5 - 1
[1,2,4,5,3,7,6] => [1,2,5,4,3,7,6] => [1,2,5,4,3,7,6] => [7,6,3,4,5,1,2] => ? = 4 - 1
[1,2,4,5,6,3,7] => [1,2,6,4,5,3,7] => [1,2,6,5,4,3,7] => [7,6,2,3,4,5,1] => ? = 4 - 1
[1,2,4,6,3,5,7] => [1,2,5,6,3,4,7] => [1,2,6,5,4,3,7] => [7,6,2,3,4,5,1] => ? = 4 - 1
[1,2,4,6,5,3,7] => [1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => [7,6,2,3,4,5,1] => ? = 4 - 1
[1,2,5,3,4,6,7] => [1,2,5,4,3,6,7] => [1,2,5,4,3,6,7] => [7,6,3,4,5,2,1] => ? = 5 - 1
[1,2,5,3,4,7,6] => [1,2,5,4,3,7,6] => [1,2,5,4,3,7,6] => [7,6,3,4,5,1,2] => ? = 4 - 1
[1,2,5,3,6,4,7] => [1,2,6,4,5,3,7] => [1,2,6,5,4,3,7] => [7,6,2,3,4,5,1] => ? = 4 - 1
[1,2,5,4,3,6,7] => [1,2,5,4,3,6,7] => [1,2,5,4,3,6,7] => [7,6,3,4,5,2,1] => ? = 5 - 1
[1,2,5,4,3,7,6] => [1,2,5,4,3,7,6] => [1,2,5,4,3,7,6] => [7,6,3,4,5,1,2] => ? = 4 - 1
[1,2,5,4,6,3,7] => [1,2,6,4,5,3,7] => [1,2,6,5,4,3,7] => [7,6,2,3,4,5,1] => ? = 4 - 1
[1,2,5,6,3,4,7] => [1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => [7,6,2,3,4,5,1] => ? = 4 - 1
[1,2,5,6,4,3,7] => [1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => [7,6,2,3,4,5,1] => ? = 4 - 1
[1,2,6,3,4,5,7] => [1,2,6,4,5,3,7] => [1,2,6,5,4,3,7] => [7,6,2,3,4,5,1] => ? = 4 - 1
[1,2,6,3,5,4,7] => [1,2,6,4,5,3,7] => [1,2,6,5,4,3,7] => [7,6,2,3,4,5,1] => ? = 4 - 1
[1,2,6,4,3,5,7] => [1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => [7,6,2,3,4,5,1] => ? = 4 - 1
[1,2,6,4,5,3,7] => [1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => [7,6,2,3,4,5,1] => ? = 4 - 1
[1,2,6,5,3,4,7] => [1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => [7,6,2,3,4,5,1] => ? = 4 - 1
[1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => [7,6,2,3,4,5,1] => ? = 4 - 1
[1,3,2,4,5,6,7] => [1,3,2,4,5,6,7] => [1,3,2,4,5,6,7] => [7,5,6,4,3,2,1] => ? = 6 - 1
[1,3,2,4,5,7,6] => [1,3,2,4,5,7,6] => [1,3,2,4,5,7,6] => [7,5,6,4,3,1,2] => ? = 5 - 1
[1,3,2,4,6,5,7] => [1,3,2,4,6,5,7] => [1,3,2,4,6,5,7] => [7,5,6,4,2,3,1] => ? = 5 - 1
[1,3,2,4,6,7,5] => [1,3,2,4,7,6,5] => [1,3,2,4,7,6,5] => [7,5,6,4,1,2,3] => ? = 4 - 1
[1,3,2,4,7,5,6] => [1,3,2,4,7,6,5] => [1,3,2,4,7,6,5] => [7,5,6,4,1,2,3] => ? = 4 - 1
[1,3,2,4,7,6,5] => [1,3,2,4,7,6,5] => [1,3,2,4,7,6,5] => [7,5,6,4,1,2,3] => ? = 4 - 1
[1,3,2,5,4,6,7] => [1,3,2,5,4,6,7] => [1,3,2,5,4,6,7] => [7,5,6,3,4,2,1] => ? = 5 - 1
[1,3,2,5,6,4,7] => [1,3,2,6,5,4,7] => [1,3,2,6,5,4,7] => [7,5,6,2,3,4,1] => ? = 4 - 1
[1,3,2,6,4,5,7] => [1,3,2,6,5,4,7] => [1,3,2,6,5,4,7] => [7,5,6,2,3,4,1] => ? = 4 - 1
[1,3,2,6,5,4,7] => [1,3,2,6,5,4,7] => [1,3,2,6,5,4,7] => [7,5,6,2,3,4,1] => ? = 4 - 1
[1,3,4,2,5,6,7] => [1,4,3,2,5,6,7] => [1,4,3,2,5,6,7] => [7,4,5,6,3,2,1] => ? = 5 - 1
[1,3,4,2,5,7,6] => [1,4,3,2,5,7,6] => [1,4,3,2,5,7,6] => [7,4,5,6,3,1,2] => ? = 4 - 1
[1,3,4,2,6,5,7] => [1,4,3,2,6,5,7] => [1,4,3,2,6,5,7] => [7,4,5,6,2,3,1] => ? = 4 - 1
[1,3,4,5,2,6,7] => [1,5,3,4,2,6,7] => [1,5,4,3,2,6,7] => [7,3,4,5,6,2,1] => ? = 4 - 1
[1,3,4,5,2,7,6] => [1,5,3,4,2,7,6] => [1,5,4,3,2,7,6] => [7,3,4,5,6,1,2] => ? = 3 - 1
[1,3,4,5,6,2,7] => [1,6,3,4,5,2,7] => [1,6,5,4,3,2,7] => [7,2,3,4,5,6,1] => ? = 3 - 1
[1,3,4,5,6,7,2] => [1,7,3,4,5,6,2] => [1,7,6,4,5,3,2] => [7,1,2,4,3,5,6] => ? = 2 - 1
[1,3,4,5,7,2,6] => [1,6,3,4,7,2,5] => [1,7,6,4,5,3,2] => [7,1,2,4,3,5,6] => ? = 2 - 1
[1,3,4,5,7,6,2] => [1,7,3,4,6,5,2] => [1,7,6,4,5,3,2] => [7,1,2,4,3,5,6] => ? = 2 - 1
[1,3,4,6,2,5,7] => [1,5,3,6,2,4,7] => [1,6,5,4,3,2,7] => [7,2,3,4,5,6,1] => ? = 3 - 1
[1,3,4,6,2,7,5] => [1,5,3,7,2,6,4] => [1,7,5,6,3,4,2] => [7,1,3,2,5,4,6] => ? = 2 - 1
[1,3,4,6,5,2,7] => [1,6,3,5,4,2,7] => [1,6,5,4,3,2,7] => [7,2,3,4,5,6,1] => ? = 3 - 1
[1,3,4,7,2,5,6] => [1,5,3,7,2,6,4] => [1,7,5,6,3,4,2] => [7,1,3,2,5,4,6] => ? = 2 - 1
Description
The number of global descents of a permutation.
The global descents are the integers in the set
C(π)={i∈[n−1]:∀1≤j≤i<k≤n:π(j)>π(k)}.
In particular, if i∈C(π) then i is a descent.
For the number of global ascents, see [[St000234]].
Matching statistic: St000007
(load all 24 compositions to match this statistic)
(load all 24 compositions to match this statistic)
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000007: Permutations ⟶ ℤResult quality: 83% ●values known / values provided: 83%●distinct values known / distinct values provided: 100%
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000007: Permutations ⟶ ℤResult quality: 83% ●values known / values provided: 83%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> [1] => 1
[1,2] => [1,2] => [1,0,1,0]
=> [2,1] => 2
[2,1] => [2,1] => [1,1,0,0]
=> [1,2] => 1
[1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> [3,2,1] => 3
[1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> [2,3,1] => 2
[2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> [3,1,2] => 2
[2,3,1] => [3,2,1] => [1,1,1,0,0,0]
=> [1,2,3] => 1
[3,1,2] => [3,2,1] => [1,1,1,0,0,0]
=> [1,2,3] => 1
[3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> [1,2,3] => 1
[1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 4
[1,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 3
[1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 3
[1,3,4,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 2
[1,4,2,3] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 2
[1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 2
[2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 3
[2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 2
[2,3,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 2
[2,3,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[2,4,1,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1
[2,4,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[3,1,2,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 2
[3,1,4,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 2
[3,2,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[3,4,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[3,4,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[4,1,2,3] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[4,1,3,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[4,2,1,3] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[4,2,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[4,3,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => 5
[1,2,3,5,4] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => 4
[1,2,4,3,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => 4
[1,2,4,5,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 3
[1,2,5,3,4] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 3
[1,2,5,4,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 3
[1,3,2,4,5] => [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => 4
[1,3,2,5,4] => [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 3
[1,3,4,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 3
[1,3,4,5,2] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 2
[1,3,5,2,4] => [1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 2
[1,3,5,4,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 2
[1,4,2,3,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 3
[1,4,2,5,3] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 2
[1,4,3,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 3
[1,4,3,5,2] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 2
[1,4,5,2,3] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 2
[1,2,3,4,5,7,6] => [1,2,3,4,5,7,6] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,7,5,4,3,2,1] => ? = 6
[1,2,3,4,6,5,7] => [1,2,3,4,6,5,7] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,6,4,3,2,1] => ? = 6
[1,2,3,4,6,7,5] => [1,2,3,4,7,6,5] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,3,2,1] => ? = 5
[1,2,3,4,7,5,6] => [1,2,3,4,7,6,5] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,3,2,1] => ? = 5
[1,2,3,4,7,6,5] => [1,2,3,4,7,6,5] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,6,7,4,3,2,1] => ? = 5
[1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,5,3,2,1] => ? = 6
[1,2,3,5,4,7,6] => [1,2,3,5,4,7,6] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [6,7,4,5,3,2,1] => ? = 5
[1,2,3,5,6,4,7] => [1,2,3,6,5,4,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,3,2,1] => ? = 5
[1,2,3,5,6,7,4] => [1,2,3,7,5,6,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => ? = 4
[1,2,3,5,7,4,6] => [1,2,3,6,7,4,5] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [5,4,6,7,3,2,1] => ? = 4
[1,2,3,5,7,6,4] => [1,2,3,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => ? = 4
[1,2,3,6,4,5,7] => [1,2,3,6,5,4,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,3,2,1] => ? = 5
[1,2,3,6,4,7,5] => [1,2,3,7,5,6,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => ? = 4
[1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [7,4,5,6,3,2,1] => ? = 5
[1,2,3,6,5,7,4] => [1,2,3,7,5,6,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => ? = 4
[1,2,3,6,7,4,5] => [1,2,3,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => ? = 4
[1,2,3,6,7,5,4] => [1,2,3,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => ? = 4
[1,2,3,7,4,5,6] => [1,2,3,7,5,6,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => ? = 4
[1,2,3,7,4,6,5] => [1,2,3,7,5,6,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => ? = 4
[1,2,3,7,5,4,6] => [1,2,3,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => ? = 4
[1,2,3,7,5,6,4] => [1,2,3,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => ? = 4
[1,2,3,7,6,4,5] => [1,2,3,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => ? = 4
[1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => ? = 4
[1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,4,2,1] => ? = 6
[1,2,4,3,5,7,6] => [1,2,4,3,5,7,6] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [6,7,5,3,4,2,1] => ? = 5
[1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [7,5,6,3,4,2,1] => ? = 5
[1,2,4,3,6,7,5] => [1,2,4,3,7,6,5] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [5,6,7,3,4,2,1] => ? = 4
[1,2,4,3,7,5,6] => [1,2,4,3,7,6,5] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [5,6,7,3,4,2,1] => ? = 4
[1,2,4,3,7,6,5] => [1,2,4,3,7,6,5] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [5,6,7,3,4,2,1] => ? = 4
[1,2,4,5,3,6,7] => [1,2,5,4,3,6,7] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [7,6,3,4,5,2,1] => ? = 5
[1,2,4,5,3,7,6] => [1,2,5,4,3,7,6] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [6,7,3,4,5,2,1] => ? = 4
[1,2,4,5,6,3,7] => [1,2,6,4,5,3,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [7,3,4,5,6,2,1] => ? = 4
[1,2,4,5,6,7,3] => [1,2,7,4,5,6,3] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,7,2,1] => ? = 3
[1,2,4,5,7,3,6] => [1,2,6,4,7,3,5] => [1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [5,3,4,6,7,2,1] => ? = 3
[1,2,4,5,7,6,3] => [1,2,7,4,6,5,3] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,7,2,1] => ? = 3
[1,2,4,6,3,5,7] => [1,2,5,6,3,4,7] => [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,4,3,5,6,2,1] => ? = 4
[1,2,4,6,3,7,5] => [1,2,5,7,3,6,4] => [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [4,5,3,6,7,2,1] => ? = 3
[1,2,4,6,5,3,7] => [1,2,6,5,4,3,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [7,3,4,5,6,2,1] => ? = 4
[1,2,4,6,5,7,3] => [1,2,7,5,4,6,3] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,7,2,1] => ? = 3
[1,2,4,6,7,3,5] => [1,2,6,7,5,3,4] => [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [4,3,5,6,7,2,1] => ? = 3
[1,2,4,6,7,5,3] => [1,2,7,6,5,4,3] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,7,2,1] => ? = 3
[1,2,4,7,3,5,6] => [1,2,5,7,3,6,4] => [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [4,5,3,6,7,2,1] => ? = 3
[1,2,4,7,3,6,5] => [1,2,5,7,3,6,4] => [1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [4,5,3,6,7,2,1] => ? = 3
[1,2,4,7,5,3,6] => [1,2,6,7,5,3,4] => [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [4,3,5,6,7,2,1] => ? = 3
[1,2,4,7,5,6,3] => [1,2,7,6,5,4,3] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,7,2,1] => ? = 3
[1,2,4,7,6,3,5] => [1,2,6,7,5,3,4] => [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [4,3,5,6,7,2,1] => ? = 3
[1,2,4,7,6,5,3] => [1,2,7,6,5,4,3] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,4,5,6,7,2,1] => ? = 3
[1,2,5,3,4,6,7] => [1,2,5,4,3,6,7] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [7,6,3,4,5,2,1] => ? = 5
[1,2,5,3,4,7,6] => [1,2,5,4,3,7,6] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [6,7,3,4,5,2,1] => ? = 4
[1,2,5,3,6,4,7] => [1,2,6,4,5,3,7] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [7,3,4,5,6,2,1] => ? = 4
Description
The number of saliances of the permutation.
A saliance is a right-to-left maximum. This can be described as an occurrence of the mesh pattern ([1],(1,1)), i.e., the upper right quadrant is shaded, see [1].
The following 119 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000675The number of centered multitunnels of a Dyck path. St000010The length of the partition. St000097The order of the largest clique of the graph. St000288The number of ones in a binary word. St001581The achromatic number of a graph. St000306The bounce count of a Dyck path. St000383The last part of an integer composition. St001050The number of terminal closers of a set partition. St000069The number of maximal elements of a poset. St000678The number of up steps after the last double rise of a Dyck path. St000068The number of minimal elements in a poset. St000054The first entry of the permutation. St000147The largest part of an integer partition. St000378The diagonal inversion number of an integer partition. St000733The row containing the largest entry of a standard tableau. St000157The number of descents of a standard tableau. St000648The number of 2-excedences of a permutation. St000098The chromatic number of a graph. St000971The smallest closer of a set partition. St000504The cardinality of the first block of a set partition. St000502The number of successions of a set partitions. St000025The number of initial rises of a Dyck path. St001068Number of torsionless simple modules in the corresponding Nakayama algebra. St001203We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c0,c1,...,cn−1] such that n=c0<ci for all i>0 a Dyck path as follows:
St001494The Alon-Tarsi number of a graph. St000053The number of valleys of the Dyck path. St000234The number of global ascents of a permutation. St001028Number of simple modules with injective dimension equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path. St001197The global dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001506Half the projective dimension of the unique simple module with even projective dimension in a magnitude 1 Nakayama algebra. St000172The Grundy number of a graph. St001029The size of the core of a graph. St001580The acyclic chromatic number of a graph. St001670The connected partition number of a graph. St000272The treewidth of a graph. St000362The size of a minimal vertex cover of a graph. St000536The pathwidth of a graph. St001302The number of minimally dominating sets of vertices of a graph. St001304The number of maximally independent sets of vertices of a graph. St001963The tree-depth of a graph. St001277The degeneracy of a graph. St001358The largest degree of a regular subgraph of a graph. St000273The domination number of a graph. St000544The cop number of a graph. St000916The packing number of a graph. St001829The common independence number of a graph. St001363The Euler characteristic of a graph according to Knill. St000717The number of ordinal summands of a poset. St000843The decomposition number of a perfect matching. St000287The number of connected components of a graph. St001828The Euler characteristic of a graph. St000286The number of connected components of the complement of a graph. St000553The number of blocks of a graph. St000906The length of the shortest maximal chain in a poset. St000996The number of exclusive left-to-right maxima of a permutation. St001004The number of indices that are either left-to-right maxima or right-to-left minima. St000542The number of left-to-right-minima of a permutation. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St001322The size of a minimal independent dominating set in a graph. St001339The irredundance number of a graph. St000908The length of the shortest maximal antichain in a poset. St000914The sum of the values of the Möbius function of a poset. St001330The hat guessing number of a graph. St000989The number of final rises of a permutation. St000838The number of terminal right-hand endpoints when the vertices are written in order. St000456The monochromatic index of a connected graph. St001199The dominant dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St000990The first ascent of a permutation. St000654The first descent of a permutation. St001461The number of topologically connected components of the chord diagram of a permutation. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St000740The last entry of a permutation. St000308The height of the tree associated to a permutation. St000066The column of the unique '1' in the first row of the alternating sign matrix. St000297The number of leading ones in a binary word. St000738The first entry in the last row of a standard tableau. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St000056The decomposition (or block) number of a permutation. St000084The number of subtrees. St000991The number of right-to-left minima of a permutation. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St000015The number of peaks of a Dyck path. St000062The length of the longest increasing subsequence of the permutation. St000239The number of small weak excedances. St000314The number of left-to-right-maxima of a permutation. St000374The number of exclusive right-to-left minima of a permutation. St000822The Hadwiger number of the graph. St001201The grade of the simple module S0 in the special CNakayama algebra corresponding to the Dyck path. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series L=[c0,c1,...,cn−1] such that n=c0<ci for all i>0 a special CNakayama algebra. St000883The number of longest increasing subsequences of a permutation. St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001205The number of non-simple indecomposable projective-injective modules of the algebra eAe in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001225The vector space dimension of the first extension group between J and itself when J is the Jacobson radical of the corresponding Nakayama algebra. St001278The number of indecomposable modules that are fixed by τΩ1 composed with its inverse in the corresponding Nakayama algebra. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St000061The number of nodes on the left branch of a binary tree. St001812The biclique partition number of a graph. St000773The multiplicity of the largest Laplacian eigenvalue in a graph. St001965The number of decreasable positions in the corner sum matrix of an alternating sign matrix. St000924The number of topologically connected components of a perfect matching. St000181The number of connected components of the Hasse diagram for the poset. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000732The number of double deficiencies of a permutation. St001005The number of indices for a permutation that are either left-to-right maxima or right-to-left minima but not both. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St000898The number of maximal entries in the last diagonal of the monotone triangle. St001570The minimal number of edges to add to make a graph Hamiltonian. St001613The binary logarithm of the size of the center of a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St001889The size of the connectivity set of a signed permutation. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St000942The number of critical left to right maxima of the parking functions. St001773The number of minimal elements in Bruhat order not less than the signed permutation. St001935The number of ascents in a parking function.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!