Processing math: 100%

Your data matches 12 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001394: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,2] => 0
[2,1] => 0
[1,2,3] => 0
[1,3,2] => 0
[2,1,3] => 0
[2,3,1] => 0
[3,1,2] => 1
[3,2,1] => 0
[1,2,3,4] => 0
[1,2,4,3] => 0
[1,3,2,4] => 0
[1,3,4,2] => 0
[1,4,2,3] => 1
[1,4,3,2] => 0
[2,1,3,4] => 0
[2,1,4,3] => 0
[2,3,1,4] => 0
[2,3,4,1] => 0
[2,4,1,3] => 1
[2,4,3,1] => 0
[3,1,2,4] => 1
[3,1,4,2] => 1
[3,2,1,4] => 0
[3,2,4,1] => 0
[3,4,1,2] => 1
[3,4,2,1] => 1
[4,1,2,3] => 1
[4,1,3,2] => 1
[4,2,1,3] => 1
[4,2,3,1] => 0
[4,3,1,2] => 1
[4,3,2,1] => 0
[1,2,3,4,5] => 0
[1,2,3,5,4] => 0
[1,2,4,3,5] => 0
[1,2,4,5,3] => 0
[1,2,5,3,4] => 1
[1,2,5,4,3] => 0
[1,3,2,4,5] => 0
[1,3,2,5,4] => 0
[1,3,4,2,5] => 0
[1,3,4,5,2] => 0
[1,3,5,2,4] => 1
[1,3,5,4,2] => 0
[1,4,2,3,5] => 1
[1,4,2,5,3] => 1
[1,4,3,2,5] => 0
[1,4,3,5,2] => 0
[1,4,5,2,3] => 1
Description
The genus of a permutation. The genus g(π) of a permutation πSn is defined via the relation n+12g(π)=z(π)+z(π1ζ), where ζ=(1,2,,n) is the long cycle and z() is the number of cycles in the permutation.
Matching statistic: St000259
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00160: Permutations graph of inversionsGraphs
Mp00247: Graphs de-duplicateGraphs
St000259: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 17%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 0
[1,2] => [1,2] => ([],2)
=> ([],1)
=> 0
[2,1] => [1,2] => ([],2)
=> ([],1)
=> 0
[1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[1,3,2] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,1,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,3,1] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,2,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,2,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,4,2] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[2,1,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,1,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,1,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,4,1] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,5,3,2] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[1,5,2,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,5,3,2,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,5,4,2,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,5,3,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[2,5,1,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,5,3,1,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,5,4,1,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,6,3] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,6,2] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Matching statistic: St000260
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00160: Permutations graph of inversionsGraphs
Mp00247: Graphs de-duplicateGraphs
St000260: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 17%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 0
[1,2] => [1,2] => ([],2)
=> ([],1)
=> 0
[2,1] => [1,2] => ([],2)
=> ([],1)
=> 0
[1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[1,3,2] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,1,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,3,1] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,2,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,2,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,4,2] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[2,1,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,1,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,1,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,4,1] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,5,3,2] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[1,5,2,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,5,3,2,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,5,4,2,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,5,3,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[2,5,1,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,5,3,1,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,5,4,1,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,6,3] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,6,2] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
Description
The radius of a connected graph. This is the minimum eccentricity of any vertex.
Matching statistic: St000302
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00160: Permutations graph of inversionsGraphs
Mp00247: Graphs de-duplicateGraphs
St000302: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 17%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 0
[1,2] => [1,2] => ([],2)
=> ([],1)
=> 0
[2,1] => [1,2] => ([],2)
=> ([],1)
=> 0
[1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[1,3,2] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,1,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,3,1] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,2,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,2,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,4,2] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[2,1,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,1,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,1,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,4,1] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,5,3,2] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[1,5,2,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,5,3,2,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,5,4,2,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,5,3,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[2,5,1,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,5,3,1,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,5,4,1,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,6,3] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,6,2] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
Description
The determinant of the distance matrix of a connected graph.
Matching statistic: St000466
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00160: Permutations graph of inversionsGraphs
Mp00247: Graphs de-duplicateGraphs
St000466: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 17%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 0
[1,2] => [1,2] => ([],2)
=> ([],1)
=> 0
[2,1] => [1,2] => ([],2)
=> ([],1)
=> 0
[1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[1,3,2] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,1,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,3,1] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,2,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,2,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,4,2] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[2,1,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,1,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,1,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,4,1] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,5,3,2] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[1,5,2,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,5,3,2,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,5,4,2,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,5,3,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[2,5,1,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,5,3,1,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,5,4,1,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,6,3] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,6,2] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
Description
The Gutman (or modified Schultz) index of a connected graph. This is {u,v}Vd(u)d(v)d(u,v) where d(u) is the degree of vertex u and d(u,v) is the distance between vertices u and v. For trees on n vertices, the modified Schultz index is related to the Wiener index via S(T)=4W(T)(n1)(2n1) [1].
Matching statistic: St000467
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00160: Permutations graph of inversionsGraphs
Mp00247: Graphs de-duplicateGraphs
St000467: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 17%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 0
[1,2] => [1,2] => ([],2)
=> ([],1)
=> 0
[2,1] => [1,2] => ([],2)
=> ([],1)
=> 0
[1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[1,3,2] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,1,3] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[2,3,1] => [1,2,3] => ([],3)
=> ([],1)
=> 0
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,2,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,2,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,3,4,2] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[2,1,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,1,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,1,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,3,4,1] => [1,2,3,4] => ([],4)
=> ([],1)
=> 0
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,4,5,3,2] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[1,5,2,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,5,3,2,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,5,4,2,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,4,5,3,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[2,5,1,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,5,3,1,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[2,5,4,1,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1
[2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,3,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,2,4,5,6,3] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,2,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,2,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[1,3,4,5,6,2] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
[2,1,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 0
Description
The hyper-Wiener index of a connected graph. This is {u,v}Vd(u,v)+d(u,v)2.
Matching statistic: St000771
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00160: Permutations graph of inversionsGraphs
Mp00247: Graphs de-duplicateGraphs
St000771: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 17%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,2] => [1,2] => ([],2)
=> ([],1)
=> 1 = 0 + 1
[2,1] => [1,2] => ([],2)
=> ([],1)
=> 1 = 0 + 1
[1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> 1 = 0 + 1
[1,3,2] => [1,2,3] => ([],3)
=> ([],1)
=> 1 = 0 + 1
[2,1,3] => [1,2,3] => ([],3)
=> ([],1)
=> 1 = 0 + 1
[2,3,1] => [1,2,3] => ([],3)
=> ([],1)
=> 1 = 0 + 1
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 1
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[1,3,2,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,2] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,1,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[2,1,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[2,3,1,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[2,3,4,1] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 1
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 1
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 1
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 1
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,4,5,3,2] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[1,5,2,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,5,3,2,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,5,4,2,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,4,5,3,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[2,5,1,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,5,3,1,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,5,4,1,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,5,6,3] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,2,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,2,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,2,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,2,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,5,6,2] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[2,1,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[2,1,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[2,1,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian (4121141221411214). Its eigenvalues are 0,4,4,6, so the statistic is 2. The path on four vertices has eigenvalues 0,4.7,6,9.2 and therefore statistic 1.
Matching statistic: St000772
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00160: Permutations graph of inversionsGraphs
Mp00247: Graphs de-duplicateGraphs
St000772: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 17%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,2] => [1,2] => ([],2)
=> ([],1)
=> 1 = 0 + 1
[2,1] => [1,2] => ([],2)
=> ([],1)
=> 1 = 0 + 1
[1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> 1 = 0 + 1
[1,3,2] => [1,2,3] => ([],3)
=> ([],1)
=> 1 = 0 + 1
[2,1,3] => [1,2,3] => ([],3)
=> ([],1)
=> 1 = 0 + 1
[2,3,1] => [1,2,3] => ([],3)
=> ([],1)
=> 1 = 0 + 1
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 1
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[1,3,2,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,2] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,1,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[2,1,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[2,3,1,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[2,3,4,1] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 1
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 1
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 1
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 1
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,4,5,3,2] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[1,5,2,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,5,3,2,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,5,4,2,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,4,5,3,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[2,5,1,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,5,3,1,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,5,4,1,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,5,6,3] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,2,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,2,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,2,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,2,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,5,6,2] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[2,1,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[2,1,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[2,1,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian (4121141221411214). Its eigenvalues are 0,4,4,6, so the statistic is 1. The path on four vertices has eigenvalues 0,4.7,6,9.2 and therefore also statistic 1. The graphs with statistic n1, n2 and n3 have been characterised, see [1].
Matching statistic: St000777
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00160: Permutations graph of inversionsGraphs
Mp00247: Graphs de-duplicateGraphs
St000777: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 17%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,2] => [1,2] => ([],2)
=> ([],1)
=> 1 = 0 + 1
[2,1] => [1,2] => ([],2)
=> ([],1)
=> 1 = 0 + 1
[1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> 1 = 0 + 1
[1,3,2] => [1,2,3] => ([],3)
=> ([],1)
=> 1 = 0 + 1
[2,1,3] => [1,2,3] => ([],3)
=> ([],1)
=> 1 = 0 + 1
[2,3,1] => [1,2,3] => ([],3)
=> ([],1)
=> 1 = 0 + 1
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 1
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[1,3,2,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,2] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,1,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[2,1,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[2,3,1,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[2,3,4,1] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 1
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 1
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 1
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 1
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,4,5,3,2] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[1,5,2,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,5,3,2,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,5,4,2,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,4,5,3,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[2,5,1,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,5,3,1,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,5,4,1,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,5,6,3] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,2,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,2,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,2,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,2,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,5,6,2] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[2,1,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[2,1,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[2,1,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Matching statistic: St001645
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00160: Permutations graph of inversionsGraphs
Mp00247: Graphs de-duplicateGraphs
St001645: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 17%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,2] => [1,2] => ([],2)
=> ([],1)
=> 1 = 0 + 1
[2,1] => [1,2] => ([],2)
=> ([],1)
=> 1 = 0 + 1
[1,2,3] => [1,2,3] => ([],3)
=> ([],1)
=> 1 = 0 + 1
[1,3,2] => [1,2,3] => ([],3)
=> ([],1)
=> 1 = 0 + 1
[2,1,3] => [1,2,3] => ([],3)
=> ([],1)
=> 1 = 0 + 1
[2,3,1] => [1,2,3] => ([],3)
=> ([],1)
=> 1 = 0 + 1
[3,1,2] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 1
[3,2,1] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[1,3,2,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,2] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,4,3,2] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,1,3,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[2,1,4,3] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[2,3,1,4] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[2,3,4,1] => [1,2,3,4] => ([],4)
=> ([],1)
=> 1 = 0 + 1
[2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,4,3,1] => [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 1
[3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[3,2,1,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 1
[3,2,4,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 1
[3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[3,4,2,1] => [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[4,1,3,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[4,2,1,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[4,2,3,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 1
[4,3,1,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 1 + 1
[4,3,2,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,2,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,3,5,4,2] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,4,3,2,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,4,3,5,2] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,4,5,3,2] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[1,5,2,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,5,3,2,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[1,5,3,4,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,5,4,2,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[1,5,4,3,2] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,1,5,4,3] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ([],1)
=> 1 = 0 + 1
[2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,3,5,4,1] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,4,3,1,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,4,3,5,1] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,4,5,3,1] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[2,5,1,4,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,5,3,1,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 1 + 1
[2,5,3,4,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[2,5,4,1,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 1 + 1
[2,5,4,3,1] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 0 + 1
[1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,5,3,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,2,4,5,6,3] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,2,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,2,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,2,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,2,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,2,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,2,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,5,2,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[1,3,4,5,6,2] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[2,1,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[2,1,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
[2,1,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ([],1)
=> 1 = 0 + 1
Description
The pebbling number of a connected graph.
The following 2 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001330The hat guessing number of a graph. St001875The number of simple modules with projective dimension at most 1.