Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000415
Mp00050: Ordered trees to binary tree: right brother = right childBinary trees
Mp00018: Binary trees left border symmetryBinary trees
Mp00015: Binary trees to ordered tree: right child = right brotherOrdered trees
St000415: Ordered trees ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[],[]]
=> [.,[.,.]]
=> [.,[.,.]]
=> [[],[]]
=> 2
[[[]]]
=> [[.,.],.]
=> [[.,.],.]
=> [[[]]]
=> 1
[[],[],[]]
=> [.,[.,[.,.]]]
=> [.,[.,[.,.]]]
=> [[],[],[]]
=> 6
[[],[[]]]
=> [.,[[.,.],.]]
=> [.,[[.,.],.]]
=> [[],[[]]]
=> 2
[[[]],[]]
=> [[.,.],[.,.]]
=> [[.,[.,.]],.]
=> [[[],[]]]
=> 2
[[[],[]]]
=> [[.,[.,.]],.]
=> [[.,.],[.,.]]
=> [[[]],[]]
=> 2
[[[[]]]]
=> [[[.,.],.],.]
=> [[[.,.],.],.]
=> [[[[]]]]
=> 1
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [.,[.,[.,[.,.]]]]
=> [[],[],[],[]]
=> 24
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [.,[.,[[.,.],.]]]
=> [[],[],[[]]]
=> 6
[[],[[]],[]]
=> [.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> [[],[[],[]]]
=> 4
[[],[[],[]]]
=> [.,[[.,[.,.]],.]]
=> [.,[[.,.],[.,.]]]
=> [[],[[]],[]]
=> 6
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [.,[[[.,.],.],.]]
=> [[],[[[]]]]
=> 2
[[[]],[],[]]
=> [[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> [[[],[],[]]]
=> 6
[[[]],[[]]]
=> [[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> [[[],[[]]]]
=> 2
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> [[[],[]],[]]
=> 4
[[[[]]],[]]
=> [[[.,.],.],[.,.]]
=> [[[.,[.,.]],.],.]
=> [[[[],[]]]]
=> 2
[[[],[],[]]]
=> [[.,[.,[.,.]]],.]
=> [[.,.],[.,[.,.]]]
=> [[[]],[],[]]
=> 6
[[[],[[]]]]
=> [[.,[[.,.],.]],.]
=> [[.,.],[[.,.],.]]
=> [[[]],[[]]]
=> 2
[[[[]],[]]]
=> [[[.,.],[.,.]],.]
=> [[[.,.],[.,.]],.]
=> [[[[]],[]]]
=> 2
[[[[],[]]]]
=> [[[.,[.,.]],.],.]
=> [[[.,.],.],[.,.]]
=> [[[[]]],[]]
=> 2
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [[[[.,.],.],.],.]
=> [[[[[]]]]]
=> 1
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [[],[],[],[],[]]
=> 120
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [[],[],[],[[]]]
=> 24
[[],[],[[]],[]]
=> [.,[.,[[.,.],[.,.]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> [[],[],[[],[]]]
=> 12
[[],[],[[],[]]]
=> [.,[.,[[.,[.,.]],.]]]
=> [.,[.,[[.,.],[.,.]]]]
=> [[],[],[[]],[]]
=> 24
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [.,[.,[[[.,.],.],.]]]
=> [[],[],[[[]]]]
=> 6
[[],[[]],[],[]]
=> [.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> [[],[[],[],[]]]
=> 12
[[],[[]],[[]]]
=> [.,[[.,.],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],.]]
=> [[],[[],[[]]]]
=> 4
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [.,[[.,[.,.]],[.,.]]]
=> [[],[[],[]],[]]
=> 12
[[],[[[]]],[]]
=> [.,[[[.,.],.],[.,.]]]
=> [.,[[[.,[.,.]],.],.]]
=> [[],[[[],[]]]]
=> 4
[[],[[],[],[]]]
=> [.,[[.,[.,[.,.]]],.]]
=> [.,[[.,.],[.,[.,.]]]]
=> [[],[[]],[],[]]
=> 24
[[],[[],[[]]]]
=> [.,[[.,[[.,.],.]],.]]
=> [.,[[.,.],[[.,.],.]]]
=> [[],[[]],[[]]]
=> 6
[[],[[[]],[]]]
=> [.,[[[.,.],[.,.]],.]]
=> [.,[[[.,.],[.,.]],.]]
=> [[],[[[]],[]]]
=> 4
[[],[[[],[]]]]
=> [.,[[[.,[.,.]],.],.]]
=> [.,[[[.,.],.],[.,.]]]
=> [[],[[[]]],[]]
=> 6
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [.,[[[[.,.],.],.],.]]
=> [[],[[[[]]]]]
=> 2
[[[]],[],[],[]]
=> [[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> [[[],[],[],[]]]
=> 24
[[[]],[],[[]]]
=> [[.,.],[.,[[.,.],.]]]
=> [[.,[.,[[.,.],.]]],.]
=> [[[],[],[[]]]]
=> 6
[[[]],[[]],[]]
=> [[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> [[[],[[],[]]]]
=> 4
[[[]],[[],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [[.,[[.,.],[.,.]]],.]
=> [[[],[[]],[]]]
=> 6
[[[]],[[[]]]]
=> [[.,.],[[[.,.],.],.]]
=> [[.,[[[.,.],.],.]],.]
=> [[[],[[[]]]]]
=> 2
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> [[[],[],[]],[]]
=> 12
[[[[]]],[],[]]
=> [[[.,.],.],[.,[.,.]]]
=> [[[.,[.,[.,.]]],.],.]
=> [[[[],[],[]]]]
=> 6
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [[.,[[.,.],.]],[.,.]]
=> [[[],[[]]],[]]
=> 4
[[[[]]],[[]]]
=> [[[.,.],.],[[.,.],.]]
=> [[[.,[[.,.],.]],.],.]
=> [[[[],[[]]]]]
=> 2
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [[.,[.,.]],[.,[.,.]]]
=> [[[],[]],[],[]]
=> 12
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [[.,[.,.]],[[.,.],.]]
=> [[[],[]],[[]]]
=> 4
[[[[]],[]],[]]
=> [[[.,.],[.,.]],[.,.]]
=> [[[.,[.,.]],[.,.]],.]
=> [[[[],[]],[]]]
=> 4
[[[[],[]]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [[[.,[.,.]],.],[.,.]]
=> [[[[],[]]],[]]
=> 4
[[[[[]]]],[]]
=> [[[[.,.],.],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> [[[[[],[]]]]]
=> 2
[[[],[],[],[]]]
=> [[.,[.,[.,[.,.]]]],.]
=> [[.,.],[.,[.,[.,.]]]]
=> [[[]],[],[],[]]
=> 24
Description
The size of the automorphism group of the rooted tree underlying the ordered tree.
Matching statistic: St001106
Mp00050: Ordered trees to binary tree: right brother = right childBinary trees
Mp00017: Binary trees to 312-avoiding permutationPermutations
Mp00065: Permutations permutation posetPosets
St001106: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[],[]]
=> [.,[.,.]]
=> [2,1] => ([],2)
=> 2
[[[]]]
=> [[.,.],.]
=> [1,2] => ([(0,1)],2)
=> 1
[[],[],[]]
=> [.,[.,[.,.]]]
=> [3,2,1] => ([],3)
=> 6
[[],[[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => ([(1,2)],3)
=> 2
[[[]],[]]
=> [[.,.],[.,.]]
=> [1,3,2] => ([(0,1),(0,2)],3)
=> 2
[[[],[]]]
=> [[.,[.,.]],.]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> 2
[[[[]]]]
=> [[[.,.],.],.]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 1
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([],4)
=> 24
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(2,3)],4)
=> 6
[[],[[]],[]]
=> [.,[[.,.],[.,.]]]
=> [2,4,3,1] => ([(1,2),(1,3)],4)
=> 4
[[],[[],[]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> 6
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> 2
[[[]],[],[]]
=> [[.,.],[.,[.,.]]]
=> [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> 6
[[[]],[[]]]
=> [[.,.],[[.,.],.]]
=> [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> 2
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[[[[]]],[]]
=> [[[.,.],.],[.,.]]
=> [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> 2
[[[],[],[]]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 6
[[[],[[]]]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> 2
[[[[]],[]]]
=> [[[.,.],[.,.]],.]
=> [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[[[[],[]]]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 2
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([],5)
=> 120
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(3,4)],5)
=> 24
[[],[],[[]],[]]
=> [.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => ([(2,3),(2,4)],5)
=> 12
[[],[],[[],[]]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> 24
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> 6
[[],[[]],[],[]]
=> [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> 12
[[],[[]],[[]]]
=> [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> 4
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 12
[[],[[[]]],[]]
=> [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> 4
[[],[[],[],[]]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> 24
[[],[[],[[]]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> 6
[[],[[[]],[]]]
=> [.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[[],[[[],[]]]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> 6
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 2
[[[]],[],[],[]]
=> [[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> 24
[[[]],[],[[]]]
=> [[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> 6
[[[]],[[]],[]]
=> [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> 4
[[[]],[[],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 6
[[[]],[[[]]]]
=> [[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> 2
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 12
[[[[]]],[],[]]
=> [[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> 6
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> 4
[[[[]]],[[]]]
=> [[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> 2
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 12
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> 4
[[[[]],[]],[]]
=> [[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[[[[],[]]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> 4
[[[[[]]]],[]]
=> [[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> 2
[[[],[],[],[]]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 24
Description
The number of supergreedy linear extensions of a poset. A linear extension of a poset P with elements $\{x_1,\dots,x_n\}$ is supergreedy, if it can be obtained by the following algorithm: * Step 1. Choose a minimal element $x_1$. * Step 2. Suppose $X=\{x_1,\dots,x_i\}$ have been chosen, let $M$ be the set of minimal elements of $P\setminus X$. If there is an element of $M$ which covers an element $x_j$ in $X$, then let $x_{i+1}$ be one of these such that $j$ is maximal; otherwise, choose $x_{i+1}$ to be any element of $M$. This statistic records the number of supergreedy linear extensions.
Matching statistic: St001346
Mp00050: Ordered trees to binary tree: right brother = right childBinary trees
Mp00017: Binary trees to 312-avoiding permutationPermutations
Mp00064: Permutations reversePermutations
St001346: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[],[]]
=> [.,[.,.]]
=> [2,1] => [1,2] => 2
[[[]]]
=> [[.,.],.]
=> [1,2] => [2,1] => 1
[[],[],[]]
=> [.,[.,[.,.]]]
=> [3,2,1] => [1,2,3] => 6
[[],[[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => [1,3,2] => 2
[[[]],[]]
=> [[.,.],[.,.]]
=> [1,3,2] => [2,3,1] => 2
[[[],[]]]
=> [[.,[.,.]],.]
=> [2,1,3] => [3,1,2] => 2
[[[[]]]]
=> [[[.,.],.],.]
=> [1,2,3] => [3,2,1] => 1
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,2,3,4] => 24
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => [1,2,4,3] => 6
[[],[[]],[]]
=> [.,[[.,.],[.,.]]]
=> [2,4,3,1] => [1,3,4,2] => 4
[[],[[],[]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => [1,4,2,3] => 6
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => [1,4,3,2] => 2
[[[]],[],[]]
=> [[.,.],[.,[.,.]]]
=> [1,4,3,2] => [2,3,4,1] => 6
[[[]],[[]]]
=> [[.,.],[[.,.],.]]
=> [1,3,4,2] => [2,4,3,1] => 2
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [2,1,4,3] => [3,4,1,2] => 4
[[[[]]],[]]
=> [[[.,.],.],[.,.]]
=> [1,2,4,3] => [3,4,2,1] => 2
[[[],[],[]]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => [4,1,2,3] => 6
[[[],[[]]]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => [4,1,3,2] => 2
[[[[]],[]]]
=> [[[.,.],[.,.]],.]
=> [1,3,2,4] => [4,2,3,1] => 2
[[[[],[]]]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => [4,3,1,2] => 2
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => [4,3,2,1] => 1
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [1,2,3,4,5] => 120
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [1,2,3,5,4] => 24
[[],[],[[]],[]]
=> [.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [1,2,4,5,3] => 12
[[],[],[[],[]]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [1,2,5,3,4] => 24
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [1,2,5,4,3] => 6
[[],[[]],[],[]]
=> [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [1,3,4,5,2] => 12
[[],[[]],[[]]]
=> [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [1,3,5,4,2] => 4
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [1,4,5,2,3] => 12
[[],[[[]]],[]]
=> [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [1,4,5,3,2] => 4
[[],[[],[],[]]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [1,5,2,3,4] => 24
[[],[[],[[]]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [1,5,2,4,3] => 6
[[],[[[]],[]]]
=> [.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [1,5,3,4,2] => 4
[[],[[[],[]]]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [1,5,4,2,3] => 6
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [1,5,4,3,2] => 2
[[[]],[],[],[]]
=> [[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [2,3,4,5,1] => 24
[[[]],[],[[]]]
=> [[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [2,3,5,4,1] => 6
[[[]],[[]],[]]
=> [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [2,4,5,3,1] => 4
[[[]],[[],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [2,5,3,4,1] => 6
[[[]],[[[]]]]
=> [[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [2,5,4,3,1] => 2
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [3,4,5,1,2] => 12
[[[[]]],[],[]]
=> [[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [3,4,5,2,1] => 6
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [3,5,4,1,2] => 4
[[[[]]],[[]]]
=> [[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [3,5,4,2,1] => 2
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [4,5,1,2,3] => 12
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [4,5,1,3,2] => 4
[[[[]],[]],[]]
=> [[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [4,5,2,3,1] => 4
[[[[],[]]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [4,5,3,1,2] => 4
[[[[[]]]],[]]
=> [[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [4,5,3,2,1] => 2
[[[],[],[],[]]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [5,1,2,3,4] => 24
Description
The number of parking functions that give the same permutation. A '''parking function''' $(a_1,\dots,a_n)$ is a list of preferred parking spots of $n$ cars entering a one-way street. Once the cars have parked, the order of the cars gives a permutation of $\{1,\dots,n\}$. This statistic records the number of parking functions that yield the same permutation of cars.