Loading [MathJax]/jax/output/HTML-CSS/jax.js

Your data matches 38 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00277: Permutations catalanizationPermutations
Mp00160: Permutations graph of inversionsGraphs
St001333: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1] => ([],1)
=> 0
[1,2] => [1,2] => ([],2)
=> 0
[2,1] => [2,1] => ([(0,1)],2)
=> 1
[1,2,3] => [1,2,3] => ([],3)
=> 0
[1,3,2] => [1,3,2] => ([(1,2)],3)
=> 1
[2,1,3] => [2,1,3] => ([(1,2)],3)
=> 1
[2,3,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[3,1,2] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,2,4,3] => [1,2,4,3] => ([(2,3)],4)
=> 1
[1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> 1
[1,3,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> 1
[1,4,2,3] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> 1
[1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> 1
[2,1,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> 2
[2,3,1,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> 1
[2,3,4,1] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,4,3,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,1,2,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> 1
[3,1,4,2] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 1
[3,2,4,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,4,1,2] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,4,2,1] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,1,2,3] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[4,1,3,2] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,2,1,3] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,2,3,1] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,3,1,2] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,2,3,5,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,2,4,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,2,4,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> 1
[1,2,5,3,4] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> 1
[1,2,5,4,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,3,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,3,2,5,4] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 2
[1,3,4,2,5] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> 1
[1,3,4,5,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
[1,3,5,2,4] => [1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3,5,4,2] => [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,4,2,3,5] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> 1
[1,4,2,5,3] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> 1
[1,4,3,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,4,3,5,2] => [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,4,5,2,3] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
Description
The cardinality of a minimal edge-isolating set of a graph. Let $\mathcal F$ be a set of graphs. A set of vertices $S$ is $\mathcal F$-isolating, if the subgraph induced by the vertices in the complement of the closed neighbourhood of $S$ does not contain any graph in $\mathcal F$. This statistic returns the cardinality of the smallest isolating set when $\mathcal F$ contains only the graph with one edge.
Mp00159: Permutations Demazure product with inversePermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St000374: Permutations ⟶ ℤResult quality: 79% values known / values provided: 79%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> [1] => 0
[1,2] => [1,2] => [1,0,1,0]
=> [1,2] => 0
[2,1] => [2,1] => [1,1,0,0]
=> [2,1] => 1
[1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> [1,2,3] => 0
[1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,3,2] => 1
[2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> [2,1,3] => 1
[2,3,1] => [3,2,1] => [1,1,1,0,0,0]
=> [3,2,1] => 1
[3,1,2] => [3,2,1] => [1,1,1,0,0,0]
=> [3,2,1] => 1
[3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> [3,2,1] => 1
[1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,3,4,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[1,4,2,3] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[2,3,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[2,3,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[2,4,1,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => 1
[2,4,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[3,1,2,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[3,1,4,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[3,2,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[3,4,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[3,4,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[4,1,2,3] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[4,1,3,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[4,2,1,3] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[4,2,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[4,3,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,2,4,3,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,2,4,5,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 1
[1,2,5,3,4] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 1
[1,2,5,4,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 1
[1,3,2,4,5] => [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,3,2,5,4] => [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,3,4,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 1
[1,3,4,5,2] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 1
[1,3,5,2,4] => [1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 1
[1,3,5,4,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 1
[1,4,2,3,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 1
[1,4,2,5,3] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 1
[1,4,3,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 1
[1,4,3,5,2] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 1
[1,4,5,2,3] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 1
[1,3,4,5,2,6,7] => [1,5,3,4,2,6,7] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 1
[1,3,4,5,2,7,6] => [1,5,3,4,2,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? = 2
[1,3,4,5,6,2,7] => [1,6,3,4,5,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,3,4,6,2,5,7] => [1,5,3,6,2,4,7] => [1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,5,4,6,3,2,7] => ? = 1
[1,3,4,6,5,2,7] => [1,6,3,5,4,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,3,5,2,7,4,6] => [1,4,6,2,7,3,5] => [1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,4,6,5,7,3,2] => ? = 1
[1,3,5,4,2,6,7] => [1,5,4,3,2,6,7] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 1
[1,3,5,4,2,7,6] => [1,5,4,3,2,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? = 2
[1,3,5,4,6,2,7] => [1,6,4,3,5,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,3,5,6,2,4,7] => [1,5,6,4,2,3,7] => [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,5,6,4,3,2,7] => ? = 1
[1,3,5,6,4,2,7] => [1,6,5,4,3,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,3,6,4,2,5,7] => [1,5,6,4,2,3,7] => [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,5,6,4,3,2,7] => ? = 1
[1,3,6,4,5,2,7] => [1,6,5,4,3,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,3,6,5,2,4,7] => [1,5,6,4,2,3,7] => [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,5,6,4,3,2,7] => ? = 1
[1,3,6,5,4,2,7] => [1,6,5,4,3,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,4,2,5,3,6,7] => [1,5,3,4,2,6,7] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 1
[1,4,2,5,3,7,6] => [1,5,3,4,2,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? = 2
[1,4,2,5,6,3,7] => [1,6,3,4,5,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,4,2,6,3,5,7] => [1,5,3,6,2,4,7] => [1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,5,4,6,3,2,7] => ? = 1
[1,4,2,6,5,3,7] => [1,6,3,5,4,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,4,3,5,2,6,7] => [1,5,3,4,2,6,7] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 1
[1,4,3,5,2,7,6] => [1,5,3,4,2,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? = 2
[1,4,3,5,6,2,7] => [1,6,3,4,5,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,4,3,6,2,5,7] => [1,5,3,6,2,4,7] => [1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,5,4,6,3,2,7] => ? = 1
[1,4,3,6,5,2,7] => [1,6,3,5,4,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,4,5,2,3,6,7] => [1,5,4,3,2,6,7] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 1
[1,4,5,2,3,7,6] => [1,5,4,3,2,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? = 2
[1,4,5,2,6,3,7] => [1,6,4,3,5,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,4,5,3,2,6,7] => [1,5,4,3,2,6,7] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 1
[1,4,5,3,2,7,6] => [1,5,4,3,2,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? = 2
[1,4,5,3,6,2,7] => [1,6,4,3,5,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,4,5,6,2,3,7] => [1,6,5,4,3,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,4,5,6,3,2,7] => [1,6,5,4,3,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,4,6,2,3,5,7] => [1,5,6,4,2,3,7] => [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,5,6,4,3,2,7] => ? = 1
[1,4,6,2,5,3,7] => [1,6,5,4,3,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,4,6,3,2,5,7] => [1,5,6,4,2,3,7] => [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,5,6,4,3,2,7] => ? = 1
[1,4,6,3,5,2,7] => [1,6,5,4,3,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,4,6,5,2,3,7] => [1,6,5,4,3,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,4,6,5,3,2,7] => [1,6,5,4,3,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,5,2,3,4,6,7] => [1,5,3,4,2,6,7] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 1
[1,5,2,3,4,7,6] => [1,5,3,4,2,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? = 2
[1,5,2,3,6,4,7] => [1,6,3,4,5,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,5,2,4,3,6,7] => [1,5,3,4,2,6,7] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 1
[1,5,2,4,3,7,6] => [1,5,3,4,2,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? = 2
[1,5,2,4,6,3,7] => [1,6,3,4,5,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,5,2,6,3,4,7] => [1,6,3,5,4,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,5,2,6,4,3,7] => [1,6,3,5,4,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,5,3,2,4,6,7] => [1,5,4,3,2,6,7] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 1
[1,5,3,2,4,7,6] => [1,5,4,3,2,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? = 2
[1,5,3,2,6,4,7] => [1,6,4,3,5,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
Description
The number of exclusive right-to-left minima of a permutation. This is the number of right-to-left minima that are not left-to-right maxima. This is also the number of non weak exceedences of a permutation that are also not mid-points of a decreasing subsequence of length 3. Given a permutation $\pi = [\pi_1,\ldots,\pi_n]$, this statistic counts the number of position $j$ such that $\pi_j < j$ and there do not exist indices $i,k$ with $i < j < k$ and $\pi_i > \pi_j > \pi_k$. See also [[St000213]] and [[St000119]].
Mp00159: Permutations Demazure product with inversePermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
St000996: Permutations ⟶ ℤResult quality: 79% values known / values provided: 79%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> [1] => 0
[1,2] => [1,2] => [1,0,1,0]
=> [1,2] => 0
[2,1] => [2,1] => [1,1,0,0]
=> [2,1] => 1
[1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> [1,2,3] => 0
[1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> [1,3,2] => 1
[2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> [2,1,3] => 1
[2,3,1] => [3,2,1] => [1,1,1,0,0,0]
=> [3,2,1] => 1
[3,1,2] => [3,2,1] => [1,1,1,0,0,0]
=> [3,2,1] => 1
[3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> [3,2,1] => 1
[1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,3,4,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[1,4,2,3] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[1,4,3,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[2,3,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[2,3,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[2,4,1,3] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 1
[2,4,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[3,1,2,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[3,1,4,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[3,2,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[3,4,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[3,4,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[4,1,2,3] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[4,1,3,2] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[4,2,1,3] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[4,2,3,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[4,3,1,2] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,2,4,3,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,2,4,5,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 1
[1,2,5,3,4] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 1
[1,2,5,4,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 1
[1,3,2,4,5] => [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,3,2,5,4] => [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,3,4,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 1
[1,3,4,5,2] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 1
[1,3,5,2,4] => [1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => 1
[1,3,5,4,2] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 1
[1,4,2,3,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 1
[1,4,2,5,3] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 1
[1,4,3,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 1
[1,4,3,5,2] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 1
[1,4,5,2,3] => [1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 1
[1,3,4,5,2,6,7] => [1,5,3,4,2,6,7] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 1
[1,3,4,5,2,7,6] => [1,5,3,4,2,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? = 2
[1,3,4,5,6,2,7] => [1,6,3,4,5,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,3,4,6,2,5,7] => [1,5,3,6,2,4,7] => [1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,6,4,3,5,2,7] => ? = 1
[1,3,4,6,5,2,7] => [1,6,3,5,4,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,3,5,2,4,6,7] => [1,4,5,2,3,6,7] => [1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,5,3,4,2,6,7] => ? = 1
[1,3,5,2,4,7,6] => [1,4,5,2,3,7,6] => [1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,5,3,4,2,7,6] => ? = 2
[1,3,5,2,6,4,7] => [1,4,6,2,5,3,7] => [1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,6,3,5,4,2,7] => ? = 1
[1,3,5,2,7,4,6] => [1,4,6,2,7,3,5] => [1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,7,3,5,4,6,2] => ? = 1
[1,3,5,4,2,6,7] => [1,5,4,3,2,6,7] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 1
[1,3,5,4,2,7,6] => [1,5,4,3,2,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? = 2
[1,3,5,4,6,2,7] => [1,6,4,3,5,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,3,5,6,2,4,7] => [1,5,6,4,2,3,7] => [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,6,4,5,3,2,7] => ? = 1
[1,3,5,6,4,2,7] => [1,6,5,4,3,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,3,6,2,4,5,7] => [1,4,6,2,5,3,7] => [1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,6,3,5,4,2,7] => ? = 1
[1,3,6,2,5,4,7] => [1,4,6,2,5,3,7] => [1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,6,3,5,4,2,7] => ? = 1
[1,3,6,4,2,5,7] => [1,5,6,4,2,3,7] => [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,6,4,5,3,2,7] => ? = 1
[1,3,6,4,5,2,7] => [1,6,5,4,3,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,3,6,5,2,4,7] => [1,5,6,4,2,3,7] => [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,6,4,5,3,2,7] => ? = 1
[1,3,6,5,4,2,7] => [1,6,5,4,3,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,4,2,5,3,6,7] => [1,5,3,4,2,6,7] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 1
[1,4,2,5,3,7,6] => [1,5,3,4,2,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? = 2
[1,4,2,5,6,3,7] => [1,6,3,4,5,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,4,2,6,3,5,7] => [1,5,3,6,2,4,7] => [1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,6,4,3,5,2,7] => ? = 1
[1,4,2,6,5,3,7] => [1,6,3,5,4,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,4,3,5,2,6,7] => [1,5,3,4,2,6,7] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 1
[1,4,3,5,2,7,6] => [1,5,3,4,2,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? = 2
[1,4,3,5,6,2,7] => [1,6,3,4,5,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,4,3,6,2,5,7] => [1,5,3,6,2,4,7] => [1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,6,4,3,5,2,7] => ? = 1
[1,4,3,6,5,2,7] => [1,6,3,5,4,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,4,5,2,3,6,7] => [1,5,4,3,2,6,7] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 1
[1,4,5,2,3,7,6] => [1,5,4,3,2,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? = 2
[1,4,5,2,6,3,7] => [1,6,4,3,5,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,4,5,3,2,6,7] => [1,5,4,3,2,6,7] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 1
[1,4,5,3,2,7,6] => [1,5,4,3,2,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? = 2
[1,4,5,3,6,2,7] => [1,6,4,3,5,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,4,5,6,2,3,7] => [1,6,5,4,3,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,4,5,6,3,2,7] => [1,6,5,4,3,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,4,6,2,3,5,7] => [1,5,6,4,2,3,7] => [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,6,4,5,3,2,7] => ? = 1
[1,4,6,2,5,3,7] => [1,6,5,4,3,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,4,6,3,2,5,7] => [1,5,6,4,2,3,7] => [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,6,4,5,3,2,7] => ? = 1
[1,4,6,3,5,2,7] => [1,6,5,4,3,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,4,6,5,2,3,7] => [1,6,5,4,3,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,4,6,5,3,2,7] => [1,6,5,4,3,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,5,2,3,4,6,7] => [1,5,3,4,2,6,7] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 1
[1,5,2,3,4,7,6] => [1,5,3,4,2,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? = 2
[1,5,2,3,6,4,7] => [1,6,3,4,5,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
[1,5,2,4,3,6,7] => [1,5,3,4,2,6,7] => [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 1
[1,5,2,4,3,7,6] => [1,5,3,4,2,7,6] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? = 2
[1,5,2,4,6,3,7] => [1,6,3,4,5,2,7] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 1
Description
The number of exclusive left-to-right maxima of a permutation. This is the number of left-to-right maxima that are not right-to-left minima.
Matching statistic: St000379
Mp00064: Permutations reversePermutations
Mp00160: Permutations graph of inversionsGraphs
Mp00274: Graphs block-cut treeGraphs
St000379: Graphs ⟶ ℤResult quality: 25% values known / values provided: 62%distinct values known / distinct values provided: 25%
Values
[1] => [1] => ([],1)
=> ([],1)
=> ? = 0 - 1
[1,2] => [2,1] => ([(0,1)],2)
=> ([],1)
=> ? = 0 - 1
[2,1] => [1,2] => ([],2)
=> ([],2)
=> 0 = 1 - 1
[1,2,3] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? = 0 - 1
[1,3,2] => [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[2,1,3] => [3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[2,3,1] => [1,3,2] => ([(1,2)],3)
=> ([],2)
=> 0 = 1 - 1
[3,1,2] => [2,1,3] => ([(1,2)],3)
=> ([],2)
=> 0 = 1 - 1
[3,2,1] => [1,2,3] => ([],3)
=> ([],3)
=> 0 = 1 - 1
[1,2,3,4] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 0 - 1
[1,2,4,3] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 1 - 1
[1,3,2,4] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 1 - 1
[1,3,4,2] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[1,4,2,3] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[1,4,3,2] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[2,1,3,4] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 1 - 1
[2,1,4,3] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ? = 2 - 1
[2,3,1,4] => [4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[2,3,4,1] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> 0 = 1 - 1
[2,4,1,3] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[2,4,3,1] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,1,2,4] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[3,1,4,2] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[3,2,1,4] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,2,4,1] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,4,1,2] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ([],2)
=> 0 = 1 - 1
[3,4,2,1] => [1,2,4,3] => ([(2,3)],4)
=> ([],3)
=> 0 = 1 - 1
[4,1,2,3] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> 0 = 1 - 1
[4,1,3,2] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[4,2,1,3] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[4,2,3,1] => [1,3,2,4] => ([(2,3)],4)
=> ([],3)
=> 0 = 1 - 1
[4,3,1,2] => [2,1,3,4] => ([(2,3)],4)
=> ([],3)
=> 0 = 1 - 1
[4,3,2,1] => [1,2,3,4] => ([],4)
=> ([],4)
=> 0 = 1 - 1
[1,2,3,4,5] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0 - 1
[1,2,3,5,4] => [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
[1,2,4,3,5] => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
[1,2,4,5,3] => [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
[1,2,5,3,4] => [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
[1,2,5,4,3] => [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
[1,3,2,4,5] => [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
[1,3,2,5,4] => [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 2 - 1
[1,3,4,2,5] => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
[1,3,4,5,2] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[1,3,5,2,4] => [4,2,5,3,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
[1,3,5,4,2] => [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[1,4,2,3,5] => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
[1,4,2,5,3] => [3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
[1,4,3,2,5] => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
[1,4,3,5,2] => [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[1,4,5,2,3] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[1,4,5,3,2] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,5,2,3,4] => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[1,5,2,4,3] => [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[1,5,3,2,4] => [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[1,5,3,4,2] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,5,4,2,3] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,5,4,3,2] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,1,3,4,5] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
[2,1,3,5,4] => [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 2 - 1
[2,1,4,3,5] => [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 2 - 1
[2,1,4,5,3] => [3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 2 - 1
[2,1,5,3,4] => [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 2 - 1
[2,1,5,4,3] => [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 2 - 1
[2,3,1,4,5] => [5,4,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
[2,3,1,5,4] => [4,5,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 2 - 1
[2,3,4,1,5] => [5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[2,3,4,5,1] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0 = 1 - 1
[2,3,5,1,4] => [4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[2,3,5,4,1] => [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0 = 1 - 1
[2,4,1,3,5] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
[2,4,1,5,3] => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
[2,4,3,1,5] => [5,1,3,4,2] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[2,4,3,5,1] => [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0 = 1 - 1
[2,4,5,1,3] => [3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[2,4,5,3,1] => [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[2,5,1,3,4] => [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[2,5,1,4,3] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[2,5,3,1,4] => [4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
[2,5,3,4,1] => [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[2,5,4,1,3] => [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 0 = 1 - 1
[2,5,4,3,1] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,1,2,4,5] => [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
[3,1,2,5,4] => [4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 2 - 1
[3,1,4,2,5] => [5,2,4,1,3] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
[3,1,5,2,4] => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
[3,2,1,4,5] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
[3,2,1,5,4] => [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 2 - 1
[1,2,3,4,5,6] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 0 - 1
[1,2,3,4,6,5] => [5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
[1,2,3,5,4,6] => [6,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
[1,2,3,5,6,4] => [4,6,5,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
[1,2,3,6,4,5] => [5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
[1,2,3,6,5,4] => [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
[1,2,4,3,5,6] => [6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
[1,2,4,3,6,5] => [5,6,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 2 - 1
[1,2,4,5,3,6] => [6,3,5,4,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
[1,2,4,5,6,3] => [3,6,5,4,2,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
[1,2,4,6,3,5] => [5,3,6,4,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
[1,2,4,6,5,3] => [3,5,6,4,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
[1,2,5,3,4,6] => [6,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
Description
The number of Hamiltonian cycles in a graph. A Hamiltonian cycle in a graph $G$ is a subgraph (this is, a subset of the edges) that is a cycle which contains every vertex of $G$. Since it is unclear whether the graph on one vertex is Hamiltonian, the statistic is undefined for this graph.
Mp00175: Permutations inverse Foata bijectionPermutations
Mp00071: Permutations descent compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000260: Graphs ⟶ ℤResult quality: 46% values known / values provided: 46%distinct values known / distinct values provided: 50%
Values
[1] => [1] => [1] => ([],1)
=> 0
[1,2] => [1,2] => [2] => ([],2)
=> ? = 0
[2,1] => [2,1] => [1,1] => ([(0,1)],2)
=> 1
[1,2,3] => [1,2,3] => [3] => ([],3)
=> ? = 0
[1,3,2] => [3,1,2] => [1,2] => ([(1,2)],3)
=> ? = 1
[2,1,3] => [2,1,3] => [1,2] => ([(1,2)],3)
=> ? = 1
[2,3,1] => [2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[3,1,2] => [1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[3,2,1] => [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[1,2,3,4] => [1,2,3,4] => [4] => ([],4)
=> ? = 0
[1,2,4,3] => [4,1,2,3] => [1,3] => ([(2,3)],4)
=> ? = 1
[1,3,2,4] => [3,1,2,4] => [1,3] => ([(2,3)],4)
=> ? = 1
[1,3,4,2] => [3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1
[1,4,2,3] => [1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1
[1,4,3,2] => [4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[2,1,3,4] => [2,1,3,4] => [1,3] => ([(2,3)],4)
=> ? = 1
[2,1,4,3] => [2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 2
[2,3,1,4] => [2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1
[2,3,4,1] => [2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,4,1,3] => [4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[2,4,3,1] => [4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,1,2,4] => [1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1
[3,1,4,2] => [1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[3,2,1,4] => [3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[3,2,4,1] => [3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,4,1,2] => [3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,4,2,1] => [3,4,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,1,2,3] => [1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[4,1,3,2] => [4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,2,1,3] => [2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,2,3,1] => [2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,3,1,2] => [1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,3,2,1] => [4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,2,3,4,5] => [1,2,3,4,5] => [5] => ([],5)
=> ? = 0
[1,2,3,5,4] => [5,1,2,3,4] => [1,4] => ([(3,4)],5)
=> ? = 1
[1,2,4,3,5] => [4,1,2,3,5] => [1,4] => ([(3,4)],5)
=> ? = 1
[1,2,4,5,3] => [4,5,1,2,3] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1
[1,2,5,3,4] => [1,5,2,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1
[1,2,5,4,3] => [5,4,1,2,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,3,2,4,5] => [3,1,2,4,5] => [1,4] => ([(3,4)],5)
=> ? = 1
[1,3,2,5,4] => [3,5,1,2,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 2
[1,3,4,2,5] => [3,4,1,2,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1
[1,3,4,5,2] => [3,4,5,1,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[1,3,5,2,4] => [5,3,1,2,4] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,3,5,4,2] => [5,3,4,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,4,2,3,5] => [1,4,2,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1
[1,4,2,5,3] => [1,4,5,2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[1,4,3,2,5] => [4,3,1,2,5] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,4,3,5,2] => [4,3,5,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,4,5,2,3] => [4,1,5,2,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,4,5,3,2] => [4,5,3,1,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,5,2,3,4] => [1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[1,5,2,4,3] => [5,1,4,2,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,5,3,2,4] => [5,1,3,2,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,5,3,4,2] => [3,5,4,1,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,5,4,2,3] => [1,5,4,2,3] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[2,1,3,4,5] => [2,1,3,4,5] => [1,4] => ([(3,4)],5)
=> ? = 1
[2,1,3,5,4] => [2,5,1,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 2
[2,1,4,3,5] => [2,4,1,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 2
[2,1,4,5,3] => [2,4,5,1,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[2,1,5,3,4] => [5,2,1,3,4] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 2
[2,1,5,4,3] => [5,2,4,1,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[2,3,1,4,5] => [2,3,1,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 1
[2,3,1,5,4] => [2,3,5,1,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[2,3,4,1,5] => [2,3,4,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[2,3,4,5,1] => [2,3,4,5,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,3,5,1,4] => [5,2,3,1,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[2,3,5,4,1] => [5,2,3,4,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,4,3,5,1] => [4,2,3,5,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,4,5,3,1] => [4,5,2,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,5,3,4,1] => [2,5,3,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,5,4,3,1] => [5,4,2,3,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,1,4,5,2] => [1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,1,5,4,2] => [5,1,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,2,4,5,1] => [3,2,4,5,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,2,5,4,1] => [3,5,2,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,4,1,5,2] => [3,1,4,5,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,4,2,5,1] => [3,4,2,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,4,5,1,2] => [3,4,1,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,4,5,2,1] => [3,4,5,2,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,5,1,4,2] => [3,5,1,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,5,2,4,1] => [5,3,2,4,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,5,4,1,2] => [5,3,1,4,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,5,4,2,1] => [5,3,4,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,1,2,5,3] => [1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[4,1,3,5,2] => [4,1,3,5,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,1,5,2,3] => [4,1,2,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,1,5,3,2] => [4,5,1,3,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,2,1,5,3] => [2,1,4,5,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,2,3,5,1] => [2,4,3,5,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,2,5,1,3] => [2,4,1,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,2,5,3,1] => [2,4,5,3,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,3,1,5,2] => [1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,3,2,5,1] => [4,3,2,5,1] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,3,5,1,2] => [4,3,1,5,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,3,5,2,1] => [4,3,5,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,5,1,2,3] => [1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,5,1,3,2] => [1,4,5,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,5,2,1,3] => [4,2,1,5,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
Description
The radius of a connected graph. This is the minimum eccentricity of any vertex.
Matching statistic: St001354
Mp00159: Permutations Demazure product with inversePermutations
Mp00159: Permutations Demazure product with inversePermutations
Mp00160: Permutations graph of inversionsGraphs
St001354: Graphs ⟶ ℤResult quality: 34% values known / values provided: 34%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => ([],1)
=> 0
[1,2] => [1,2] => [1,2] => ([],2)
=> 0
[2,1] => [2,1] => [2,1] => ([(0,1)],2)
=> 1
[1,2,3] => [1,2,3] => [1,2,3] => ([],3)
=> 0
[1,3,2] => [1,3,2] => [1,3,2] => ([(1,2)],3)
=> 1
[2,1,3] => [2,1,3] => [2,1,3] => ([(1,2)],3)
=> 1
[2,3,1] => [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[3,1,2] => [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[3,2,1] => [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => ([(2,3)],4)
=> 1
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> 1
[1,3,4,2] => [1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,4,2,3] => [1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,4,3,2] => [1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> 1
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> 2
[2,3,1,4] => [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 1
[2,3,4,1] => [4,2,3,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,4,1,3] => [3,4,1,2] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,4,3,1] => [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,1,2,4] => [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 1
[3,1,4,2] => [4,2,3,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 1
[3,2,4,1] => [4,2,3,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,4,1,2] => [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,4,2,1] => [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,1,2,3] => [4,2,3,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,1,3,2] => [4,2,3,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,2,1,3] => [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,2,3,1] => [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,3,1,2] => [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,2,4,5,3] => [1,2,5,4,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,2,5,3,4] => [1,2,5,4,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 2
[1,3,4,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,3,4,5,2] => [1,5,3,4,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3,5,2,4] => [1,4,5,2,3] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3,5,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,4,2,3,5] => [1,4,3,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,4,2,5,3] => [1,5,3,4,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,4,3,5,2] => [1,5,3,4,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,4,5,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3,4,6,5,7,2] => [1,7,3,5,4,6,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,4,6,7,2,5] => [1,6,3,7,5,2,4] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,4,6,7,5,2] => [1,7,3,6,5,4,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,4,7,5,2,6] => [1,6,3,7,5,2,4] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,4,7,5,6,2] => [1,7,3,6,5,4,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,4,7,6,2,5] => [1,6,3,7,5,2,4] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,4,7,6,5,2] => [1,7,3,6,5,4,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,5,6,2,7,4] => [1,5,7,4,2,6,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,5,6,4,7,2] => [1,7,5,4,3,6,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,5,6,7,2,4] => [1,6,7,4,5,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,5,6,7,4,2] => [1,7,6,4,5,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,5,7,2,4,6] => [1,5,6,7,2,3,4] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,5,7,2,6,4] => [1,5,7,6,2,4,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,5,7,4,2,6] => [1,6,5,7,3,2,4] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,5,7,4,6,2] => [1,7,5,6,3,4,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,5,7,6,2,4] => [1,6,7,5,4,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,5,7,6,4,2] => [1,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,4,2,7,5] => [1,5,7,4,2,6,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,4,5,7,2] => [1,7,5,4,3,6,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,4,7,2,5] => [1,6,7,4,5,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,4,7,5,2] => [1,7,6,4,5,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,5,2,7,4] => [1,5,7,4,2,6,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,5,4,7,2] => [1,7,5,4,3,6,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,5,7,2,4] => [1,6,7,4,5,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,5,7,4,2] => [1,7,6,4,5,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,7,2,4,5] => [1,5,7,6,2,4,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,7,2,5,4] => [1,5,7,6,2,4,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,7,4,2,5] => [1,6,7,5,4,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,7,4,5,2] => [1,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,7,5,2,4] => [1,6,7,5,4,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,7,5,4,2] => [1,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,4,2,5,6] => [1,5,7,4,2,6,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,4,2,6,5] => [1,5,7,4,2,6,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,4,5,2,6] => [1,6,7,4,5,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,4,5,6,2] => [1,7,6,4,5,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,4,6,2,5] => [1,6,7,4,5,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,4,6,5,2] => [1,7,6,4,5,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,5,2,4,6] => [1,5,7,6,2,4,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,5,2,6,4] => [1,5,7,6,2,4,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,5,4,2,6] => [1,6,7,5,4,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,5,4,6,2] => [1,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,5,6,2,4] => [1,6,7,5,4,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,5,6,4,2] => [1,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,6,2,4,5] => [1,5,7,6,2,4,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,6,2,5,4] => [1,5,7,6,2,4,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,6,4,2,5] => [1,6,7,5,4,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,6,4,5,2] => [1,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,6,5,2,4] => [1,6,7,5,4,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,6,5,4,2] => [1,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,4,2,6,5,7,3] => [1,7,3,5,4,6,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
Description
The number of series nodes in the modular decomposition of a graph.
Matching statistic: St001393
Mp00159: Permutations Demazure product with inversePermutations
Mp00159: Permutations Demazure product with inversePermutations
Mp00160: Permutations graph of inversionsGraphs
St001393: Graphs ⟶ ℤResult quality: 34% values known / values provided: 34%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => ([],1)
=> 0
[1,2] => [1,2] => [1,2] => ([],2)
=> 0
[2,1] => [2,1] => [2,1] => ([(0,1)],2)
=> 1
[1,2,3] => [1,2,3] => [1,2,3] => ([],3)
=> 0
[1,3,2] => [1,3,2] => [1,3,2] => ([(1,2)],3)
=> 1
[2,1,3] => [2,1,3] => [2,1,3] => ([(1,2)],3)
=> 1
[2,3,1] => [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[3,1,2] => [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[3,2,1] => [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => ([(2,3)],4)
=> 1
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> 1
[1,3,4,2] => [1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,4,2,3] => [1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,4,3,2] => [1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> 1
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> 2
[2,3,1,4] => [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 1
[2,3,4,1] => [4,2,3,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,4,1,3] => [3,4,1,2] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,4,3,1] => [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,1,2,4] => [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 1
[3,1,4,2] => [4,2,3,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 1
[3,2,4,1] => [4,2,3,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,4,1,2] => [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,4,2,1] => [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,1,2,3] => [4,2,3,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,1,3,2] => [4,2,3,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,2,1,3] => [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,2,3,1] => [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,3,1,2] => [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,2,4,5,3] => [1,2,5,4,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,2,5,3,4] => [1,2,5,4,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 2
[1,3,4,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,3,4,5,2] => [1,5,3,4,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3,5,2,4] => [1,4,5,2,3] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3,5,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,4,2,3,5] => [1,4,3,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,4,2,5,3] => [1,5,3,4,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 1
[1,4,3,5,2] => [1,5,3,4,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,4,5,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3,4,6,5,7,2] => [1,7,3,5,4,6,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,4,6,7,2,5] => [1,6,3,7,5,2,4] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,4,6,7,5,2] => [1,7,3,6,5,4,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,4,7,5,2,6] => [1,6,3,7,5,2,4] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,4,7,5,6,2] => [1,7,3,6,5,4,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,4,7,6,2,5] => [1,6,3,7,5,2,4] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,4,7,6,5,2] => [1,7,3,6,5,4,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,5,6,2,7,4] => [1,5,7,4,2,6,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,5,6,4,7,2] => [1,7,5,4,3,6,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,5,6,7,2,4] => [1,6,7,4,5,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,5,6,7,4,2] => [1,7,6,4,5,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,5,7,2,4,6] => [1,5,6,7,2,3,4] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,5,7,2,6,4] => [1,5,7,6,2,4,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,5,7,4,2,6] => [1,6,5,7,3,2,4] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,5,7,4,6,2] => [1,7,5,6,3,4,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,5,7,6,2,4] => [1,6,7,5,4,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,5,7,6,4,2] => [1,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,4,2,7,5] => [1,5,7,4,2,6,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,4,5,7,2] => [1,7,5,4,3,6,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,4,7,2,5] => [1,6,7,4,5,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,4,7,5,2] => [1,7,6,4,5,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,5,2,7,4] => [1,5,7,4,2,6,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,5,4,7,2] => [1,7,5,4,3,6,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,5,7,2,4] => [1,6,7,4,5,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,5,7,4,2] => [1,7,6,4,5,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,7,2,4,5] => [1,5,7,6,2,4,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,7,2,5,4] => [1,5,7,6,2,4,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,7,4,2,5] => [1,6,7,5,4,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,7,4,5,2] => [1,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,7,5,2,4] => [1,6,7,5,4,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,6,7,5,4,2] => [1,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,4,2,5,6] => [1,5,7,4,2,6,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,4,2,6,5] => [1,5,7,4,2,6,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,4,5,2,6] => [1,6,7,4,5,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,4,5,6,2] => [1,7,6,4,5,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,4,6,2,5] => [1,6,7,4,5,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,4,6,5,2] => [1,7,6,4,5,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,5,2,4,6] => [1,5,7,6,2,4,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,5,2,6,4] => [1,5,7,6,2,4,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,5,4,2,6] => [1,6,7,5,4,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,5,4,6,2] => [1,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,5,6,2,4] => [1,6,7,5,4,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,5,6,4,2] => [1,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,6,2,4,5] => [1,5,7,6,2,4,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,6,2,5,4] => [1,5,7,6,2,4,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,6,4,2,5] => [1,6,7,5,4,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,6,4,5,2] => [1,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,6,5,2,4] => [1,6,7,5,4,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,3,7,6,5,4,2] => [1,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[1,4,2,6,5,7,3] => [1,7,3,5,4,6,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
Description
The induced matching number of a graph. An induced matching of a graph is a set of independent edges which is an induced subgraph. This statistic records the maximal number of edges in an induced matching.
Matching statistic: St001261
Mp00159: Permutations Demazure product with inversePermutations
Mp00159: Permutations Demazure product with inversePermutations
Mp00160: Permutations graph of inversionsGraphs
St001261: Graphs ⟶ ℤResult quality: 34% values known / values provided: 34%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => ([],1)
=> 1 = 0 + 1
[1,2] => [1,2] => [1,2] => ([],2)
=> 1 = 0 + 1
[2,1] => [2,1] => [2,1] => ([(0,1)],2)
=> 2 = 1 + 1
[1,2,3] => [1,2,3] => [1,2,3] => ([],3)
=> 1 = 0 + 1
[1,3,2] => [1,3,2] => [1,3,2] => ([(1,2)],3)
=> 2 = 1 + 1
[2,1,3] => [2,1,3] => [2,1,3] => ([(1,2)],3)
=> 2 = 1 + 1
[2,3,1] => [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,1,2] => [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,2,1] => [3,2,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> 1 = 0 + 1
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => ([(2,3)],4)
=> 2 = 1 + 1
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> 2 = 1 + 1
[1,3,4,2] => [1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,4,2,3] => [1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,4,3,2] => [1,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> 2 = 1 + 1
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> 3 = 2 + 1
[2,3,1,4] => [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,3,4,1] => [4,2,3,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,4,1,3] => [3,4,1,2] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,4,3,1] => [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,1,2,4] => [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,1,4,2] => [4,2,3,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,2,4,1] => [4,2,3,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,4,1,2] => [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,4,2,1] => [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4,1,2,3] => [4,2,3,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4,1,3,2] => [4,2,3,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4,2,1,3] => [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4,2,3,1] => [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4,3,1,2] => [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 1 = 0 + 1
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 2 = 1 + 1
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 2 = 1 + 1
[1,2,4,5,3] => [1,2,5,4,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,2,5,3,4] => [1,2,5,4,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 2 = 1 + 1
[1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 3 = 2 + 1
[1,3,4,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,3,4,5,2] => [1,5,3,4,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,3,5,2,4] => [1,4,5,2,3] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,3,5,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,4,2,3,5] => [1,4,3,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,4,2,5,3] => [1,5,3,4,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,4,3,5,2] => [1,5,3,4,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,4,5,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,3,4,6,5,7,2] => [1,7,3,5,4,6,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,4,6,7,2,5] => [1,6,3,7,5,2,4] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,4,6,7,5,2] => [1,7,3,6,5,4,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,4,7,5,2,6] => [1,6,3,7,5,2,4] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,4,7,5,6,2] => [1,7,3,6,5,4,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,4,7,6,2,5] => [1,6,3,7,5,2,4] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,4,7,6,5,2] => [1,7,3,6,5,4,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,5,6,2,7,4] => [1,5,7,4,2,6,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,5,6,4,7,2] => [1,7,5,4,3,6,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,5,6,7,2,4] => [1,6,7,4,5,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,5,6,7,4,2] => [1,7,6,4,5,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,5,7,2,4,6] => [1,5,6,7,2,3,4] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,5,7,2,6,4] => [1,5,7,6,2,4,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,5,7,4,2,6] => [1,6,5,7,3,2,4] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,5,7,4,6,2] => [1,7,5,6,3,4,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,5,7,6,2,4] => [1,6,7,5,4,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,5,7,6,4,2] => [1,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,6,4,2,7,5] => [1,5,7,4,2,6,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,6,4,5,7,2] => [1,7,5,4,3,6,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,6,4,7,2,5] => [1,6,7,4,5,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,6,4,7,5,2] => [1,7,6,4,5,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,6,5,2,7,4] => [1,5,7,4,2,6,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,6,5,4,7,2] => [1,7,5,4,3,6,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,6,5,7,2,4] => [1,6,7,4,5,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,6,5,7,4,2] => [1,7,6,4,5,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,6,7,2,4,5] => [1,5,7,6,2,4,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,6,7,2,5,4] => [1,5,7,6,2,4,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,6,7,4,2,5] => [1,6,7,5,4,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,6,7,4,5,2] => [1,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,6,7,5,2,4] => [1,6,7,5,4,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,6,7,5,4,2] => [1,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,7,4,2,5,6] => [1,5,7,4,2,6,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,7,4,2,6,5] => [1,5,7,4,2,6,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,7,4,5,2,6] => [1,6,7,4,5,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,7,4,5,6,2] => [1,7,6,4,5,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,7,4,6,2,5] => [1,6,7,4,5,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,7,4,6,5,2] => [1,7,6,4,5,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,7,5,2,4,6] => [1,5,7,6,2,4,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,7,5,2,6,4] => [1,5,7,6,2,4,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,7,5,4,2,6] => [1,6,7,5,4,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,7,5,4,6,2] => [1,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,7,5,6,2,4] => [1,6,7,5,4,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,7,5,6,4,2] => [1,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,7,6,2,4,5] => [1,5,7,6,2,4,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,7,6,2,5,4] => [1,5,7,6,2,4,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,7,6,4,2,5] => [1,6,7,5,4,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,7,6,4,5,2] => [1,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,7,6,5,2,4] => [1,6,7,5,4,2,3] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,3,7,6,5,4,2] => [1,7,6,5,4,3,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,4,2,6,5,7,3] => [1,7,3,5,4,6,2] => [1,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
Description
The Castelnuovo-Mumford regularity of a graph.
Mp00160: Permutations graph of inversionsGraphs
Mp00157: Graphs connected complementGraphs
Mp00274: Graphs block-cut treeGraphs
St000456: Graphs ⟶ ℤResult quality: 25% values known / values provided: 34%distinct values known / distinct values provided: 25%
Values
[1] => ([],1)
=> ([],1)
=> ([],1)
=> ? = 0
[1,2] => ([],2)
=> ([],2)
=> ([],2)
=> ? = 0
[2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> ([],1)
=> ? = 1
[1,2,3] => ([],3)
=> ([],3)
=> ([],3)
=> ? = 0
[1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ([],2)
=> ? = 1
[2,1,3] => ([(1,2)],3)
=> ([(1,2)],3)
=> ([],2)
=> ? = 1
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? = 1
[1,2,3,4] => ([],4)
=> ([],4)
=> ([],4)
=> ? = 0
[1,2,4,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([],3)
=> ? = 1
[1,3,2,4] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([],3)
=> ? = 1
[1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 1
[1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 1
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? = 1
[2,1,3,4] => ([(2,3)],4)
=> ([(2,3)],4)
=> ([],3)
=> ? = 1
[2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ? = 2
[2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
[3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? = 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ? = 1
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 1
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 1
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 1
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 1
[1,2,3,4,5] => ([],5)
=> ([],5)
=> ([],5)
=> ? = 0
[1,2,3,5,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> ([],4)
=> ? = 1
[1,2,4,3,5] => ([(3,4)],5)
=> ([(3,4)],5)
=> ([],4)
=> ? = 1
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 1
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 1
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ? = 1
[1,3,2,4,5] => ([(3,4)],5)
=> ([(3,4)],5)
=> ([],4)
=> ? = 1
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ? = 2
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 1
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 1
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 1
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 1
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 1
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ? = 1
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 1
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ? = 1
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 1
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 1
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 1
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 1
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 1
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 1
[2,1,3,4,5] => ([(3,4)],5)
=> ([(3,4)],5)
=> ([],4)
=> ? = 1
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ? = 2
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ? = 2
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 1
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
[4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
[4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 1
[4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
[4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[5,1,3,2,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[5,1,3,4,2] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[5,2,1,4,3] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
Description
The monochromatic index of a connected graph. This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path. For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Mp00159: Permutations Demazure product with inversePermutations
Mp00159: Permutations Demazure product with inversePermutations
Mp00235: Permutations descent views to invisible inversion bottomsPermutations
St001665: Permutations ⟶ ℤResult quality: 30% values known / values provided: 30%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => [1] => 0
[1,2] => [1,2] => [1,2] => [1,2] => 0
[2,1] => [2,1] => [2,1] => [2,1] => 1
[1,2,3] => [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,3,2] => [1,3,2] => [1,3,2] => [1,3,2] => 1
[2,1,3] => [2,1,3] => [2,1,3] => [2,1,3] => 1
[2,3,1] => [3,2,1] => [3,2,1] => [2,3,1] => 1
[3,1,2] => [3,2,1] => [3,2,1] => [2,3,1] => 1
[3,2,1] => [3,2,1] => [3,2,1] => [2,3,1] => 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 1
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 1
[1,3,4,2] => [1,4,3,2] => [1,4,3,2] => [1,3,4,2] => 1
[1,4,2,3] => [1,4,3,2] => [1,4,3,2] => [1,3,4,2] => 1
[1,4,3,2] => [1,4,3,2] => [1,4,3,2] => [1,3,4,2] => 1
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 1
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 2
[2,3,1,4] => [3,2,1,4] => [3,2,1,4] => [2,3,1,4] => 1
[2,3,4,1] => [4,2,3,1] => [4,3,2,1] => [2,3,4,1] => 1
[2,4,1,3] => [3,4,1,2] => [4,3,2,1] => [2,3,4,1] => 1
[2,4,3,1] => [4,3,2,1] => [4,3,2,1] => [2,3,4,1] => 1
[3,1,2,4] => [3,2,1,4] => [3,2,1,4] => [2,3,1,4] => 1
[3,1,4,2] => [4,2,3,1] => [4,3,2,1] => [2,3,4,1] => 1
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => [2,3,1,4] => 1
[3,2,4,1] => [4,2,3,1] => [4,3,2,1] => [2,3,4,1] => 1
[3,4,1,2] => [4,3,2,1] => [4,3,2,1] => [2,3,4,1] => 1
[3,4,2,1] => [4,3,2,1] => [4,3,2,1] => [2,3,4,1] => 1
[4,1,2,3] => [4,2,3,1] => [4,3,2,1] => [2,3,4,1] => 1
[4,1,3,2] => [4,2,3,1] => [4,3,2,1] => [2,3,4,1] => 1
[4,2,1,3] => [4,3,2,1] => [4,3,2,1] => [2,3,4,1] => 1
[4,2,3,1] => [4,3,2,1] => [4,3,2,1] => [2,3,4,1] => 1
[4,3,1,2] => [4,3,2,1] => [4,3,2,1] => [2,3,4,1] => 1
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => [2,3,4,1] => 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,2,4,5,3] => [1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => 1
[1,2,5,3,4] => [1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => 1
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => 1
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 2
[1,3,4,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => [1,3,4,2,5] => 1
[1,3,4,5,2] => [1,5,3,4,2] => [1,5,4,3,2] => [1,3,4,5,2] => 1
[1,3,5,2,4] => [1,4,5,2,3] => [1,5,4,3,2] => [1,3,4,5,2] => 1
[1,3,5,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,3,4,5,2] => 1
[1,4,2,3,5] => [1,4,3,2,5] => [1,4,3,2,5] => [1,3,4,2,5] => 1
[1,4,2,5,3] => [1,5,3,4,2] => [1,5,4,3,2] => [1,3,4,5,2] => 1
[1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => [1,3,4,2,5] => 1
[1,4,3,5,2] => [1,5,3,4,2] => [1,5,4,3,2] => [1,3,4,5,2] => 1
[1,4,5,2,3] => [1,5,4,3,2] => [1,5,4,3,2] => [1,3,4,5,2] => 1
[1,3,5,2,7,4,6] => [1,4,6,2,7,3,5] => [1,6,7,4,5,2,3] => [1,5,2,7,4,6,3] => ? = 1
[2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => [2,1,3,4,5,6,7] => ? = 1
[2,1,3,4,5,7,6] => [2,1,3,4,5,7,6] => [2,1,3,4,5,7,6] => [2,1,3,4,5,7,6] => ? = 2
[2,1,3,4,6,5,7] => [2,1,3,4,6,5,7] => [2,1,3,4,6,5,7] => [2,1,3,4,6,5,7] => ? = 2
[2,1,3,4,6,7,5] => [2,1,3,4,7,6,5] => [2,1,3,4,7,6,5] => [2,1,3,4,6,7,5] => ? = 2
[2,1,3,4,7,5,6] => [2,1,3,4,7,6,5] => [2,1,3,4,7,6,5] => [2,1,3,4,6,7,5] => ? = 2
[2,1,3,4,7,6,5] => [2,1,3,4,7,6,5] => [2,1,3,4,7,6,5] => [2,1,3,4,6,7,5] => ? = 2
[2,1,3,5,4,6,7] => [2,1,3,5,4,6,7] => [2,1,3,5,4,6,7] => [2,1,3,5,4,6,7] => ? = 2
[2,1,3,5,4,7,6] => [2,1,3,5,4,7,6] => [2,1,3,5,4,7,6] => [2,1,3,5,4,7,6] => ? = 3
[2,1,3,5,6,4,7] => [2,1,3,6,5,4,7] => [2,1,3,6,5,4,7] => [2,1,3,5,6,4,7] => ? = 2
[2,1,3,5,6,7,4] => [2,1,3,7,5,6,4] => [2,1,3,7,6,5,4] => [2,1,3,5,6,7,4] => ? = 2
[2,1,3,5,7,4,6] => [2,1,3,6,7,4,5] => [2,1,3,7,6,5,4] => [2,1,3,5,6,7,4] => ? = 2
[2,1,3,5,7,6,4] => [2,1,3,7,6,5,4] => [2,1,3,7,6,5,4] => [2,1,3,5,6,7,4] => ? = 2
[2,1,3,6,4,5,7] => [2,1,3,6,5,4,7] => [2,1,3,6,5,4,7] => [2,1,3,5,6,4,7] => ? = 2
[2,1,3,6,4,7,5] => [2,1,3,7,5,6,4] => [2,1,3,7,6,5,4] => [2,1,3,5,6,7,4] => ? = 2
[2,1,3,6,5,4,7] => [2,1,3,6,5,4,7] => [2,1,3,6,5,4,7] => [2,1,3,5,6,4,7] => ? = 2
[2,1,3,6,5,7,4] => [2,1,3,7,5,6,4] => [2,1,3,7,6,5,4] => [2,1,3,5,6,7,4] => ? = 2
[2,1,3,6,7,4,5] => [2,1,3,7,6,5,4] => [2,1,3,7,6,5,4] => [2,1,3,5,6,7,4] => ? = 2
[2,1,3,6,7,5,4] => [2,1,3,7,6,5,4] => [2,1,3,7,6,5,4] => [2,1,3,5,6,7,4] => ? = 2
[2,1,3,7,4,5,6] => [2,1,3,7,5,6,4] => [2,1,3,7,6,5,4] => [2,1,3,5,6,7,4] => ? = 2
[2,1,3,7,4,6,5] => [2,1,3,7,5,6,4] => [2,1,3,7,6,5,4] => [2,1,3,5,6,7,4] => ? = 2
[2,1,3,7,5,4,6] => [2,1,3,7,6,5,4] => [2,1,3,7,6,5,4] => [2,1,3,5,6,7,4] => ? = 2
[2,1,3,7,5,6,4] => [2,1,3,7,6,5,4] => [2,1,3,7,6,5,4] => [2,1,3,5,6,7,4] => ? = 2
[2,1,3,7,6,4,5] => [2,1,3,7,6,5,4] => [2,1,3,7,6,5,4] => [2,1,3,5,6,7,4] => ? = 2
[2,1,3,7,6,5,4] => [2,1,3,7,6,5,4] => [2,1,3,7,6,5,4] => [2,1,3,5,6,7,4] => ? = 2
[2,1,4,3,5,6,7] => [2,1,4,3,5,6,7] => [2,1,4,3,5,6,7] => [2,1,4,3,5,6,7] => ? = 2
[2,1,4,3,5,7,6] => [2,1,4,3,5,7,6] => [2,1,4,3,5,7,6] => [2,1,4,3,5,7,6] => ? = 3
[2,1,4,3,6,5,7] => [2,1,4,3,6,5,7] => [2,1,4,3,6,5,7] => [2,1,4,3,6,5,7] => ? = 3
[2,1,4,3,6,7,5] => [2,1,4,3,7,6,5] => [2,1,4,3,7,6,5] => [2,1,4,3,6,7,5] => ? = 3
[2,1,4,3,7,5,6] => [2,1,4,3,7,6,5] => [2,1,4,3,7,6,5] => [2,1,4,3,6,7,5] => ? = 3
[2,1,4,3,7,6,5] => [2,1,4,3,7,6,5] => [2,1,4,3,7,6,5] => [2,1,4,3,6,7,5] => ? = 3
[2,1,4,5,3,6,7] => [2,1,5,4,3,6,7] => [2,1,5,4,3,6,7] => [2,1,4,5,3,6,7] => ? = 2
[2,1,4,5,3,7,6] => [2,1,5,4,3,7,6] => [2,1,5,4,3,7,6] => [2,1,4,5,3,7,6] => ? = 3
[2,1,4,5,6,3,7] => [2,1,6,4,5,3,7] => [2,1,6,5,4,3,7] => [2,1,4,5,6,3,7] => ? = 2
[2,1,4,5,6,7,3] => [2,1,7,4,5,6,3] => [2,1,7,6,5,4,3] => [2,1,4,5,6,7,3] => ? = 2
[2,1,4,5,7,3,6] => [2,1,6,4,7,3,5] => [2,1,7,6,5,4,3] => [2,1,4,5,6,7,3] => ? = 2
[2,1,4,5,7,6,3] => [2,1,7,4,6,5,3] => [2,1,7,6,5,4,3] => [2,1,4,5,6,7,3] => ? = 2
[2,1,4,6,3,5,7] => [2,1,5,6,3,4,7] => [2,1,6,5,4,3,7] => [2,1,4,5,6,3,7] => ? = 2
[2,1,4,6,3,7,5] => [2,1,5,7,3,6,4] => [2,1,7,6,5,4,3] => [2,1,4,5,6,7,3] => ? = 2
[2,1,4,6,5,3,7] => [2,1,6,5,4,3,7] => [2,1,6,5,4,3,7] => [2,1,4,5,6,3,7] => ? = 2
[2,1,4,6,5,7,3] => [2,1,7,5,4,6,3] => [2,1,7,6,5,4,3] => [2,1,4,5,6,7,3] => ? = 2
[2,1,4,6,7,3,5] => [2,1,6,7,5,3,4] => [2,1,7,6,5,4,3] => [2,1,4,5,6,7,3] => ? = 2
[2,1,4,6,7,5,3] => [2,1,7,6,5,4,3] => [2,1,7,6,5,4,3] => [2,1,4,5,6,7,3] => ? = 2
[2,1,4,7,3,5,6] => [2,1,5,7,3,6,4] => [2,1,7,6,5,4,3] => [2,1,4,5,6,7,3] => ? = 2
[2,1,4,7,3,6,5] => [2,1,5,7,3,6,4] => [2,1,7,6,5,4,3] => [2,1,4,5,6,7,3] => ? = 2
[2,1,4,7,5,3,6] => [2,1,6,7,5,3,4] => [2,1,7,6,5,4,3] => [2,1,4,5,6,7,3] => ? = 2
[2,1,4,7,5,6,3] => [2,1,7,6,5,4,3] => [2,1,7,6,5,4,3] => [2,1,4,5,6,7,3] => ? = 2
[2,1,4,7,6,3,5] => [2,1,6,7,5,3,4] => [2,1,7,6,5,4,3] => [2,1,4,5,6,7,3] => ? = 2
[2,1,4,7,6,5,3] => [2,1,7,6,5,4,3] => [2,1,7,6,5,4,3] => [2,1,4,5,6,7,3] => ? = 2
[2,1,5,3,4,6,7] => [2,1,5,4,3,6,7] => [2,1,5,4,3,6,7] => [2,1,4,5,3,6,7] => ? = 2
Description
The number of pure excedances of a permutation. A pure excedance of a permutation $\pi$ is a position $i < \pi_i$ such that there is no $j < i$ with $i\leq \pi_j < \pi_i$.
The following 28 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001737The number of descents of type 2 in a permutation. St000287The number of connected components of a graph. St000286The number of connected components of the complement of a graph. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St001859The number of factors of the Stanley symmetric function associated with a permutation. St000455The second largest eigenvalue of a graph if it is integral. St001720The minimal length of a chain of small intervals in a lattice. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St000633The size of the automorphism group of a poset. St000640The rank of the largest boolean interval in a poset. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001860The number of factors of the Stanley symmetric function associated with a signed permutation. St001597The Frobenius rank of a skew partition. St000264The girth of a graph, which is not a tree. St001624The breadth of a lattice.