Processing math: 31%

Your data matches 21 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00264: Graphs delete endpointsGraphs
Mp00111: Graphs complementGraphs
St001330: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1
([],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,2)],3)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 1
([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(2,3)],4)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,3),(2,3)],4)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> ([],1)
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 1
([],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(3,4)],5)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(2,4),(3,4)],5)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(1,4),(2,3)],5)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> 1
([],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of q possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number HG(G) of a graph G is the largest integer q such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of q possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000288
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St000288: Binary words ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 86%
Values
([],1)
=> [1]
=> []
=> => ? = 1 - 1
([],2)
=> [1,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,1)],2)
=> [2]
=> []
=> => ? = 1 - 1
([],3)
=> [1,1,1]
=> [1,1]
=> 110 => 2 = 3 - 1
([(1,2)],3)
=> [2,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,2),(1,2)],3)
=> [3]
=> []
=> => ? = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> => ? = 1 - 1
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 3 = 4 - 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 110 => 2 = 3 - 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> => ? = 1 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 100 => 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> => ? = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> => ? = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> => ? = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> => ? = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> => ? = 1 - 1
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 4 = 5 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1110 => 3 = 4 - 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 110 => 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 1 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 1010 => 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 100 => 1 = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> => ? = 1 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 1 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> => ? = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 3 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> => ? = 1 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 100 => 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> => ? = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 2 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> => ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 1 - 1
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 111110 => 5 = 6 - 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 4 = 5 - 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1110 => 3 = 4 - 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 110 => 2 = 3 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 1 - 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 10110 => 3 = 4 - 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 110 => 2 = 3 - 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1010 => 2 = 3 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 100 => 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> => ? = 1 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1000 => 1 = 2 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> => ? = 1 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> => ? = 1 - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 1 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 2 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> => ? = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> => ? = 3 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 3 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> => ? = 4 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 4 - 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 1100 => 2 = 3 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 100 => 1 = 2 - 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 1 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 100 => 1 = 2 - 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 1 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 3 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 2 - 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 2 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1000 => 1 = 2 - 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 100 => 1 = 2 - 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 10 => 1 = 2 - 1
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1111110 => 6 = 7 - 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 111110 => 5 = 6 - 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 4 = 5 - 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1110 => 3 = 4 - 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 110 => 2 = 3 - 1
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 10 => 1 = 2 - 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> 101110 => 4 = 5 - 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1110 => 3 = 4 - 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> 10110 => 3 = 4 - 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 110 => 2 = 3 - 1
Description
The number of ones in a binary word. This is also known as the Hamming weight of the word.
Matching statistic: St000733
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St000733: Standard tableaux ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 86%
Values
([],1)
=> [1]
=> []
=> []
=> ? = 1 - 1
([],2)
=> [1,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,1)],2)
=> [2]
=> []
=> []
=> ? = 1 - 1
([],3)
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 2 = 3 - 1
([(1,2)],3)
=> [2,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? = 1 - 1
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3 = 4 - 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 2 = 3 - 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> [[1,2]]
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> []
=> ? = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 1
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 4 = 5 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3 = 4 - 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [[1],[2]]
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [[1,2],[3]]
=> 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [[1,2]]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 3 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [[1,2]]
=> 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> []
=> ? = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 1
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5 = 6 - 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 4 = 5 - 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3 = 4 - 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [[1],[2]]
=> 2 = 3 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 3 = 4 - 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [[1],[2]]
=> 2 = 3 - 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [[1,2],[3]]
=> 2 = 3 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [[1,2]]
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [[1,2,3]]
=> 1 = 2 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? = 3 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 3 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? = 4 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 4 - 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 2 = 3 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> [[1,2]]
=> 1 = 2 - 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [[1,2]]
=> 1 = 2 - 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 3 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [[1,2,3]]
=> 1 = 2 - 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [[1,2]]
=> 1 = 2 - 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 6 = 7 - 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5 = 6 - 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 4 = 5 - 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3 = 4 - 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [[1],[2]]
=> 2 = 3 - 1
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 4 = 5 - 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3 = 4 - 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 3 = 4 - 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [[1],[2]]
=> 2 = 3 - 1
Description
The row containing the largest entry of a standard tableau.
Matching statistic: St000876
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00317: Integer partitions odd partsBinary words
St000876: Binary words ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 86%
Values
([],1)
=> [1]
=> []
=> ? => ? = 1 - 1
([],2)
=> [1,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,1)],2)
=> [2]
=> []
=> ? => ? = 1 - 1
([],3)
=> [1,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
([(1,2)],3)
=> [2,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? => ? = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? => ? = 1 - 1
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 111 => 3 = 4 - 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? = 1 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 0 => 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? => ? = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? => ? = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? = 1 - 1
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 4 = 5 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 111 => 3 = 4 - 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 01 => 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0 => 1 = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? => ? = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 3 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0 => 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 11111 => 5 = 6 - 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 4 = 5 - 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 111 => 3 = 4 - 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 011 => 3 = 4 - 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 01 => 2 = 3 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1 => 1 = 2 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? => ? = 3 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 3 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? => ? = 4 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 4 - 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 00 => 2 = 3 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 1 = 2 - 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 1 = 2 - 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 3 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1 => 1 = 2 - 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 1 = 2 - 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 111111 => 6 = 7 - 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 11111 => 5 = 6 - 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 4 = 5 - 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 111 => 3 = 4 - 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 => 1 = 2 - 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> 0111 => 4 = 5 - 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 111 => 3 = 4 - 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> 011 => 3 = 4 - 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
Description
The number of factors in the Catalan decomposition of a binary word. Every binary word can be written in a unique way as (D0)D(1D)m, where D is the set of Dyck words. This is the Catalan factorisation, see [1, sec.9.1.2]. This statistic records the number of factors in the Catalan factorisation, that is, +m if the middle Dyck word is empty and +1+m otherwise.
Matching statistic: St000885
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00317: Integer partitions odd partsBinary words
St000885: Binary words ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 86%
Values
([],1)
=> [1]
=> []
=> ? => ? = 1 - 1
([],2)
=> [1,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,1)],2)
=> [2]
=> []
=> ? => ? = 1 - 1
([],3)
=> [1,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
([(1,2)],3)
=> [2,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? => ? = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? => ? = 1 - 1
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 111 => 3 = 4 - 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? = 1 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 0 => 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? => ? = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? => ? = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? = 1 - 1
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 4 = 5 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 111 => 3 = 4 - 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 01 => 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0 => 1 = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? => ? = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 3 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0 => 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 11111 => 5 = 6 - 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 4 = 5 - 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 111 => 3 = 4 - 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 011 => 3 = 4 - 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 01 => 2 = 3 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1 => 1 = 2 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? => ? = 3 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 3 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? => ? = 4 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 4 - 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 00 => 2 = 3 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 1 = 2 - 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 1 = 2 - 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 3 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1 => 1 = 2 - 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 1 = 2 - 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 111111 => 6 = 7 - 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 11111 => 5 = 6 - 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 4 = 5 - 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 111 => 3 = 4 - 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 => 1 = 2 - 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> 0111 => 4 = 5 - 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 111 => 3 = 4 - 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> 011 => 3 = 4 - 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
Description
The number of critical steps in the Catalan decomposition of a binary word. Every binary word can be written in a unique way as (D0)D(1D)m, where D is the set of Dyck words. This is the Catalan factorisation, see [1, sec.9.1.2]. This statistic records the number of critical steps +m in the Catalan factorisation. The distribution of this statistic on words of length n is (n+1)q^n+\sum_{\substack{k=0\\\text{k even}}}^{n-2} \frac{(n-1-k)^2}{1+k/2}\binom{n}{k/2}q^{n-2-k}.
Matching statistic: St000010
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000010: Integer partitions ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 86%
Values
([],1)
=> [1]
=> []
=> ?
=> ? = 1 - 2
([],2)
=> [1,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,1)],2)
=> [2]
=> []
=> ?
=> ? = 1 - 2
([],3)
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 3 - 2
([(1,2)],3)
=> [2,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,2),(1,2)],3)
=> [3]
=> []
=> ?
=> ? = 1 - 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ?
=> ? = 1 - 2
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2 = 4 - 2
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1 = 3 - 2
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1 - 2
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> []
=> 0 = 2 - 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1 - 2
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ?
=> ? = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 2 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1 - 2
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3 = 5 - 2
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2 = 4 - 2
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1 = 3 - 2
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 - 2
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1 = 3 - 2
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ?
=> ? = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> 0 = 2 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ?
=> ? = 2 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ?
=> ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 - 2
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4 = 6 - 2
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3 = 5 - 2
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2 = 4 - 2
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1 = 3 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 1 - 2
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2 = 4 - 2
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1 = 3 - 2
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1 = 3 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> []
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 1 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 1 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> []
=> 0 = 2 - 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 1 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 1 - 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 1 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 2 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ?
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ?
=> ? = 3 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 3 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ?
=> ? = 4 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 4 - 2
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> [2]
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> []
=> 0 = 2 - 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 1 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> []
=> 0 = 2 - 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 1 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 3 - 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 2 - 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 2 - 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> []
=> 0 = 2 - 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> []
=> 0 = 2 - 2
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> []
=> 0 = 2 - 2
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 5 = 7 - 2
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4 = 6 - 2
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3 = 5 - 2
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2 = 4 - 2
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 1 = 3 - 2
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> []
=> 0 = 2 - 2
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 3 = 5 - 2
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2 = 4 - 2
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2 = 4 - 2
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 1 = 3 - 2
Description
The length of the partition.
Matching statistic: St000319
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000319: Integer partitions ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 86%
Values
([],1)
=> [1]
=> []
=> []
=> ? = 1 - 2
([],2)
=> [1,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,1)],2)
=> [2]
=> []
=> []
=> ? = 1 - 2
([],3)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
([(1,2)],3)
=> [2,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? = 1 - 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? = 1 - 2
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2 = 4 - 2
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 2
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 2
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> []
=> ? = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 2 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 2
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 3 = 5 - 2
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [3]
=> 2 = 4 - 2
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [2,1]
=> 1 = 3 - 2
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [5]
=> 4 = 6 - 2
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 3 = 5 - 2
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 2 = 4 - 2
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> [3,1]
=> 2 = 4 - 2
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [2,1]
=> 1 = 3 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [1,1,1]
=> 0 = 2 - 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? = 3 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 3 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? = 4 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 4 - 2
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> [2,2]
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 3 - 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [1,1,1]
=> 0 = 2 - 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [6]
=> 5 = 7 - 2
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [5]
=> 4 = 6 - 2
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 3 = 5 - 2
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [3]
=> 2 = 4 - 2
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [4,1]
=> 3 = 5 - 2
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [3]
=> 2 = 4 - 2
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [3,1]
=> 2 = 4 - 2
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
Description
The spin of an integer partition. The Ferrers shape of an integer partition \lambda can be decomposed into border strips. The spin is then defined to be the total number of crossings of border strips of \lambda with the vertical lines in the Ferrers shape. The following example is taken from Appendix B in [1]: Let \lambda = (5,5,4,4,2,1). Removing the border strips successively yields the sequence of partitions (5,5,4,4,2,1), (4,3,3,1), (2,2), (1), (). The first strip (5,5,4,4,2,1) \setminus (4,3,3,1) crosses 4 times, the second strip (4,3,3,1) \setminus (2,2) crosses 3 times, the strip (2,2) \setminus (1) crosses 1 time, and the remaining strip (1) \setminus () does not cross. This yields the spin of (5,5,4,4,2,1) to be 4+3+1 = 8.
Matching statistic: St000320
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000320: Integer partitions ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 86%
Values
([],1)
=> [1]
=> []
=> []
=> ? = 1 - 2
([],2)
=> [1,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,1)],2)
=> [2]
=> []
=> []
=> ? = 1 - 2
([],3)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
([(1,2)],3)
=> [2,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? = 1 - 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? = 1 - 2
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2 = 4 - 2
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 2
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 2
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> []
=> ? = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 2 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 2
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 3 = 5 - 2
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [3]
=> 2 = 4 - 2
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [2,1]
=> 1 = 3 - 2
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [5]
=> 4 = 6 - 2
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 3 = 5 - 2
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 2 = 4 - 2
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> [3,1]
=> 2 = 4 - 2
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [2,1]
=> 1 = 3 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [1,1,1]
=> 0 = 2 - 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? = 3 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 3 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? = 4 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 4 - 2
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> [2,2]
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 3 - 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [1,1,1]
=> 0 = 2 - 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [6]
=> 5 = 7 - 2
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [5]
=> 4 = 6 - 2
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 3 = 5 - 2
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [3]
=> 2 = 4 - 2
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [4,1]
=> 3 = 5 - 2
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [3]
=> 2 = 4 - 2
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [3,1]
=> 2 = 4 - 2
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
Description
The dinv adjustment of an integer partition. The Ferrers shape of an integer partition \lambda = (\lambda_1,\ldots,\lambda_k) can be decomposed into border strips. For 0 \leq j < \lambda_1 let n_j be the length of the border strip starting at (\lambda_1-j,0). The dinv adjustment is then defined by \sum_{j:n_j > 0}(\lambda_1-1-j). The following example is taken from Appendix B in [2]: Let \lambda=(5,5,4,4,2,1). Removing the border strips successively yields the sequence of partitions (5,5,4,4,2,1),(4,3,3,1),(2,2),(1),(), and we obtain (n_0,\ldots,n_4) = (10,7,0,3,1). The dinv adjustment is thus 4+3+1+0 = 8.
Matching statistic: St000329
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St000329: Dyck paths ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 86%
Values
([],1)
=> [1]
=> []
=> []
=> ? = 1 - 2
([],2)
=> [1,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,1)],2)
=> [2]
=> []
=> []
=> ? = 1 - 2
([],3)
=> [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1 = 3 - 2
([(1,2)],3)
=> [2,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? = 1 - 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? = 1 - 2
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 4 - 2
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1 = 3 - 2
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 2
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> [1,0,1,0]
=> 0 = 2 - 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 2
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> []
=> ? = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 2 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 2
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 3 = 5 - 2
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 4 - 2
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1 = 3 - 2
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1 = 3 - 2
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 0 = 2 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 6 - 2
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 3 = 5 - 2
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 4 - 2
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1 = 3 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2 = 4 - 2
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1 = 3 - 2
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1 = 3 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [1,0,1,0,1,0]
=> 0 = 2 - 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? = 3 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 3 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? = 4 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 4 - 2
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 0 = 2 - 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 0 = 2 - 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 3 - 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [1,0,1,0,1,0]
=> 0 = 2 - 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 0 = 2 - 2
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5 = 7 - 2
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 6 - 2
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 3 = 5 - 2
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 4 - 2
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1 = 3 - 2
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3 = 5 - 2
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 4 - 2
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2 = 4 - 2
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1 = 3 - 2
Description
The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1.
Matching statistic: St000519
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00317: Integer partitions odd partsBinary words
St000519: Binary words ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 86%
Values
([],1)
=> [1]
=> []
=> ? => ? = 1 - 2
([],2)
=> [1,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,1)],2)
=> [2]
=> []
=> ? => ? = 1 - 2
([],3)
=> [1,1,1]
=> [1,1]
=> 11 => 1 = 3 - 2
([(1,2)],3)
=> [2,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? => ? = 1 - 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? => ? = 1 - 2
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 111 => 2 = 4 - 2
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 11 => 1 = 3 - 2
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? = 1 - 2
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 0 => 0 = 2 - 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? => ? = 1 - 2
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? = 1 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? => ? = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? = 2 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? = 1 - 2
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 3 = 5 - 2
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 111 => 2 = 4 - 2
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 11 => 1 = 3 - 2
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 2
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 01 => 1 = 3 - 2
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0 => 0 = 2 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? => ? = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0 => 0 = 2 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? => ? = 2 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 2
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 11111 => 4 = 6 - 2
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 3 = 5 - 2
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 111 => 2 = 4 - 2
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 11 => 1 = 3 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 2
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 011 => 2 = 4 - 2
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 11 => 1 = 3 - 2
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 01 => 1 = 3 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1 => 0 = 2 - 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? => ? = 3 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 3 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? => ? = 4 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 4 - 2
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 00 => 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 0 = 2 - 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 0 = 2 - 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 3 - 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1 => 0 = 2 - 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 0 = 2 - 2
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 0 = 2 - 2
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 111111 => 5 = 7 - 2
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 11111 => 4 = 6 - 2
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 3 = 5 - 2
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 111 => 2 = 4 - 2
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 11 => 1 = 3 - 2
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 => 0 = 2 - 2
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> 0111 => 3 = 5 - 2
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 111 => 2 = 4 - 2
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> 011 => 2 = 4 - 2
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 11 => 1 = 3 - 2
Description
The largest length of a factor maximising the subword complexity. Let p_w(n) be the number of distinct factors of length n. Then the statistic is the largest n such that p_w(n) is maximal: H_w = \max\{n: p_w(n)\text{ is maximal}\} A related statistic is the number of distinct factors of arbitrary length, also known as subword complexity, [[St000294]].
The following 11 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001118The acyclic chromatic index of a graph. St001060The distinguishing index of a graph. St001570The minimal number of edges to add to make a graph Hamiltonian. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001176The size of a partition minus its first part.