searching the database
Your data matches 21 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001330
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> 1
([],2)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1
([],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,2)],3)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 1
([],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(2,3)],4)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,3),(2,3)],4)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 1
([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> ([],1)
=> 1
([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 1
([],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(3,4)],5)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4
([(2,4),(3,4)],5)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,4),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(1,4),(2,3)],5)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,4),(2,3),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,1),(2,4),(3,4)],5)
=> ([],2)
=> ([(0,1)],2)
=> 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> 1
([],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of q possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number HG(G) of a graph G is the largest integer q such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of q possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000288
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000288: Binary words ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 86%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000288: Binary words ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 86%
Values
([],1)
=> [1]
=> []
=> => ? = 1 - 1
([],2)
=> [1,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,1)],2)
=> [2]
=> []
=> => ? = 1 - 1
([],3)
=> [1,1,1]
=> [1,1]
=> 110 => 2 = 3 - 1
([(1,2)],3)
=> [2,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,2),(1,2)],3)
=> [3]
=> []
=> => ? = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> => ? = 1 - 1
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 3 = 4 - 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 110 => 2 = 3 - 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> => ? = 1 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 100 => 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> => ? = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> => ? = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> => ? = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> => ? = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> => ? = 1 - 1
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 4 = 5 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1110 => 3 = 4 - 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 110 => 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 1 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 1010 => 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 100 => 1 = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> => ? = 1 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 1 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> => ? = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 3 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> => ? = 1 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 100 => 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> => ? = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 2 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> => ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> => ? = 1 - 1
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 111110 => 5 = 6 - 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 4 = 5 - 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1110 => 3 = 4 - 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 110 => 2 = 3 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 1 - 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 10110 => 3 = 4 - 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 110 => 2 = 3 - 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1010 => 2 = 3 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 100 => 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> => ? = 1 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1000 => 1 = 2 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> => ? = 1 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> => ? = 1 - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 1 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 2 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> => ? = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> => ? = 3 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 3 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> => ? = 4 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 4 - 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 1100 => 2 = 3 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 100 => 1 = 2 - 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 1 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 100 => 1 = 2 - 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 1 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 3 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 2 - 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> => ? = 2 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1000 => 1 = 2 - 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 10 => 1 = 2 - 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 100 => 1 = 2 - 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 10 => 1 = 2 - 1
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1111110 => 6 = 7 - 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 111110 => 5 = 6 - 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 11110 => 4 = 5 - 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1110 => 3 = 4 - 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 110 => 2 = 3 - 1
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 10 => 1 = 2 - 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> 101110 => 4 = 5 - 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1110 => 3 = 4 - 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> 10110 => 3 = 4 - 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 110 => 2 = 3 - 1
Description
The number of ones in a binary word.
This is also known as the Hamming weight of the word.
Matching statistic: St000733
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000733: Standard tableaux ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 86%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000733: Standard tableaux ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 86%
Values
([],1)
=> [1]
=> []
=> []
=> ? = 1 - 1
([],2)
=> [1,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,1)],2)
=> [2]
=> []
=> []
=> ? = 1 - 1
([],3)
=> [1,1,1]
=> [1,1]
=> [[1],[2]]
=> 2 = 3 - 1
([(1,2)],3)
=> [2,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? = 1 - 1
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3 = 4 - 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [[1],[2]]
=> 2 = 3 - 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> [[1,2]]
=> 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> []
=> ? = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 1
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 4 = 5 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3 = 4 - 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [[1],[2]]
=> 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [[1,2],[3]]
=> 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [[1,2]]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 3 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [[1,2]]
=> 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> []
=> ? = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 1
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5 = 6 - 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 4 = 5 - 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3 = 4 - 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [[1],[2]]
=> 2 = 3 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 3 = 4 - 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [[1],[2]]
=> 2 = 3 - 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [[1,2],[3]]
=> 2 = 3 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [[1,2]]
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [[1,2,3]]
=> 1 = 2 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? = 3 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 3 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? = 4 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 4 - 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 2 = 3 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> [[1,2]]
=> 1 = 2 - 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [[1,2]]
=> 1 = 2 - 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 3 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [[1,2,3]]
=> 1 = 2 - 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [[1,2]]
=> 1 = 2 - 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 6 = 7 - 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5 = 6 - 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 4 = 5 - 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3 = 4 - 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [[1],[2]]
=> 2 = 3 - 1
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> [[1]]
=> 1 = 2 - 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 4 = 5 - 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3 = 4 - 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 3 = 4 - 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [[1],[2]]
=> 2 = 3 - 1
Description
The row containing the largest entry of a standard tableau.
Matching statistic: St000876
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00317: Integer partitions —odd parts⟶ Binary words
St000876: Binary words ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 86%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00317: Integer partitions —odd parts⟶ Binary words
St000876: Binary words ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 86%
Values
([],1)
=> [1]
=> []
=> ? => ? = 1 - 1
([],2)
=> [1,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,1)],2)
=> [2]
=> []
=> ? => ? = 1 - 1
([],3)
=> [1,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
([(1,2)],3)
=> [2,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? => ? = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? => ? = 1 - 1
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 111 => 3 = 4 - 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? = 1 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 0 => 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? => ? = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? => ? = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? = 1 - 1
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 4 = 5 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 111 => 3 = 4 - 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 01 => 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0 => 1 = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? => ? = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 3 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0 => 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 11111 => 5 = 6 - 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 4 = 5 - 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 111 => 3 = 4 - 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 011 => 3 = 4 - 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 01 => 2 = 3 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1 => 1 = 2 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? => ? = 3 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 3 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? => ? = 4 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 4 - 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 00 => 2 = 3 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 1 = 2 - 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 1 = 2 - 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 3 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1 => 1 = 2 - 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 1 = 2 - 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 111111 => 6 = 7 - 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 11111 => 5 = 6 - 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 4 = 5 - 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 111 => 3 = 4 - 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 => 1 = 2 - 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> 0111 => 4 = 5 - 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 111 => 3 = 4 - 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> 011 => 3 = 4 - 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
Description
The number of factors in the Catalan decomposition of a binary word.
Every binary word can be written in a unique way as (D0)ℓD(1D)m, where D is the set of Dyck words. This is the Catalan factorisation, see [1, sec.9.1.2].
This statistic records the number of factors in the Catalan factorisation, that is, ℓ+m if the middle Dyck word is empty and ℓ+1+m otherwise.
Matching statistic: St000885
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00317: Integer partitions —odd parts⟶ Binary words
St000885: Binary words ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 86%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00317: Integer partitions —odd parts⟶ Binary words
St000885: Binary words ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 86%
Values
([],1)
=> [1]
=> []
=> ? => ? = 1 - 1
([],2)
=> [1,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,1)],2)
=> [2]
=> []
=> ? => ? = 1 - 1
([],3)
=> [1,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
([(1,2)],3)
=> [2,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? => ? = 1 - 1
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? => ? = 1 - 1
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 111 => 3 = 4 - 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? = 1 - 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 0 => 1 = 2 - 1
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? => ? = 1 - 1
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? => ? = 2 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? = 1 - 1
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 4 = 5 - 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 111 => 3 = 4 - 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 01 => 2 = 3 - 1
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0 => 1 = 2 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? => ? = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 3 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0 => 1 = 2 - 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 1
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 11111 => 5 = 6 - 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 4 = 5 - 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 111 => 3 = 4 - 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 011 => 3 = 4 - 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 01 => 2 = 3 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1 => 1 = 2 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? => ? = 3 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 3 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? => ? = 4 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 4 - 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 00 => 2 = 3 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 1 = 2 - 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 1 = 2 - 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 3 - 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1 => 1 = 2 - 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 1 = 2 - 1
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 1 = 2 - 1
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 111111 => 6 = 7 - 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 11111 => 5 = 6 - 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 4 = 5 - 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 111 => 3 = 4 - 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 => 1 = 2 - 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> 0111 => 4 = 5 - 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 111 => 3 = 4 - 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> 011 => 3 = 4 - 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 11 => 2 = 3 - 1
Description
The number of critical steps in the Catalan decomposition of a binary word.
Every binary word can be written in a unique way as (D0)ℓD(1D)m, where D is the set of Dyck words. This is the Catalan factorisation, see [1, sec.9.1.2].
This statistic records the number of critical steps ℓ+m in the Catalan factorisation.
The distribution of this statistic on words of length n is
(n+1)q^n+\sum_{\substack{k=0\\\text{k even}}}^{n-2} \frac{(n-1-k)^2}{1+k/2}\binom{n}{k/2}q^{n-2-k}.
Matching statistic: St000010
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 86%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000010: Integer partitions ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 86%
Values
([],1)
=> [1]
=> []
=> ?
=> ? = 1 - 2
([],2)
=> [1,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,1)],2)
=> [2]
=> []
=> ?
=> ? = 1 - 2
([],3)
=> [1,1,1]
=> [1,1]
=> [1]
=> 1 = 3 - 2
([(1,2)],3)
=> [2,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,2),(1,2)],3)
=> [3]
=> []
=> ?
=> ? = 1 - 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ?
=> ? = 1 - 2
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2 = 4 - 2
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1 = 3 - 2
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1 - 2
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> []
=> 0 = 2 - 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1 - 2
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ?
=> ? = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 2 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ?
=> ? = 1 - 2
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3 = 5 - 2
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2 = 4 - 2
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1 = 3 - 2
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 - 2
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1 = 3 - 2
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ?
=> ? = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> 0 = 2 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ?
=> ? = 2 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ?
=> ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ?
=> ? = 1 - 2
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4 = 6 - 2
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3 = 5 - 2
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2 = 4 - 2
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1 = 3 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 1 - 2
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2 = 4 - 2
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1 = 3 - 2
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1 = 3 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> []
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 1 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 1 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> []
=> 0 = 2 - 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 1 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 1 - 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 1 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 2 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ?
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ?
=> ? = 3 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 3 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ?
=> ? = 4 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 4 - 2
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> [2]
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> []
=> 0 = 2 - 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 1 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> []
=> 0 = 2 - 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 1 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 3 - 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 2 - 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ?
=> ? = 2 - 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> []
=> 0 = 2 - 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> []
=> 0 = 2 - 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> []
=> 0 = 2 - 2
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> []
=> 0 = 2 - 2
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 5 = 7 - 2
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4 = 6 - 2
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3 = 5 - 2
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2 = 4 - 2
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 1 = 3 - 2
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> []
=> 0 = 2 - 2
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 3 = 5 - 2
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2 = 4 - 2
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 2 = 4 - 2
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1]
=> 1 = 3 - 2
Description
The length of the partition.
Matching statistic: St000319
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000319: Integer partitions ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 86%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000319: Integer partitions ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 86%
Values
([],1)
=> [1]
=> []
=> []
=> ? = 1 - 2
([],2)
=> [1,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,1)],2)
=> [2]
=> []
=> []
=> ? = 1 - 2
([],3)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
([(1,2)],3)
=> [2,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? = 1 - 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? = 1 - 2
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2 = 4 - 2
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 2
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 2
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> []
=> ? = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 2 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 2
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 3 = 5 - 2
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [3]
=> 2 = 4 - 2
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [2,1]
=> 1 = 3 - 2
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [5]
=> 4 = 6 - 2
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 3 = 5 - 2
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 2 = 4 - 2
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> [3,1]
=> 2 = 4 - 2
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [2,1]
=> 1 = 3 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [1,1,1]
=> 0 = 2 - 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? = 3 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 3 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? = 4 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 4 - 2
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> [2,2]
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 3 - 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [1,1,1]
=> 0 = 2 - 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [6]
=> 5 = 7 - 2
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [5]
=> 4 = 6 - 2
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 3 = 5 - 2
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [3]
=> 2 = 4 - 2
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [4,1]
=> 3 = 5 - 2
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [3]
=> 2 = 4 - 2
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [3,1]
=> 2 = 4 - 2
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
Description
The spin of an integer partition.
The Ferrers shape of an integer partition \lambda can be decomposed into border strips. The spin is then defined to be the total number of crossings of border strips of \lambda with the vertical lines in the Ferrers shape.
The following example is taken from Appendix B in [1]: Let \lambda = (5,5,4,4,2,1). Removing the border strips successively yields the sequence of partitions
(5,5,4,4,2,1), (4,3,3,1), (2,2), (1), ().
The first strip (5,5,4,4,2,1) \setminus (4,3,3,1) crosses 4 times, the second strip (4,3,3,1) \setminus (2,2) crosses 3 times, the strip (2,2) \setminus (1) crosses 1 time, and the remaining strip (1) \setminus () does not cross.
This yields the spin of (5,5,4,4,2,1) to be 4+3+1 = 8.
Matching statistic: St000320
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000320: Integer partitions ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 86%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000320: Integer partitions ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 86%
Values
([],1)
=> [1]
=> []
=> []
=> ? = 1 - 2
([],2)
=> [1,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,1)],2)
=> [2]
=> []
=> []
=> ? = 1 - 2
([],3)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
([(1,2)],3)
=> [2,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? = 1 - 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? = 1 - 2
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 2 = 4 - 2
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 2
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 2
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> []
=> ? = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 2 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 2
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 3 = 5 - 2
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [3]
=> 2 = 4 - 2
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [2,1]
=> 1 = 3 - 2
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [5]
=> 4 = 6 - 2
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 3 = 5 - 2
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 2 = 4 - 2
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> [3,1]
=> 2 = 4 - 2
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [2,1]
=> 1 = 3 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [1,1,1]
=> 0 = 2 - 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? = 3 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 3 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? = 4 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 4 - 2
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> [2,2]
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 3 - 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [1,1,1]
=> 0 = 2 - 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 0 = 2 - 2
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [6]
=> 5 = 7 - 2
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [5]
=> 4 = 6 - 2
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 3 = 5 - 2
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [3]
=> 2 = 4 - 2
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> [1]
=> 0 = 2 - 2
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [4,1]
=> 3 = 5 - 2
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [3]
=> 2 = 4 - 2
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [3,1]
=> 2 = 4 - 2
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [2]
=> 1 = 3 - 2
Description
The dinv adjustment of an integer partition.
The Ferrers shape of an integer partition \lambda = (\lambda_1,\ldots,\lambda_k) can be decomposed into border strips. For 0 \leq j < \lambda_1 let n_j be the length of the border strip starting at (\lambda_1-j,0).
The dinv adjustment is then defined by
\sum_{j:n_j > 0}(\lambda_1-1-j).
The following example is taken from Appendix B in [2]: Let \lambda=(5,5,4,4,2,1). Removing the border strips successively yields the sequence of partitions
(5,5,4,4,2,1),(4,3,3,1),(2,2),(1),(),
and we obtain (n_0,\ldots,n_4) = (10,7,0,3,1).
The dinv adjustment is thus 4+3+1+0 = 8.
Matching statistic: St000329
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000329: Dyck paths ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 86%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000329: Dyck paths ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 86%
Values
([],1)
=> [1]
=> []
=> []
=> ? = 1 - 2
([],2)
=> [1,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,1)],2)
=> [2]
=> []
=> []
=> ? = 1 - 2
([],3)
=> [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1 = 3 - 2
([(1,2)],3)
=> [2,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? = 1 - 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> []
=> ? = 1 - 2
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 4 - 2
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1 = 3 - 2
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 2
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> [1,0,1,0]
=> 0 = 2 - 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 2
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> []
=> ? = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 2 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> []
=> ? = 1 - 2
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 3 = 5 - 2
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 4 - 2
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1 = 3 - 2
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1 = 3 - 2
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 0 = 2 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> []
=> ? = 1 - 2
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 6 - 2
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 3 = 5 - 2
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 4 - 2
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1 = 3 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2 = 4 - 2
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1 = 3 - 2
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1 = 3 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [1,0,1,0,1,0]
=> 0 = 2 - 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? = 3 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 3 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> []
=> ? = 4 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 4 - 2
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 0 = 2 - 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 0 = 2 - 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 1 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 3 - 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> []
=> ? = 2 - 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [1,0,1,0,1,0]
=> 0 = 2 - 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 0 = 2 - 2
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5 = 7 - 2
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 4 = 6 - 2
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 3 = 5 - 2
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 4 - 2
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1 = 3 - 2
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> [1,0]
=> 0 = 2 - 2
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3 = 5 - 2
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2 = 4 - 2
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2 = 4 - 2
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1 = 3 - 2
Description
The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1.
Matching statistic: St000519
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00317: Integer partitions —odd parts⟶ Binary words
St000519: Binary words ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 86%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00317: Integer partitions —odd parts⟶ Binary words
St000519: Binary words ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 86%
Values
([],1)
=> [1]
=> []
=> ? => ? = 1 - 2
([],2)
=> [1,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,1)],2)
=> [2]
=> []
=> ? => ? = 1 - 2
([],3)
=> [1,1,1]
=> [1,1]
=> 11 => 1 = 3 - 2
([(1,2)],3)
=> [2,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,2),(1,2)],3)
=> [3]
=> []
=> ? => ? = 1 - 2
([(0,1),(0,2),(1,2)],3)
=> [3]
=> []
=> ? => ? = 1 - 2
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 111 => 2 = 4 - 2
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 11 => 1 = 3 - 2
([(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? = 1 - 2
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 0 => 0 = 2 - 2
([(0,3),(1,2),(2,3)],4)
=> [4]
=> []
=> ? => ? = 1 - 2
([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? = 1 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> []
=> ? => ? = 2 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? = 2 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> []
=> ? => ? = 1 - 2
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 3 = 5 - 2
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 111 => 2 = 4 - 2
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 11 => 1 = 3 - 2
([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 2
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 01 => 1 = 3 - 2
([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0 => 0 = 2 - 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 2
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 2
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? => ? = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 3 - 2
([(0,4),(1,3),(2,3),(2,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0 => 0 = 2 - 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [5]
=> []
=> ? => ? = 2 - 2
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> []
=> ? => ? = 1 - 2
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 11111 => 4 = 6 - 2
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 3 = 5 - 2
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 111 => 2 = 4 - 2
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 11 => 1 = 3 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 2
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 011 => 2 = 4 - 2
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 11 => 1 = 3 - 2
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 01 => 1 = 3 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 2
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1 => 0 = 2 - 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? => ? = 3 - 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 3 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6]
=> []
=> ? => ? = 4 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 4 - 2
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 00 => 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> [5,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 0 = 2 - 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 0 = 2 - 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 1 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 3 - 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> [6]
=> []
=> ? => ? = 2 - 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 1 => 0 = 2 - 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 0 = 2 - 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 0 => 0 = 2 - 2
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [5,1]
=> [1]
=> 1 => 0 = 2 - 2
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 111111 => 5 = 7 - 2
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 11111 => 4 = 6 - 2
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 1111 => 3 = 5 - 2
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 111 => 2 = 4 - 2
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 11 => 1 = 3 - 2
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [6,1]
=> [1]
=> 1 => 0 = 2 - 2
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> 0111 => 3 = 5 - 2
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 111 => 2 = 4 - 2
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> 011 => 2 = 4 - 2
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 11 => 1 = 3 - 2
Description
The largest length of a factor maximising the subword complexity.
Let p_w(n) be the number of distinct factors of length n. Then the statistic is the largest n such that p_w(n) is maximal:
H_w = \max\{n: p_w(n)\text{ is maximal}\}
A related statistic is the number of distinct factors of arbitrary length, also known as subword complexity, [[St000294]].
The following 11 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001508The degree of the standard monomial associated to a Dyck path relative to the diagonal boundary. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001118The acyclic chromatic index of a graph. St001060The distinguishing index of a graph. St001570The minimal number of edges to add to make a graph Hamiltonian. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001176The size of a partition minus its first part.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!