Your data matches 4 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001232
Mp00204: Permutations LLPSInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00099: Dyck paths bounce pathDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
[1,2] => [1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[2,1] => [2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[3,2,1] => [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4
[1,4,3,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,1,4,3] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,4,3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,1,4,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[3,2,1,4] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,2,4,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,4,2,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[4,1,3,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[4,2,1,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[4,2,3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[4,3,1,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[4,3,2,1] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[1,2,5,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,3,5,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,4,3,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,4,3,5,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,4,5,3,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,5,3,2,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,5,3,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,5,4,2,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,5,4,3,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4
[2,3,5,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,4,3,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,4,3,5,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,4,5,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,5,1,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,5,3,1,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,5,3,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,5,4,1,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,5,4,3,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4
[3,2,1,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,2,4,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,2,4,5,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,2,5,1,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,4,2,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,4,2,5,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,4,5,2,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,5,1,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,5,2,1,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,5,2,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,5,4,1,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,5,4,2,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St001227
Mp00204: Permutations LLPSInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00099: Dyck paths bounce pathDyck paths
St001227: Dyck paths ⟶ ℤResult quality: 81% values known / values provided: 81%distinct values known / distinct values provided: 83%
Values
[1] => [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
[1,2] => [1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[2,1] => [2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[3,2,1] => [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4
[1,4,3,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,1,4,3] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,4,3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,1,4,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[3,2,1,4] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,2,4,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,4,2,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[4,1,3,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[4,2,1,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[4,2,3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[4,3,1,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[4,3,2,1] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
[1,2,5,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,3,5,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,4,3,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,4,3,5,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,4,5,3,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,5,3,2,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,5,3,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,5,4,2,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,5,4,3,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4
[2,3,5,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,4,3,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,4,3,5,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,4,5,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,5,1,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,5,3,1,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,5,3,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,5,4,1,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,5,4,3,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4
[3,2,1,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,2,4,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,2,4,5,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,2,5,1,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,4,2,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,4,2,5,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,4,5,2,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,5,1,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,5,2,1,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,5,2,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,5,4,1,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,5,4,2,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 6
[6,5,4,3,2,1] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[1,7,6,5,4,3,2] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[2,7,6,5,4,3,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[3,7,6,5,4,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[4,7,6,5,3,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[5,7,6,4,3,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[6,5,4,3,2,1,7] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[6,5,4,3,2,7,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[6,5,4,3,7,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[6,5,4,7,3,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[6,5,7,4,3,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[6,7,5,4,3,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,1,6,5,4,3,2] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,2,6,5,4,3,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,3,6,5,4,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,4,6,5,3,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,5,4,3,2,1,6] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,5,4,3,2,6,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,5,4,3,6,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,5,4,6,3,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,5,6,4,3,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,6,1,5,4,3,2] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,6,2,5,4,3,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,6,3,5,4,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,6,4,3,2,1,5] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,6,4,3,2,5,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,6,4,3,5,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,6,4,5,3,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,6,5,1,4,3,2] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,6,5,2,4,3,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,6,5,3,2,1,4] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,6,5,3,2,4,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,6,5,3,4,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,6,5,4,1,3,2] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,6,5,4,2,1,3] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,6,5,4,2,3,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,6,5,4,3,1,2] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[6,7,8,5,4,3,2,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,8,5,6,4,3,2,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[8,5,6,7,4,3,2,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[6,7,5,8,4,3,2,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,5,6,8,4,3,2,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[6,5,7,8,4,3,2,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,8,6,4,5,3,2,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[8,6,7,4,5,3,2,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[7,6,8,4,5,3,2,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[8,7,4,5,6,3,2,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[8,5,6,4,7,3,2,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
[8,6,4,5,7,3,2,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6
Description
The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra.
Matching statistic: St001265
Mp00204: Permutations LLPSInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00099: Dyck paths bounce pathDyck paths
St001265: Dyck paths ⟶ ℤResult quality: 81% values known / values provided: 81%distinct values known / distinct values provided: 83%
Values
[1] => [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 0 = 1 - 1
[1,2] => [1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
[2,1] => [2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 0 = 1 - 1
[1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[3,2,1] => [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
[1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3 = 4 - 1
[1,4,3,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[2,1,4,3] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[2,4,3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[3,1,4,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[3,2,1,4] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[3,2,4,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[3,4,2,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[4,1,3,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[4,2,1,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[4,2,3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[4,3,1,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[4,3,2,1] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0 = 1 - 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 4 = 5 - 1
[1,2,5,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,3,5,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,4,3,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,4,3,5,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,4,5,3,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,5,3,2,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,5,3,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,5,4,2,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,5,4,3,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[2,3,5,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[2,4,3,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[2,4,3,5,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[2,4,5,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[2,5,1,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[2,5,3,1,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[2,5,3,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[2,5,4,1,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[2,5,4,3,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[3,2,1,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[3,2,4,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[3,2,4,5,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[3,2,5,1,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[3,4,2,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[3,4,2,5,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[3,4,5,2,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[3,5,1,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[3,5,2,1,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[3,5,2,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[3,5,4,1,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[3,5,4,2,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 6 - 1
[6,5,4,3,2,1] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
[1,7,6,5,4,3,2] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[2,7,6,5,4,3,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[3,7,6,5,4,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[4,7,6,5,3,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[5,7,6,4,3,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[6,5,4,3,2,1,7] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[6,5,4,3,2,7,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[6,5,4,3,7,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[6,5,4,7,3,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[6,5,7,4,3,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[6,7,5,4,3,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,1,6,5,4,3,2] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,2,6,5,4,3,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,3,6,5,4,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,4,6,5,3,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,5,4,3,2,1,6] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,5,4,3,2,6,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,5,4,3,6,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,5,4,6,3,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,5,6,4,3,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,6,1,5,4,3,2] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,6,2,5,4,3,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,6,3,5,4,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,6,4,3,2,1,5] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,6,4,3,2,5,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,6,4,3,5,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,6,4,5,3,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,6,5,1,4,3,2] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,6,5,2,4,3,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,6,5,3,2,1,4] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,6,5,3,2,4,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,6,5,3,4,2,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,6,5,4,1,3,2] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,6,5,4,2,1,3] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,6,5,4,2,3,1] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,6,5,4,3,1,2] => [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[6,7,8,5,4,3,2,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,8,5,6,4,3,2,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[8,5,6,7,4,3,2,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[6,7,5,8,4,3,2,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,5,6,8,4,3,2,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[6,5,7,8,4,3,2,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,8,6,4,5,3,2,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[8,6,7,4,5,3,2,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[7,6,8,4,5,3,2,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[8,7,4,5,6,3,2,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[8,5,6,4,7,3,2,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
[8,6,4,5,7,3,2,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 6 - 1
Description
The maximal i such that the i-th simple module has projective dimension equal to the global dimension in the corresponding Nakayama algebra.
Matching statistic: St001000
Mp00204: Permutations LLPSInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00099: Dyck paths bounce pathDyck paths
St001000: Dyck paths ⟶ ℤResult quality: 19% values known / values provided: 19%distinct values known / distinct values provided: 67%
Values
[1] => [1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
[1,2] => [1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[2,1] => [2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[1,2,3] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[3,2,1] => [3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,2,3,4] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4
[1,4,3,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,1,4,3] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,4,3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,1,4,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[3,2,1,4] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,2,4,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,4,2,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[4,1,3,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[4,2,1,3] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[4,2,3,1] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[4,3,1,2] => [3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[4,3,2,1] => [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 5
[1,2,5,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,3,5,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,4,3,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,4,3,5,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,4,5,3,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,5,2,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,5,3,2,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,5,3,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,5,4,2,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,5,4,3,2] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4
[2,3,5,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,4,3,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,4,3,5,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,4,5,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,5,1,4,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,5,3,1,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,5,3,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,5,4,1,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,5,4,3,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4
[3,2,1,4,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,2,4,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,2,4,5,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,2,5,1,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,4,2,1,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,4,2,5,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,4,5,2,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,5,1,4,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,5,2,1,4] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,5,2,4,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,5,4,1,2] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,5,4,2,1] => [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 4
[4,1,3,2,5] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[5,4,3,2,1] => [5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 6
[1,6,5,4,3,2] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[2,6,5,4,3,1] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[3,6,5,4,2,1] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[4,6,5,3,2,1] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[5,4,3,2,1,6] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[5,4,3,2,6,1] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[5,4,3,6,2,1] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[5,4,6,3,2,1] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[5,6,4,3,2,1] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[6,1,5,4,3,2] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[6,2,5,4,3,1] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[6,3,5,4,2,1] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[6,4,3,2,1,5] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[6,4,3,2,5,1] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[6,4,3,5,2,1] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[6,4,5,3,2,1] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[6,5,1,4,3,2] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[6,5,2,4,3,1] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[6,5,3,2,1,4] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[6,5,3,2,4,1] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[6,5,3,4,2,1] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[6,5,4,1,3,2] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[6,5,4,2,1,3] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[6,5,4,2,3,1] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[6,5,4,3,1,2] => [5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[6,5,4,3,2,1] => [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1
[1,2,3,4,7,6,5] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,2,3,5,7,6,4] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,2,3,6,5,4,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,2,3,6,5,7,4] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,2,3,6,7,5,4] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,2,3,7,4,6,5] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,2,3,7,5,4,6] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,2,3,7,5,6,4] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,2,3,7,6,4,5] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,2,4,5,7,6,3] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,2,4,6,5,3,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,2,4,6,5,7,3] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,2,4,6,7,5,3] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,2,4,7,3,6,5] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,2,4,7,5,3,6] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,2,4,7,5,6,3] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,2,4,7,6,3,5] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,2,5,4,3,6,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,2,5,4,6,3,7] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,2,5,4,6,7,3] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
[1,2,5,4,7,3,6] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 5
Description
Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path.