searching the database
Your data matches 12 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001195
(load all 22 compositions to match this statistic)
(load all 22 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
St001195: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001195: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[2]
=> [1,1,0,0,1,0]
=> 0
[1,1]
=> [1,0,1,1,0,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> 0
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> 0
[2,2]
=> [1,1,0,0,1,1,0,0]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> 0
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 0
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 0
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> 0
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> 0
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> 0
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
[4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
Description
The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$.
Matching statistic: St001199
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001199: Dyck paths ⟶ ℤResult quality: 48% ●values known / values provided: 48%●distinct values known / distinct values provided: 50%
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001199: Dyck paths ⟶ ℤResult quality: 48% ●values known / values provided: 48%●distinct values known / distinct values provided: 50%
Values
[2]
=> [1,1,0,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> ? = 0
[1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> ? = 1
[2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> ? = 0
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> ? = 0
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? = 0
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 0
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0]
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 0
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0]
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> 1
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> 1
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> 1
[4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0
Description
The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St001498
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001498: Dyck paths ⟶ ℤResult quality: 48% ●values known / values provided: 48%●distinct values known / distinct values provided: 50%
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001498: Dyck paths ⟶ ℤResult quality: 48% ●values known / values provided: 48%●distinct values known / distinct values provided: 50%
Values
[2]
=> [1,1,0,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> ? = 0 - 1
[1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> 0 = 1 - 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> ? = 1 - 1
[2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> ? = 0 - 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 0 = 1 - 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> ? = 0 - 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 0 = 1 - 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? = 0 - 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 - 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> 0 = 1 - 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 - 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0]
=> 0 = 1 - 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> ? = 0 - 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> 0 = 1 - 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> 0 = 1 - 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0]
=> 0 = 1 - 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 - 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> 0 = 1 - 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> 0 = 1 - 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> 0 = 1 - 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> 0 = 1 - 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 - 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 - 1
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 - 1
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> 0 = 1 - 1
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> 0 = 1 - 1
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> 0 = 1 - 1
[4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 - 1
[4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 - 1
[4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 - 1
[3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> 0 = 1 - 1
[4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 - 1
Description
The normalised height of a Nakayama algebra with magnitude 1.
We use the bijection (see code) suggested by Christian Stump, to have a bijection between such Nakayama algebras with magnitude 1 and Dyck paths. The normalised height is the height of the (periodic) Dyck path given by the top of the Auslander-Reiten quiver. Thus when having a CNakayama algebra it is the Loewy length minus the number of simple modules and for the LNakayama algebras it is the usual height.
Matching statistic: St000260
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 32% ●values known / values provided: 32%●distinct values known / distinct values provided: 50%
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 32% ●values known / values provided: 32%●distinct values known / distinct values provided: 50%
Values
[2]
=> [1,0,1,0]
=> [1,2] => ([],2)
=> ? = 0
[1,1]
=> [1,1,0,0]
=> [2,1] => ([(0,1)],2)
=> 1
[3]
=> [1,0,1,0,1,0]
=> [1,2,3] => ([],3)
=> ? = 1
[2,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => ([(1,2)],3)
=> ? = 0
[1,1,1]
=> [1,1,0,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => ([],4)
=> ? = 1
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? = 0
[2,2]
=> [1,1,1,0,0,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? = 1
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ? = 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ? = 0
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 0
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> ? = 1
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 1
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,4,6,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,4] => ([(3,6),(4,6),(5,6)],7)
=> ? = 1
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,4,3,5,6,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,5,3,4,6,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,5,4,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,5,4,6,7,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,2,3,5,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,4,3,6,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,6,3,5,4,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,5,3,4,6,7,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,6,5,4,7,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,4,3,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,6,3,5,4,7,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St000264
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00024: Dyck paths —to 321-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 50%
Mp00024: Dyck paths —to 321-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 20% ●values known / values provided: 20%●distinct values known / distinct values provided: 50%
Values
[2]
=> [1,1,0,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> ? = 0 + 3
[1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ? = 1 + 3
[3]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 3
[2,1]
=> [1,0,1,0,1,0]
=> [2,1,3] => ([(1,2)],3)
=> ? = 0 + 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 3
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 3
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? = 0 + 3
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4 = 1 + 3
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? = 1 + 3
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 1 + 3
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,3,5] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 3
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 3
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ? = 0 + 3
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 3
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 + 3
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 3
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ? = 1 + 3
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 1 + 3
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? = 0 + 3
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? = 1 + 3
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 1 + 3
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 1 + 3
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 1 + 3
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? = 0 + 3
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ? = 1 + 3
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 1 + 3
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 1 + 3
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? = 1 + 3
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 4 = 1 + 3
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 3
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 3
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? = 0 + 3
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4 = 1 + 3
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 1 + 3
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 3
[4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ? = 0 + 3
[4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ? = 0 + 3
[4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? = 0 + 3
[3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ? = 1 + 3
[4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? = 0 + 3
Description
The girth of a graph, which is not a tree.
This is the length of the shortest cycle in the graph.
Matching statistic: St001491
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00105: Binary words —complement⟶ Binary words
Mp00269: Binary words —flag zeros to zeros⟶ Binary words
St001491: Binary words ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 100%
Mp00105: Binary words —complement⟶ Binary words
Mp00269: Binary words —flag zeros to zeros⟶ Binary words
St001491: Binary words ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 100%
Values
[2]
=> 100 => 011 => 110 => 1 = 0 + 1
[1,1]
=> 110 => 001 => 101 => 2 = 1 + 1
[3]
=> 1000 => 0111 => 1110 => 2 = 1 + 1
[2,1]
=> 1010 => 0101 => 1000 => 1 = 0 + 1
[1,1,1]
=> 1110 => 0001 => 1011 => 2 = 1 + 1
[4]
=> 10000 => 01111 => 11110 => ? = 1 + 1
[3,1]
=> 10010 => 01101 => 10010 => ? = 0 + 1
[2,2]
=> 1100 => 0011 => 1101 => 2 = 1 + 1
[2,1,1]
=> 10110 => 01001 => 10100 => ? = 1 + 1
[1,1,1,1]
=> 11110 => 00001 => 10111 => ? = 1 + 1
[4,1]
=> 100010 => 011101 => 100110 => ? = 1 + 1
[3,2]
=> 10100 => 01011 => 11000 => ? = 0 + 1
[3,1,1]
=> 100110 => 011001 => 101010 => ? = 0 + 1
[2,2,1]
=> 11010 => 00101 => 10001 => ? = 1 + 1
[2,1,1,1]
=> 101110 => 010001 => 101100 => ? = 1 + 1
[4,2]
=> 100100 => 011011 => 110010 => ? = 0 + 1
[4,1,1]
=> 1000110 => 0111001 => 1010110 => ? = 1 + 1
[3,3]
=> 11000 => 00111 => 11101 => ? = 1 + 1
[3,2,1]
=> 101010 => 010101 => 100000 => ? = 0 + 1
[3,1,1,1]
=> 1001110 => 0110001 => 1011010 => ? = 1 + 1
[2,2,2]
=> 11100 => 00011 => 11011 => ? = 1 + 1
[2,2,1,1]
=> 110110 => 001001 => 101001 => ? = 1 + 1
[4,3]
=> 101000 => 010111 => 111000 => ? = 1 + 1
[4,2,1]
=> 1001010 => 0110101 => 1000010 => ? = 0 + 1
[4,1,1,1]
=> 10001110 => 01110001 => 10110110 => ? = 1 + 1
[3,3,1]
=> 110010 => 001101 => 100101 => ? = 1 + 1
[3,2,2]
=> 101100 => 010011 => 110100 => ? = 1 + 1
[3,2,1,1]
=> 1010110 => 0101001 => 1010000 => ? = 1 + 1
[2,2,2,1]
=> 111010 => 000101 => 100011 => ? = 1 + 1
[4,3,1]
=> 1010010 => 0101101 => 1001000 => ? = 0 + 1
[4,2,2]
=> 1001100 => 0110011 => 1101010 => ? = 0 + 1
[4,2,1,1]
=> 10010110 => 01101001 => 10100010 => ? = 0 + 1
[3,3,2]
=> 110100 => 001011 => 110001 => ? = 1 + 1
[3,3,1,1]
=> 1100110 => 0011001 => 1010101 => ? = 1 + 1
[3,2,2,1]
=> 1011010 => 0100101 => 1000100 => ? = 1 + 1
[4,3,2]
=> 1010100 => 0101011 => 1100000 => ? = 0 + 1
[4,3,1,1]
=> 10100110 => 01011001 => 10101000 => ? = 0 + 1
[4,2,2,1]
=> 10011010 => 01100101 => 10001010 => ? = 0 + 1
[3,3,2,1]
=> 1101010 => 0010101 => 1000001 => ? = 1 + 1
[4,3,2,1]
=> 10101010 => 01010101 => 10000000 => ? = 0 + 1
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset.
Let $A_n=K[x]/(x^n)$.
We associate to a nonempty subset S of an (n-1)-set the module $M_S$, which is the direct sum of $A_n$-modules with indecomposable non-projective direct summands of dimension $i$ when $i$ is in $S$ (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of $M_S$. We decode the subset as a binary word so that for example the subset $S=\{1,3 \} $ of $\{1,2,3 \}$ is decoded as 101.
Matching statistic: St000007
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
Mp00283: Perfect matchings —non-nesting-exceedence permutation⟶ Permutations
St000007: Permutations ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 100%
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
Mp00283: Perfect matchings —non-nesting-exceedence permutation⟶ Permutations
St000007: Permutations ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 100%
Values
[2]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [3,4,2,1,6,5] => 2 = 0 + 2
[1,1]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,5,6,4,3] => 3 = 1 + 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [4,5,6,3,2,1,8,7] => ? = 1 + 2
[2,1]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => 2 = 0 + 2
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,6,7,8,5,4,3] => ? = 1 + 2
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [(1,8),(2,7),(3,6),(4,5),(9,10)]
=> [5,6,7,8,4,3,2,1,10,9] => ? = 1 + 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [3,5,2,6,4,1,8,7] => ? = 0 + 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [3,4,2,1,7,8,6,5] => 3 = 1 + 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [2,1,5,7,4,8,6,3] => ? = 1 + 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> [2,1,7,8,9,10,6,5,4,3] => ? = 1 + 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [(1,8),(2,7),(3,4),(5,6),(9,10)]
=> [4,6,7,3,8,5,2,1,10,9] => ? = 1 + 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => ? = 0 + 2
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => ? = 0 + 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => ? = 1 + 2
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [(1,2),(3,10),(4,9),(5,6),(7,8)]
=> [2,1,6,8,9,5,10,7,4,3] => ? = 1 + 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [4,5,7,3,2,8,6,1,10,9] => ? = 0 + 2
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [(1,8),(2,3),(4,7),(5,6),(9,10)]
=> [3,6,2,7,8,5,4,1,10,9] => ? = 1 + 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [(1,6),(2,5),(3,4),(7,10),(8,9)]
=> [4,5,6,3,2,1,9,10,8,7] => ? = 1 + 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => 2 = 0 + 2
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> [2,1,6,7,9,5,4,10,8,3] => ? = 1 + 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [(1,4),(2,3),(5,10),(6,9),(7,8)]
=> [3,4,2,1,8,9,10,7,6,5] => ? = 1 + 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [(1,2),(3,10),(4,5),(6,9),(7,8)]
=> [2,1,5,8,4,9,10,7,6,3] => ? = 1 + 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [4,5,6,3,2,1,8,7,10,9] => ? = 1 + 2
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [3,5,2,7,4,8,6,1,10,9] => ? = 0 + 2
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [(1,2),(3,8),(4,7),(5,6),(9,10)]
=> [2,1,6,7,8,5,4,3,10,9] => ? = 1 + 2
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [(1,6),(2,3),(4,5),(7,10),(8,9)]
=> [3,5,2,6,4,1,9,10,8,7] => ? = 1 + 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [(1,4),(2,3),(5,10),(6,7),(8,9)]
=> [3,4,2,1,7,9,6,10,8,5] => ? = 1 + 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> [2,1,5,7,4,9,6,10,8,3] => ? = 1 + 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [(1,2),(3,4),(5,10),(6,9),(7,8)]
=> [2,1,4,3,8,9,10,7,6,5] => ? = 1 + 2
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [3,5,2,6,4,1,8,7,10,9] => ? = 0 + 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [(1,4),(2,3),(5,8),(6,7),(9,10)]
=> [3,4,2,1,7,8,6,5,10,9] => ? = 0 + 2
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [2,1,5,7,4,8,6,3,10,9] => ? = 0 + 2
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [(1,4),(2,3),(5,6),(7,10),(8,9)]
=> [3,4,2,1,6,5,9,10,8,7] => ? = 1 + 2
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [(1,2),(3,6),(4,5),(7,10),(8,9)]
=> [2,1,5,6,4,3,9,10,8,7] => ? = 1 + 2
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> [2,1,4,3,7,9,6,10,8,5] => ? = 1 + 2
[4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [3,4,2,1,6,5,8,7,10,9] => ? = 0 + 2
[4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [2,1,5,6,4,3,8,7,10,9] => ? = 0 + 2
[4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> [(1,2),(3,4),(5,8),(6,7),(9,10)]
=> [2,1,4,3,7,8,6,5,10,9] => ? = 0 + 2
[3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,6),(7,10),(8,9)]
=> [2,1,4,3,6,5,9,10,8,7] => ? = 1 + 2
[4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 2 = 0 + 2
Description
The number of saliances of the permutation.
A saliance is a right-to-left maximum. This can be described as an occurrence of the mesh pattern $([1], {(1,1)})$, i.e., the upper right quadrant is shaded, see [1].
Matching statistic: St001287
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00033: Dyck paths —to two-row standard tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St001287: Permutations ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 100%
Mp00033: Dyck paths —to two-row standard tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St001287: Permutations ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 100%
Values
[2]
=> [1,0,1,0]
=> [[1,3],[2,4]]
=> [2,4,1,3] => 3 = 0 + 3
[1,1]
=> [1,1,0,0]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 4 = 1 + 3
[3]
=> [1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => 4 = 1 + 3
[2,1]
=> [1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => 3 = 0 + 3
[1,1,1]
=> [1,1,0,1,0,0]
=> [[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => 4 = 1 + 3
[4]
=> [1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> [2,4,6,8,1,3,5,7] => ? = 1 + 3
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> [2,4,7,8,1,3,5,6] => ? = 0 + 3
[2,2]
=> [1,1,1,0,0,0]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 4 = 1 + 3
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [[1,3,4,6],[2,5,7,8]]
=> [2,5,7,8,1,3,4,6] => ? = 1 + 3
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [[1,2,4,6],[3,5,7,8]]
=> [3,5,7,8,1,2,4,6] => ? = 1 + 3
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[1,3,5,7,8],[2,4,6,9,10]]
=> [2,4,6,9,10,1,3,5,7,8] => ? = 1 + 3
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [[1,3,4,5],[2,6,7,8]]
=> [2,6,7,8,1,3,4,5] => ? = 0 + 3
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[1,3,5,6,8],[2,4,7,9,10]]
=> [2,4,7,9,10,1,3,5,6,8] => ? = 0 + 3
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [[1,2,3,6],[4,5,7,8]]
=> [4,5,7,8,1,2,3,6] => ? = 1 + 3
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[1,3,4,6,8],[2,5,7,9,10]]
=> [2,5,7,9,10,1,3,4,6,8] => ? = 1 + 3
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[1,3,5,6,7],[2,4,8,9,10]]
=> [2,4,8,9,10,1,3,5,6,7] => ? = 0 + 3
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [[1,3,5,7,8,10],[2,4,6,9,11,12]]
=> [2,4,6,9,11,12,1,3,5,7,8,10] => ? = 1 + 3
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [[1,2,3,5],[4,6,7,8]]
=> [4,6,7,8,1,2,3,5] => ? = 1 + 3
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,3,4,5,8],[2,6,7,9,10]]
=> [2,6,7,9,10,1,3,4,5,8] => ? = 0 + 3
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [[1,3,5,6,8,10],[2,4,7,9,11,12]]
=> [2,4,7,9,11,12,1,3,5,6,8,10] => ? = 1 + 3
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => ? = 1 + 3
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[1,2,3,6,8],[4,5,7,9,10]]
=> [4,5,7,9,10,1,2,3,6,8] => ? = 1 + 3
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> [2,6,8,9,10,1,3,4,5,7] => ? = 1 + 3
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [[1,3,5,6,7,10],[2,4,8,9,11,12]]
=> [2,4,8,9,11,12,1,3,5,6,7,10] => ? = 0 + 3
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [[1,3,5,7,8,10,12],[2,4,6,9,11,13,14]]
=> [2,4,6,9,11,13,14,1,3,5,7,8,10,12] => ? = 1 + 3
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[1,2,3,5,8],[4,6,7,9,10]]
=> [4,6,7,9,10,1,2,3,5,8] => ? = 1 + 3
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> [2,7,8,9,10,1,3,4,5,6] => ? = 1 + 3
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [[1,3,4,5,8,10],[2,6,7,9,11,12]]
=> [2,6,7,9,11,12,1,3,4,5,8,10] => ? = 1 + 3
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[1,2,3,4,8],[5,6,7,9,10]]
=> [5,6,7,9,10,1,2,3,4,8] => ? = 1 + 3
[4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [[1,3,4,5,7,10],[2,6,8,9,11,12]]
=> [2,6,8,9,11,12,1,3,4,5,7,10] => ? = 0 + 3
[4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [[1,3,5,6,7,8],[2,4,9,10,11,12]]
=> [2,4,9,10,11,12,1,3,5,6,7,8] => ? = 0 + 3
[4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [[1,3,5,6,7,10,12],[2,4,8,9,11,13,14]]
=> [2,4,8,9,11,13,14,1,3,5,6,7,10,12] => ? = 0 + 3
[3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[1,2,3,5,6],[4,7,8,9,10]]
=> [4,7,8,9,10,1,2,3,5,6] => ? = 1 + 3
[3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [[1,2,3,5,8,10],[4,6,7,9,11,12]]
=> [4,6,7,9,11,12,1,2,3,5,8,10] => ? = 1 + 3
[3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [[1,3,4,5,6,10],[2,7,8,9,11,12]]
=> [2,7,8,9,11,12,1,3,4,5,6,10] => ? = 1 + 3
[4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [[1,3,4,5,7,8],[2,6,9,10,11,12]]
=> [2,6,9,10,11,12,1,3,4,5,7,8] => ? = 0 + 3
[4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [[1,3,4,5,7,10,12],[2,6,8,9,11,13,14]]
=> [2,6,8,9,11,13,14,1,3,4,5,7,10,12] => ? = 0 + 3
[4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [[1,3,5,6,7,8,12],[2,4,9,10,11,13,14]]
=> [2,4,9,10,11,13,14,1,3,5,6,7,8,12] => ? = 0 + 3
[3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [[1,2,3,5,6,10],[4,7,8,9,11,12]]
=> [4,7,8,9,11,12,1,2,3,5,6,10] => ? = 1 + 3
[4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [[1,3,4,5,7,8,12],[2,6,9,10,11,13,14]]
=> [2,6,9,10,11,13,14,1,3,4,5,7,8,12] => ? = 0 + 3
Description
The number of primes obtained by multiplying preimage and image of a permutation and subtracting one.
Note that the numbers $0$ and $1$ may arise, but are not prime.
Matching statistic: St001435
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00233: Dyck paths —skew partition⟶ Skew partitions
St001435: Skew partitions ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 100%
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00233: Dyck paths —skew partition⟶ Skew partitions
St001435: Skew partitions ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 100%
Values
[2]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> 0
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[4,3],[]]
=> ? = 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> 0
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> ? = 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [[4,3,3],[]]
=> ? = 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> ? = 0
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> ? = 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> ? = 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[4,4,4],[1,1]]
=> ? = 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [[5,4],[]]
=> ? = 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> ? = 0
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> ? = 0
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> ? = 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [[5,5],[1]]
=> ? = 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [[4,3,3],[1]]
=> ? = 0
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [[4,3,2],[]]
=> ? = 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [[4,4,3],[2]]
=> ? = 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 0
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [[4,4,4],[2,1]]
=> ? = 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [[4,4,2],[1]]
=> ? = 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [[4,4,3],[1,1]]
=> ? = 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [[5,3],[]]
=> ? = 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [[3,2,2,2],[]]
=> ? = 0
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [[5,4],[1]]
=> ? = 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [[3,3,2,2],[1]]
=> ? = 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [[3,3,3,2],[1,1]]
=> ? = 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [[3,3,3,3],[1,1,1]]
=> ? = 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [[5,5],[2]]
=> ? = 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [[4,2,2],[]]
=> ? = 0
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [[4,3,2],[1]]
=> ? = 0
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [[4,3,3],[1,1]]
=> ? = 0
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ? = 1
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [[4,4,3],[2,1]]
=> ? = 1
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [[4,4,4],[2,2]]
=> ? = 1
[4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [[5,2],[]]
=> ? = 0
[4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [[5,3],[1]]
=> ? = 0
[4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [[5,4],[2]]
=> ? = 0
[3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [[5,5],[3]]
=> ? = 1
[4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [[6],[]]
=> ? = 0
Description
The number of missing boxes in the first row.
Matching statistic: St001438
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00233: Dyck paths —skew partition⟶ Skew partitions
St001438: Skew partitions ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 100%
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00233: Dyck paths —skew partition⟶ Skew partitions
St001438: Skew partitions ⟶ ℤResult quality: 10% ●values known / values provided: 10%●distinct values known / distinct values provided: 100%
Values
[2]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> 0
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[4,3],[]]
=> ? = 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> 0
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> ? = 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [[4,3,3],[]]
=> ? = 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> ? = 0
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> ? = 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> ? = 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[4,4,4],[1,1]]
=> ? = 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [[5,4],[]]
=> ? = 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> ? = 0
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> ? = 0
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> ? = 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [[5,5],[1]]
=> ? = 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [[4,3,3],[1]]
=> ? = 0
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [[4,3,2],[]]
=> ? = 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [[4,4,3],[2]]
=> ? = 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 0
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [[4,4,4],[2,1]]
=> ? = 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [[4,4,2],[1]]
=> ? = 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [[4,4,3],[1,1]]
=> ? = 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [[5,3],[]]
=> ? = 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [[3,2,2,2],[]]
=> ? = 0
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [[5,4],[1]]
=> ? = 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [[3,3,2,2],[1]]
=> ? = 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [[3,3,3,2],[1,1]]
=> ? = 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [[3,3,3,3],[1,1,1]]
=> ? = 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [[5,5],[2]]
=> ? = 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [[4,2,2],[]]
=> ? = 0
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [[4,3,2],[1]]
=> ? = 0
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [[4,3,3],[1,1]]
=> ? = 0
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[4,4,2],[2]]
=> ? = 1
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [[4,4,3],[2,1]]
=> ? = 1
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [[4,4,4],[2,2]]
=> ? = 1
[4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [[5,2],[]]
=> ? = 0
[4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [[5,3],[1]]
=> ? = 0
[4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [[5,4],[2]]
=> ? = 0
[3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [[5,5],[3]]
=> ? = 1
[4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [[6],[]]
=> ? = 0
Description
The number of missing boxes of a skew partition.
The following 2 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!