Your data matches 44 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001140: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 0
[1,0,1,0]
=> 0
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> 0
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> 2
[1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> 0
Description
Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra.
Mp00027: Dyck paths to partitionInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00201: Dyck paths RingelPermutations
St001208: Permutations ⟶ ℤResult quality: 20% values known / values provided: 27%distinct values known / distinct values provided: 20%
Values
[1,0]
=> []
=> []
=> [1] => 1 = 0 + 1
[1,0,1,0]
=> [1]
=> [1,0]
=> [2,1] => 1 = 0 + 1
[1,1,0,0]
=> []
=> []
=> [1] => 1 = 0 + 1
[1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1]
=> [1,1,0,0]
=> [2,3,1] => 1 = 0 + 1
[1,1,0,0,1,0]
=> [2]
=> [1,0,1,0]
=> [3,1,2] => 1 = 0 + 1
[1,1,0,1,0,0]
=> [1]
=> [1,0]
=> [2,1] => 1 = 0 + 1
[1,1,1,0,0,0]
=> []
=> []
=> [1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => ? = 1 + 1
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => ? = 1 + 1
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> [2,3,1] => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> [3,1,2] => 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> [2,1] => 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> []
=> []
=> [1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [8,1,4,5,2,7,3,6] => ? = 2 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [7,3,4,1,6,2,5] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,8,7,3,6] => ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [7,1,4,8,2,3,5,6] => ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [6,3,7,1,2,4,5] => ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [4,1,2,8,7,3,5,6] => ? = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [3,1,7,6,2,4,5] => ? = 2 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => ? = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [8,1,2,3,7,4,5,6] => ? = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => ? = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => ? = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => ? = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => ? = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [4,1,2,5,6,7,3] => ? = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ? = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => ? = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => ? = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => ? = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => ? = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => ? = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => ? = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ? = 0 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => 1 = 0 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ? = 0 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 1 = 0 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => 1 = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ? = 0 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 0 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> [2,3,1] => 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 1 = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 1 = 0 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [1,0,1,0]
=> [3,1,2] => 1 = 0 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [1]
=> [1,0]
=> [2,1] => 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> [1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> [10,1,4,6,2,7,9,3,5,8] => ? = 3 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> [9,3,5,1,6,8,2,4,7] => ? = 2 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [4,1,2,10,6,7,9,3,5,8] => ? = 2 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [3,1,9,5,6,8,2,4,7] => ? = 2 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [2,8,4,5,7,1,3,6] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> [1,0,1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> [7,1,10,6,2,3,9,4,5,8] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> [6,9,5,1,2,8,3,4,7] => ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [10,1,2,7,6,3,9,4,5,8] => ? = 2 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [9,1,6,5,2,8,3,4,7] => ? = 3 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2,1]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [8,5,4,1,7,2,3,6] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [5,2,2,2,1]
=> [1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [10,1,2,3,6,7,9,4,5,8] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [9,1,2,5,6,8,3,4,7] => ? = 2 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [8,1,4,5,7,2,3,6] => ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [7,3,4,6,1,2,5] => ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,1,0,1,0,0]
=> [6,1,4,5,2,10,9,3,7,8] => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,1,0,0]
=> [5,3,4,1,9,8,2,6,7] => ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [4,1,2,5,6,10,9,3,7,8] => ? = 2 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [3,1,4,5,9,8,2,6,7] => ? = 1 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,3,3,1,1]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [2,3,4,8,7,1,5,6] => ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,1]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,1,0,1,0,0]
=> [10,1,6,5,2,3,9,4,7,8] => ? = 2 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [4,4,2,1,1]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,1,0,0]
=> [9,5,4,1,2,8,3,6,7] => ? = 1 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,1]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,1,0,0]
=> [10,1,2,5,6,3,9,4,7,8] => ? = 4 + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => 1 = 0 + 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 1 = 0 + 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => 1 = 0 + 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => 1 = 0 + 1
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => 1 = 0 + 1
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => 1 = 0 + 1
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 1 = 0 + 1
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => 1 = 0 + 1
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 1 = 0 + 1
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => 1 = 0 + 1
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> [2,3,1] => 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 1 = 0 + 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => 1 = 0 + 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> [1,0,1,0]
=> [3,1,2] => 1 = 0 + 1
Description
The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$.
Matching statistic: St001236
Mp00027: Dyck paths to partitionInteger partitions
Mp00095: Integer partitions to binary wordBinary words
Mp00178: Binary words to compositionInteger compositions
St001236: Integer compositions ⟶ ℤResult quality: 20% values known / values provided: 27%distinct values known / distinct values provided: 20%
Values
[1,0]
=> []
=> => [1] => 1 = 0 + 1
[1,0,1,0]
=> [1]
=> 10 => [1,2] => 1 = 0 + 1
[1,1,0,0]
=> []
=> => [1] => 1 = 0 + 1
[1,0,1,0,1,0]
=> [2,1]
=> 1010 => [1,2,2] => 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1]
=> 110 => [1,1,2] => 1 = 0 + 1
[1,1,0,0,1,0]
=> [2]
=> 100 => [1,3] => 1 = 0 + 1
[1,1,0,1,0,0]
=> [1]
=> 10 => [1,2] => 1 = 0 + 1
[1,1,1,0,0,0]
=> []
=> => [1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 101010 => [1,2,2,2] => ? = 1 + 1
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 11010 => [1,1,2,2] => 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 100110 => [1,3,1,2] => ? = 1 + 1
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 10110 => [1,2,1,2] => 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1110 => [1,1,1,2] => 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [3,2]
=> 10100 => [1,2,3] => 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [2,2]
=> 1100 => [1,1,3] => 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [3,1]
=> 10010 => [1,3,2] => 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [2,1]
=> 1010 => [1,2,2] => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,1]
=> 110 => [1,1,2] => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3]
=> 1000 => [1,4] => 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [2]
=> 100 => [1,3] => 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1]
=> 10 => [1,2] => 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> []
=> => [1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 10101010 => [1,2,2,2,2] => ? = 2 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> 1101010 => [1,1,2,2,2] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> 10011010 => [1,3,1,2,2] => ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> 1011010 => [1,2,1,2,2] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> 111010 => [1,1,1,2,2] => ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> 10100110 => [1,2,3,1,2] => ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> 1100110 => [1,1,3,1,2] => ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> 10010110 => [1,3,2,1,2] => ? = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 1010110 => [1,2,2,1,2] => ? = 2 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> 110110 => [1,1,2,1,2] => ? = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> 10001110 => [1,4,1,1,2] => ? = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> 1001110 => [1,3,1,1,2] => ? = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> 101110 => [1,2,1,1,2] => ? = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 11110 => [1,1,1,1,2] => 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 1010100 => [1,2,2,3] => ? = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> 110100 => [1,1,2,3] => ? = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> 1001100 => [1,3,1,3] => ? = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> 101100 => [1,2,1,3] => ? = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> 11100 => [1,1,1,3] => 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> 1010010 => [1,2,3,2] => ? = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> 110010 => [1,1,3,2] => ? = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> 1001010 => [1,3,2,2] => ? = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> 101010 => [1,2,2,2] => ? = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> 11010 => [1,1,2,2] => 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> 1000110 => [1,4,1,2] => ? = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> 100110 => [1,3,1,2] => ? = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> 10110 => [1,2,1,2] => 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 1110 => [1,1,1,2] => 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 101000 => [1,2,4] => ? = 0 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> 11000 => [1,1,4] => 1 = 0 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> 100100 => [1,3,3] => ? = 0 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> 10100 => [1,2,3] => 1 = 0 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> 1100 => [1,1,3] => 1 = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 100010 => [1,4,2] => ? = 0 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> 10010 => [1,3,2] => 1 = 0 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> 1010 => [1,2,2] => 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> 110 => [1,1,2] => 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 10000 => [1,5] => 1 = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1000 => [1,4] => 1 = 0 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 100 => [1,3] => 1 = 0 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [1]
=> 10 => [1,2] => 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,0]
=> []
=> => [1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> 1010101010 => [1,2,2,2,2,2] => ? = 3 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> 110101010 => [1,1,2,2,2,2] => ? = 2 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> 1001101010 => [1,3,1,2,2,2] => ? = 2 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> 101101010 => [1,2,1,2,2,2] => ? = 2 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> 11101010 => [1,1,1,2,2,2] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> 1010011010 => [1,2,3,1,2,2] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> 110011010 => [1,1,3,1,2,2] => ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> 1001011010 => [1,3,2,1,2,2] => ? = 2 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> 101011010 => [1,2,2,1,2,2] => ? = 3 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2,1]
=> 11011010 => [1,1,2,1,2,2] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [5,2,2,2,1]
=> 1000111010 => [1,4,1,1,2,2] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,2,2,2,1]
=> 100111010 => [1,3,1,1,2,2] => ? = 2 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2,1]
=> 10111010 => [1,2,1,1,2,2] => ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2,1]
=> 1111010 => [1,1,1,1,2,2] => ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> 1010100110 => [1,2,2,3,1,2] => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> 110100110 => [1,1,2,3,1,2] => ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> 1001100110 => [1,3,1,3,1,2] => ? = 2 + 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1,1]
=> 101100110 => [1,2,1,3,1,2] => ? = 1 + 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,3,3,1,1]
=> 11100110 => [1,1,1,3,1,2] => ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,1]
=> 1010010110 => [1,2,3,2,1,2] => ? = 2 + 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [4,4,2,1,1]
=> 110010110 => [1,1,3,2,1,2] => ? = 1 + 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,1]
=> 1001010110 => [1,3,2,2,1,2] => ? = 4 + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> 11110 => [1,1,1,1,2] => 1 = 0 + 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,2,2]
=> 11100 => [1,1,1,3] => 1 = 0 + 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,2,1]
=> 11010 => [1,1,2,2] => 1 = 0 + 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [2,1,1]
=> 10110 => [1,2,1,2] => 1 = 0 + 1
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 1110 => [1,1,1,2] => 1 = 0 + 1
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> 11000 => [1,1,4] => 1 = 0 + 1
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> 10100 => [1,2,3] => 1 = 0 + 1
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> 1100 => [1,1,3] => 1 = 0 + 1
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [3,1]
=> 10010 => [1,3,2] => 1 = 0 + 1
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> 1010 => [1,2,2] => 1 = 0 + 1
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 110 => [1,1,2] => 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 10000 => [1,5] => 1 = 0 + 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> 1000 => [1,4] => 1 = 0 + 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> 100 => [1,3] => 1 = 0 + 1
Description
The dominant dimension of the corresponding Comp-Nakayama algebra.
Mp00032: Dyck paths inverse zeta mapDyck paths
Mp00242: Dyck paths Hessenberg posetPosets
Mp00195: Posets order idealsLattices
St001845: Lattices ⟶ ℤResult quality: 20% values known / values provided: 24%distinct values known / distinct values provided: 20%
Values
[1,0]
=> [1,0]
=> ([],1)
=> ([(0,1)],2)
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> ([],2)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ([],3)
=> ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> 0
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 0
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> ([(1,2)],3)
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 0
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 0
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,8),(1,9),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,9),(4,5),(4,6),(4,8),(5,11),(5,14),(6,11),(6,12),(7,11),(7,13),(8,12),(8,14),(9,13),(9,14),(10,12),(10,13),(11,15),(12,15),(13,15),(14,15)],16)
=> ? = 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,7),(2,6),(2,8),(3,5),(3,8),(4,5),(4,6),(5,9),(6,9),(8,1),(8,9),(9,7)],10)
=> ? = 1
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> ([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> 0
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 0
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> ? = 0
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(1,8),(2,6),(2,7),(3,5),(4,1),(4,2),(4,5),(5,7),(5,8),(6,9),(7,9),(8,9)],10)
=> ? = 0
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 0
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 0
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> 0
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> 0
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 0
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([],5)
=> ?
=> ? = 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,7),(2,8),(2,9),(3,9),(3,11),(3,12),(4,8),(4,10),(4,12),(5,7),(5,10),(5,11),(7,13),(7,14),(8,13),(8,15),(9,14),(9,15),(10,13),(10,16),(11,14),(11,16),(12,15),(12,16),(13,17),(14,17),(15,17),(16,1),(16,17),(17,6)],18)
=> ? = 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1),(1,2),(1,3),(1,4),(1,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16)],17)
=> ? = 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,1),(6,9),(7,9),(8,9),(9,5)],10)
=> ? = 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,6),(1,7),(2,11),(2,12),(2,13),(3,9),(3,10),(3,13),(4,8),(4,10),(4,12),(5,8),(5,9),(5,11),(6,16),(7,16),(8,1),(8,17),(8,18),(9,14),(9,17),(10,15),(10,17),(11,14),(11,18),(12,15),(12,18),(13,14),(13,15),(14,19),(15,19),(17,6),(17,19),(18,7),(18,19),(19,16)],20)
=> ? = 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4)],5)
=> ([(0,1),(0,2),(1,12),(2,3),(2,4),(2,5),(2,12),(3,8),(3,10),(3,11),(4,7),(4,9),(4,11),(5,6),(5,9),(5,10),(6,13),(6,14),(7,13),(7,15),(8,14),(8,15),(9,13),(9,16),(10,14),(10,16),(11,15),(11,16),(12,6),(12,7),(12,8),(13,17),(14,17),(15,17),(16,17)],18)
=> ? = 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(7,10),(8,10),(9,10),(10,1),(10,2)],11)
=> ? = 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> ? = 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(3,10),(4,6),(4,10),(5,6),(5,7),(6,11),(7,11),(8,9),(10,2),(10,11),(11,1),(11,8)],12)
=> ? = 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11)
=> ? = 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,5),(5,1),(5,2),(5,3),(6,9),(7,9),(8,9)],10)
=> ? = 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(3,4)],5)
=> ?
=> ? = 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ? = 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,8),(2,6),(2,7),(3,9),(3,11),(4,9),(4,10),(5,2),(5,10),(5,11),(6,13),(7,13),(9,12),(10,6),(10,12),(11,7),(11,12),(12,1),(12,13),(13,8)],14)
=> ? = 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,5),(1,9),(1,10),(2,6),(2,8),(3,6),(3,7),(4,1),(4,7),(4,8),(5,2),(5,3),(5,4),(6,12),(7,9),(7,12),(8,10),(8,12),(9,11),(10,11),(12,11)],13)
=> ? = 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(1,11),(1,13),(2,11),(2,12),(3,4),(3,5),(3,12),(3,13),(4,7),(4,9),(4,10),(5,6),(5,8),(5,10),(6,15),(6,17),(7,15),(7,18),(8,16),(8,17),(9,16),(9,18),(10,15),(10,16),(11,14),(12,6),(12,7),(12,14),(13,8),(13,9),(13,14),(14,17),(14,18),(15,19),(16,19),(17,19),(18,19)],20)
=> ? = 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,7),(2,9),(3,7),(3,8),(4,6),(5,2),(5,3),(5,6),(6,8),(6,9),(7,10),(8,10),(9,10),(10,1)],11)
=> ? = 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,8),(2,6),(2,7),(3,10),(3,11),(4,9),(4,11),(5,9),(5,10),(6,12),(7,12),(8,12),(9,13),(10,13),(11,1),(11,2),(11,13),(13,7),(13,8)],14)
=> ? = 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(0,5),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,9),(5,9),(6,10),(7,10),(8,10),(9,1),(9,2),(9,3)],11)
=> ? = 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(0,5),(1,8),(2,7),(2,9),(3,7),(3,10),(4,6),(5,2),(5,3),(5,6),(6,9),(6,10),(7,11),(9,11),(10,1),(10,11),(11,8)],12)
=> ? = 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> ? = 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,6),(1,7),(2,8),(2,10),(3,9),(3,11),(4,9),(4,12),(5,2),(5,11),(5,12),(6,14),(7,14),(8,13),(9,15),(10,6),(10,13),(11,8),(11,15),(12,1),(12,10),(12,15),(13,14),(15,7),(15,13)],16)
=> ? = 0
[1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> 0
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1),(0,2),(1,11),(2,4),(2,5),(2,11),(3,6),(3,7),(4,8),(4,10),(5,8),(5,9),(6,13),(7,13),(8,12),(9,6),(9,12),(10,7),(10,12),(11,3),(11,9),(11,10),(12,13)],14)
=> ? = 0
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> 0
[1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> 0
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(0,5),(1,7),(1,9),(2,7),(2,8),(3,6),(4,10),(5,3),(5,10),(6,8),(6,9),(7,11),(8,11),(9,11),(10,1),(10,2),(10,6)],12)
=> ? = 0
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> 0
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> 0
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> 0
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(0,5),(1,7),(2,9),(3,6),(4,8),(5,2),(5,8),(6,7),(8,3),(8,9),(9,1),(9,6)],10)
=> ? = 0
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> 0
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> 0
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> 0
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ([],6)
=> ?
=> ? = 3
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ?
=> ? = 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ?
=> ? = 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(0,5)],6)
=> ?
=> ? = 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,5),(1,5),(2,5),(3,5),(5,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,1),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,6)],18)
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> ([(2,5),(3,5),(4,5)],6)
=> ?
=> ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(2,7),(3,8),(3,9),(3,10),(4,10),(4,12),(4,13),(5,9),(5,11),(5,13),(6,8),(6,11),(6,12),(7,1),(8,14),(8,15),(9,14),(9,16),(10,15),(10,16),(11,14),(11,17),(12,15),(12,17),(13,16),(13,17),(14,18),(15,18),(16,18),(17,2),(17,18),(18,7)],19)
=> ? = 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4),(1,5)],6)
=> ?
=> ? = 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,7),(2,7),(3,11),(3,12),(3,13),(4,9),(4,10),(4,13),(5,8),(5,10),(5,12),(6,8),(6,9),(6,11),(8,14),(8,17),(9,14),(9,15),(10,14),(10,16),(11,15),(11,17),(12,16),(12,17),(13,15),(13,16),(14,18),(15,18),(16,18),(17,18),(18,1),(18,2)],19)
=> ? = 3
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,6),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,2),(6,3),(6,4),(6,5),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,1)],18)
=> ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(1,7),(2,14),(3,8),(3,9),(3,10),(4,10),(4,12),(4,13),(5,9),(5,11),(5,13),(6,8),(6,11),(6,12),(8,15),(8,16),(9,15),(9,17),(10,16),(10,17),(11,15),(11,18),(12,16),(12,18),(13,17),(13,18),(14,7),(15,19),(16,19),(17,19),(18,2),(18,19),(19,1),(19,14)],20)
=> ? = 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(1,3),(1,4),(1,5),(1,6),(2,7),(3,8),(3,9),(3,10),(4,10),(4,12),(4,13),(5,9),(5,11),(5,13),(6,8),(6,11),(6,12),(8,14),(8,15),(9,14),(9,16),(10,15),(10,16),(11,14),(11,17),(12,15),(12,17),(13,16),(13,17),(14,18),(15,18),(16,18),(17,2),(17,18),(18,7)],19)
=> ? = 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ([(0,5),(5,1),(5,2),(5,3),(5,4)],6)
=> ([(0,5),(1,10),(1,11),(1,12),(2,8),(2,9),(2,12),(3,7),(3,9),(3,11),(4,7),(4,8),(4,10),(5,6),(6,1),(6,2),(6,3),(6,4),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17)],18)
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(0,2),(0,3),(0,4),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,5),(7,10),(8,10),(9,10),(10,6)],11)
=> ? = 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> ([(3,5),(4,5)],6)
=> ?
=> ? = 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ?
=> ? = 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ?
=> ? = 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4),(3,5),(4,5)],6)
=> ?
=> ? = 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(3,10),(4,7),(4,10),(5,7),(5,8),(6,1),(7,11),(8,11),(9,6),(10,2),(10,11),(11,9)],12)
=> ? = 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> 0
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> 0
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(2,7),(3,7),(4,8),(5,8),(6,1),(7,6),(8,2),(8,3)],9)
=> 0
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> ([(0,4),(0,5),(2,8),(3,8),(4,7),(5,7),(6,2),(6,3),(7,6),(8,1)],9)
=> 0
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> ([(0,3),(0,4),(1,7),(2,7),(3,8),(4,8),(5,6),(6,1),(6,2),(8,5)],9)
=> 0
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,6),(2,7),(3,7),(4,1),(5,4),(6,2),(6,3),(7,5)],8)
=> 0
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> ([(0,6),(2,8),(3,7),(4,2),(4,7),(5,1),(6,3),(6,4),(7,8),(8,5)],9)
=> 0
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(6,1),(6,2),(7,5),(8,3),(8,4)],9)
=> 0
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> ([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(0,6),(1,8),(2,8),(3,7),(4,7),(5,3),(5,4),(6,1),(6,2),(8,5)],9)
=> 0
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> 0
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)
=> ([(0,5),(2,8),(3,7),(4,2),(4,7),(5,6),(6,3),(6,4),(7,8),(8,1)],9)
=> 0
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2)],6)
=> ([(0,5),(1,8),(2,8),(3,7),(4,7),(5,6),(6,1),(6,2),(8,3),(8,4)],9)
=> 0
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,5),(1,7),(2,7),(4,6),(5,4),(6,1),(6,2),(7,3)],8)
=> 0
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> ([(0,5),(1,7),(2,7),(3,4),(4,6),(5,3),(6,1),(6,2)],8)
=> 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
Description
The number of join irreducibles minus the rank of a lattice. A lattice is join-extremal, if this statistic is $0$.
Matching statistic: St001371
Mp00027: Dyck paths to partitionInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00093: Dyck paths to binary wordBinary words
St001371: Binary words ⟶ ℤResult quality: 20% values known / values provided: 23%distinct values known / distinct values provided: 20%
Values
[1,0]
=> []
=> []
=> => ? = 0
[1,0,1,0]
=> [1]
=> [1,0]
=> 10 => 0
[1,1,0,0]
=> []
=> []
=> => ? = 0
[1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 101100 => 0
[1,0,1,1,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1100 => 0
[1,1,0,0,1,0]
=> [2]
=> [1,0,1,0]
=> 1010 => 0
[1,1,0,1,0,0]
=> [1]
=> [1,0]
=> 10 => 0
[1,1,1,0,0,0]
=> []
=> []
=> => ? = 0
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1011100100 => ? = 1
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 11100100 => 0
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1010110100 => ? = 1
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => 0
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 0
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => 0
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 0
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 0
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 101100 => 0
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1100 => 0
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 101010 => 0
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 1010 => 0
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> 10 => 0
[1,1,1,1,0,0,0,0]
=> []
=> []
=> => ? = 0
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 10111011000100 => ? = 2
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 111011000100 => ? = 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> 10101111000100 => ? = 1
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> 101111000100 => ? = 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1111000100 => ? = 0
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> 10111010010100 => ? = 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 111010010100 => ? = 1
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> 10101110010100 => ? = 1
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> 101110010100 => ? = 2
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1110010100 => ? = 0
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> 10101011010100 => ? = 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 101011010100 => ? = 2
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1011010100 => ? = 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 11010100 => 0
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 101110110000 => ? = 1
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1110110000 => ? = 0
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 101011110000 => ? = 1
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1011110000 => ? = 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 11110000 => 0
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> 101110100100 => ? = 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1110100100 => ? = 0
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> 101011100100 => ? = 2
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1011100100 => ? = 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 11100100 => 0
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 101010110100 => ? = 2
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1010110100 => ? = 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 0
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 0
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> 11101000 => 0
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1010111000 => ? = 0
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => 0
[1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 0
[1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1010101100 => ? = 0
[1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 0
[1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 101100 => 0
[1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1100 => 0
[1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 10101010 => 0
[1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [1,0,1,0,1,0]
=> 101010 => 0
[1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [1,0,1,0]
=> 1010 => 0
[1,1,1,1,0,1,0,0,0,0]
=> [1]
=> [1,0]
=> 10 => 0
[1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> 101110111001000100 => ? = 3
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> 1110111001000100 => ? = 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> 101011111001000100 => ? = 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> 1011111001000100 => ? = 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> 11111001000100 => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> [1,0,1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> 101110101101000100 => ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> 1110101101000100 => ? = 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> 101011101101000100 => ? = 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> 1011101101000100 => ? = 3
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2,1]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> 11101101000100 => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [5,2,2,2,1]
=> [1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> 101010111101000100 => ? = 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> 1010111101000100 => ? = 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> 10111101000100 => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 111101000100 => ? = 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,1,0,1,0,0]
=> 101110111000010100 => ? = 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,1,0,0]
=> 1110111000010100 => ? = 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> 101011111000010100 => ? = 2
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 11010100 => 0
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 11110000 => 0
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 11100100 => 0
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => 0
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 0
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> 11101000 => 0
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => 0
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 0
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 0
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 101100 => 0
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1100 => 0
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 10101010 => 0
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> [1,0,1,0,1,0]
=> 101010 => 0
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> [1,0,1,0]
=> 1010 => 0
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> [1,0]
=> 10 => 0
Description
The length of the longest Yamanouchi prefix of a binary word. This is the largest index $i$ such that in each of the prefixes $w_1$, $w_1w_2$, $w_1w_2\dots w_i$ the number of zeros is greater than or equal to the number of ones.
Matching statistic: St001730
Mp00027: Dyck paths to partitionInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00093: Dyck paths to binary wordBinary words
St001730: Binary words ⟶ ℤResult quality: 20% values known / values provided: 23%distinct values known / distinct values provided: 20%
Values
[1,0]
=> []
=> []
=> => ? = 0
[1,0,1,0]
=> [1]
=> [1,0]
=> 10 => 0
[1,1,0,0]
=> []
=> []
=> => ? = 0
[1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 101100 => 0
[1,0,1,1,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1100 => 0
[1,1,0,0,1,0]
=> [2]
=> [1,0,1,0]
=> 1010 => 0
[1,1,0,1,0,0]
=> [1]
=> [1,0]
=> 10 => 0
[1,1,1,0,0,0]
=> []
=> []
=> => ? = 0
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1011100100 => ? = 1
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 11100100 => 0
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1010110100 => ? = 1
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => 0
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 0
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => 0
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 0
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 0
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 101100 => 0
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1100 => 0
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 101010 => 0
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 1010 => 0
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> 10 => 0
[1,1,1,1,0,0,0,0]
=> []
=> []
=> => ? = 0
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> 10111011000100 => ? = 2
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 111011000100 => ? = 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> 10101111000100 => ? = 1
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> 101111000100 => ? = 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1111000100 => ? = 0
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> 10111010010100 => ? = 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 111010010100 => ? = 1
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> 10101110010100 => ? = 1
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> 101110010100 => ? = 2
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1110010100 => ? = 0
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> 10101011010100 => ? = 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 101011010100 => ? = 2
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1011010100 => ? = 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 11010100 => 0
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 101110110000 => ? = 1
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1110110000 => ? = 0
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 101011110000 => ? = 1
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1011110000 => ? = 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 11110000 => 0
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> 101110100100 => ? = 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1110100100 => ? = 0
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> 101011100100 => ? = 2
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1011100100 => ? = 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 11100100 => 0
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 101010110100 => ? = 2
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1010110100 => ? = 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 0
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => ? = 0
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> 11101000 => 0
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1010111000 => ? = 0
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => 0
[1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 0
[1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1010101100 => ? = 0
[1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 0
[1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 101100 => 0
[1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1100 => 0
[1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 10101010 => 0
[1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [1,0,1,0,1,0]
=> 101010 => 0
[1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [1,0,1,0]
=> 1010 => 0
[1,1,1,1,0,1,0,0,0,0]
=> [1]
=> [1,0]
=> 10 => 0
[1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> 101110111001000100 => ? = 3
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> 1110111001000100 => ? = 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> 101011111001000100 => ? = 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> 1011111001000100 => ? = 2
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> 11111001000100 => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> [1,0,1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> 101110101101000100 => ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> 1110101101000100 => ? = 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> 101011101101000100 => ? = 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> 1011101101000100 => ? = 3
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2,1]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> 11101101000100 => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [5,2,2,2,1]
=> [1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> 101010111101000100 => ? = 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> 1010111101000100 => ? = 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> 10111101000100 => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 111101000100 => ? = 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,1,0,1,0,0]
=> 101110111000010100 => ? = 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,1,0,0]
=> 1110111000010100 => ? = 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> 101011111000010100 => ? = 2
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 11010100 => 0
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 11110000 => 0
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 11100100 => 0
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => 0
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 110100 => 0
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> 11101000 => 0
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => 0
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> 111000 => 0
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 0
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 101100 => 0
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1100 => 0
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 10101010 => 0
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> [1,0,1,0,1,0]
=> 101010 => 0
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> [1,0,1,0]
=> 1010 => 0
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [1]
=> [1,0]
=> 10 => 0
Description
The number of times the path corresponding to a binary word crosses the base line. Interpret each $0$ as a step $(1,-1)$ and $1$ as a step $(1,1)$. Then this statistic counts the number of times the path crosses the $x$-axis.
Matching statistic: St001195
Mp00027: Dyck paths to partitionInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St001195: Dyck paths ⟶ ℤResult quality: 20% values known / values provided: 21%distinct values known / distinct values provided: 20%
Values
[1,0]
=> []
=> []
=> [1,0]
=> ? = 0 + 1
[1,0,1,0]
=> [1]
=> [1,0]
=> [1,1,0,0]
=> ? = 0 + 1
[1,1,0,0]
=> []
=> []
=> [1,0]
=> ? = 0 + 1
[1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1]
=> [1,0]
=> [1,1,0,0]
=> ? = 0 + 1
[1,1,1,0,0,0]
=> []
=> []
=> [1,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> [1,1,0,0]
=> ? = 0 + 1
[1,1,1,1,0,0,0,0]
=> []
=> []
=> [1,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> ? = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> ? = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 0 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> ? = 0 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 0 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [1]
=> [1,0]
=> [1,1,0,0]
=> ? = 0 + 1
[1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> [1,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0,0]
=> ? = 3 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0,0]
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0,0]
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0,0]
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,1,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> [1,0,1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0]
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0]
=> ? = 3 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2,1]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,1,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [5,2,2,2,1]
=> [1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> ? = 2 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> ? = 1 + 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [2]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> 1 = 0 + 1
Description
The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$.
Mp00099: Dyck paths bounce pathDyck paths
Mp00118: Dyck paths swap returns and last descentDyck paths
Mp00232: Dyck paths parallelogram posetPosets
St000181: Posets ⟶ ℤResult quality: 15% values known / values provided: 15%distinct values known / distinct values provided: 20%
Values
[1,0]
=> [1,0]
=> [1,0]
=> ([],1)
=> 1 = 0 + 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 0 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 2 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ? = 0 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 0 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 0 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 0 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 0 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 0 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 0 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 3 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> ([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 3 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> ([(0,4),(0,5),(1,10),(2,7),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(6,10),(8,9),(9,7),(10,2),(10,9)],11)
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 2 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 1 + 1
Description
The number of connected components of the Hasse diagram for the poset.
Mp00099: Dyck paths bounce pathDyck paths
Mp00118: Dyck paths swap returns and last descentDyck paths
Mp00233: Dyck paths skew partitionSkew partitions
St001490: Skew partitions ⟶ ℤResult quality: 15% values known / values provided: 15%distinct values known / distinct values provided: 20%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [[1],[]]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [[2],[]]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [[1,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [[2,1],[]]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [[3],[]]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [[2,1],[]]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [[1,1,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> ? = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> ? = 0 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> ? = 2 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> ? = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> ? = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> ? = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> ? = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> ? = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> ? = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> ? = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> ? = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> ? = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> ? = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> ? = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> ? = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> ? = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> ? = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> ? = 0 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> ? = 0 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> ? = 0 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> ? = 0 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> ? = 0 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> ? = 0 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[4,3],[]]
=> ? = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> ? = 0 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> 1 = 0 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[4,4,4],[]]
=> ? = 3 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3,1],[]]
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [[3,3,3,3],[]]
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3,1],[]]
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1,1],[]]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [[4,4,4],[1]]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2,1],[]]
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [[3,3,3,3],[]]
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2,1],[]]
=> ? = 3 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1,1],[]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [[4,4,3],[]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2,1],[]]
=> ? = 2 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1,1],[]]
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1,1],[]]
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [[3,3,3,2],[]]
=> ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [[4,4,1],[1]]
=> ? = 1 + 1
Description
The number of connected components of a skew partition.
Mp00099: Dyck paths bounce pathDyck paths
Mp00118: Dyck paths swap returns and last descentDyck paths
Mp00232: Dyck paths parallelogram posetPosets
St001890: Posets ⟶ ℤResult quality: 15% values known / values provided: 15%distinct values known / distinct values provided: 20%
Values
[1,0]
=> [1,0]
=> [1,0]
=> ([],1)
=> ? = 0 + 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ? = 0 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 2 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ? = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ? = 0 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 0 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 0 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 0 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 0 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 0 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 0 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ? = 0 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 3 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> ([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 3 + 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> ([(0,4),(0,5),(1,10),(2,7),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(6,10),(8,9),(9,7),(10,2),(10,9)],11)
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ? = 2 + 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ? = 1 + 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ? = 0 + 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> ? = 2 + 1
Description
The maximum magnitude of the Möbius function of a poset. The '''Möbius function''' of a poset is the multiplicative inverse of the zeta function in the incidence algebra. The Möbius value $\mu(x, y)$ is equal to the signed sum of chains from $x$ to $y$, where odd-length chains are counted with a minus sign, so this statistic is bounded above by the total number of chains in the poset.
The following 34 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001061The number of indices that are both descents and recoils of a permutation. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001202Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001290The first natural number n such that the tensor product of n copies of D(A) is zero for the corresponding Nakayama algebra A. St000709The number of occurrences of 14-2-3 or 14-3-2. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001811The Castelnuovo-Mumford regularity of a permutation. St001856The number of edges in the reduced word graph of a permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St000958The number of Bruhat factorizations of a permutation. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001413Half the length of the longest even length palindromic prefix of a binary word. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001503The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St000011The number of touch points (or returns) of a Dyck path. St000352The Elizalde-Pak rank of a permutation. St000359The number of occurrences of the pattern 23-1. St000366The number of double descents of a permutation. St000404The number of occurrences of the pattern 3241 or of the pattern 4231 in a permutation. St000408The number of occurrences of the pattern 4231 in a permutation. St000546The number of global descents of a permutation. St000731The number of double exceedences of a permutation. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St000054The first entry of the permutation. St000635The number of strictly order preserving maps of a poset into itself. St001613The binary logarithm of the size of the center of a lattice. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St000842The breadth of a permutation. St001720The minimal length of a chain of small intervals in a lattice.