Your data matches 19 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001038: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> [1,0,1,0]
=> 2
([],2)
=> [2,2]
=> [1,1,1,0,0,0]
=> 2
([(0,1)],2)
=> [3]
=> [1,0,1,0,1,0]
=> 3
([],3)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2
([(1,2)],3)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 6
([(0,1),(0,2)],3)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 2
([(0,2),(2,1)],3)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4
([(0,2),(1,2)],3)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 2
([(2,3)],4)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> 6
([(1,2),(1,3)],4)
=> [6,2,2]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> 2
([(0,1),(0,2),(0,3)],4)
=> [3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 2
([(0,2),(0,3),(3,1)],4)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
([(1,2),(2,3)],4)
=> [4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> 4
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
([(1,3),(2,3)],4)
=> [6,2,2]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> 2
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [3,2,2,2]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 2
([(0,3),(1,2)],4)
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> 3
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
([(0,3),(2,1),(3,2)],4)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
([(0,3),(1,2),(2,3)],4)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 7
([(0,2),(0,3),(0,4),(4,1)],5)
=> [7,6]
=> [1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> 6
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 4
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2
([(2,3),(3,4)],5)
=> [4,4,4,4]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 4
([(1,4),(4,2),(4,3)],5)
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> [4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> 2
([(1,4),(2,4),(4,3)],5)
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> [4,2,2,2]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5,3,2,2]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> 2
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 2
([(0,4),(1,4),(2,3),(2,4)],5)
=> [6,5,3]
=> [1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [7,6]
=> [1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> 6
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 4
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [7,2]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2
([(0,4),(1,2),(1,3),(1,4)],5)
=> [6,5,3]
=> [1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> 3
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 8
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [5,3,2,2]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [3,2,2,2,2]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> 2
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [7,2]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> 2
Description
The minimal height of a column in the parallelogram polyomino associated with the Dyck path.
Matching statistic: St000297
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St000297: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> [1,1]
=> 110 => 2
([],2)
=> [2,2]
=> [2,2]
=> 1100 => 2
([(0,1)],2)
=> [3]
=> [1,1,1]
=> 1110 => 3
([],3)
=> [2,2,2,2]
=> [4,4]
=> 110000 => 2
([(1,2)],3)
=> [6]
=> [1,1,1,1,1,1]
=> 1111110 => 6
([(0,1),(0,2)],3)
=> [3,2]
=> [2,2,1]
=> 11010 => 2
([(0,2),(2,1)],3)
=> [4]
=> [1,1,1,1]
=> 11110 => 4
([(0,2),(1,2)],3)
=> [3,2]
=> [2,2,1]
=> 11010 => 2
([(2,3)],4)
=> [6,6]
=> [2,2,2,2,2,2]
=> 11111100 => 6
([(1,2),(1,3)],4)
=> [6,2,2]
=> [3,3,1,1,1,1]
=> 110011110 => 2
([(0,1),(0,2),(0,3)],4)
=> [3,2,2,2]
=> [4,4,1]
=> 1100010 => 2
([(0,2),(0,3),(3,1)],4)
=> [7]
=> [1,1,1,1,1,1,1]
=> 11111110 => 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [2,2,1,1]
=> 110110 => 2
([(1,2),(2,3)],4)
=> [4,4]
=> [2,2,2,2]
=> 111100 => 4
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> [2,2,1,1]
=> 110110 => 2
([(1,3),(2,3)],4)
=> [6,2,2]
=> [3,3,1,1,1,1]
=> 110011110 => 2
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [2,2,1,1]
=> 110110 => 2
([(0,3),(1,3),(2,3)],4)
=> [3,2,2,2]
=> [4,4,1]
=> 1100010 => 2
([(0,3),(1,2)],4)
=> [3,3,3]
=> [3,3,3]
=> 111000 => 3
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> [2,2,2,1,1]
=> 1110110 => 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> [3,3,1]
=> 110010 => 2
([(0,3),(2,1),(3,2)],4)
=> [5]
=> [1,1,1,1,1]
=> 111110 => 5
([(0,3),(1,2),(2,3)],4)
=> [7]
=> [1,1,1,1,1,1,1]
=> 11111110 => 7
([(0,2),(0,3),(0,4),(4,1)],5)
=> [7,6]
=> [2,2,2,2,2,2,1]
=> 111111010 => 6
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> [4,4,1,1]
=> 11000110 => 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> [4,4,2,2]
=> [4,4,2,2]
=> 11001100 => 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [2,2,1,1,1]
=> 1101110 => 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,3,3]
=> [3,3,3,1]
=> 1110010 => 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> [2,2,2,2,1]
=> 1111010 => 4
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> [3,3,1,1]
=> 1100110 => 2
([(2,3),(3,4)],5)
=> [4,4,4,4]
=> [4,4,4,4]
=> 11110000 => 4
([(1,4),(4,2),(4,3)],5)
=> [4,4,2,2]
=> [4,4,2,2]
=> 11001100 => 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> [4,2,2,2]
=> [4,4,1,1]
=> 11000110 => 2
([(1,4),(2,4),(4,3)],5)
=> [4,4,2,2]
=> [4,4,2,2]
=> 11001100 => 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> [3,3,1,1]
=> 1100110 => 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> [4,2,2,2]
=> [4,4,1,1]
=> 11000110 => 2
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5,3,2,2]
=> [4,4,2,1,1]
=> 110010110 => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2,2,2,2]
=> [5,5,1]
=> 11000010 => 2
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> [2,2,1,1,1]
=> 1101110 => 2
([(0,4),(1,4),(2,3),(2,4)],5)
=> [6,5,3]
=> [3,3,3,2,2,1]
=> 111011010 => 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [7,6]
=> [2,2,2,2,2,2,1]
=> 111111010 => 6
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [5,4]
=> [2,2,2,2,1]
=> 1111010 => 4
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [7,2]
=> [2,2,1,1,1,1,1]
=> 110111110 => 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> [3,3,1,1]
=> 1100110 => 2
([(0,4),(1,2),(1,3),(1,4)],5)
=> [6,5,3]
=> [3,3,3,2,2,1]
=> 111011010 => 3
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> [2,2,2,2,1]
=> 1111010 => 4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> 111111110 => 8
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [5,3,2,2]
=> [4,4,2,1,1]
=> 110010110 => 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [3,2,2,2,2]
=> [5,5,1]
=> 11000010 => 2
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [7,2]
=> [2,2,1,1,1,1,1]
=> 110111110 => 2
Description
The number of leading ones in a binary word.
Matching statistic: St000326
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00095: Integer partitions to binary wordBinary words
Mp00104: Binary words reverseBinary words
St000326: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> 100 => 001 => 3 = 2 + 1
([],2)
=> [2,2]
=> 1100 => 0011 => 3 = 2 + 1
([(0,1)],2)
=> [3]
=> 1000 => 0001 => 4 = 3 + 1
([],3)
=> [2,2,2,2]
=> 111100 => 001111 => 3 = 2 + 1
([(1,2)],3)
=> [6]
=> 1000000 => 0000001 => 7 = 6 + 1
([(0,1),(0,2)],3)
=> [3,2]
=> 10100 => 00101 => 3 = 2 + 1
([(0,2),(2,1)],3)
=> [4]
=> 10000 => 00001 => 5 = 4 + 1
([(0,2),(1,2)],3)
=> [3,2]
=> 10100 => 00101 => 3 = 2 + 1
([(2,3)],4)
=> [6,6]
=> 11000000 => 00000011 => 7 = 6 + 1
([(1,2),(1,3)],4)
=> [6,2,2]
=> 100001100 => 001100001 => 3 = 2 + 1
([(0,1),(0,2),(0,3)],4)
=> [3,2,2,2]
=> 1011100 => 0011101 => 3 = 2 + 1
([(0,2),(0,3),(3,1)],4)
=> [7]
=> 10000000 => 00000001 => 8 = 7 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> 100100 => 001001 => 3 = 2 + 1
([(1,2),(2,3)],4)
=> [4,4]
=> 110000 => 000011 => 5 = 4 + 1
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> 100100 => 001001 => 3 = 2 + 1
([(1,3),(2,3)],4)
=> [6,2,2]
=> 100001100 => 001100001 => 3 = 2 + 1
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> 100100 => 001001 => 3 = 2 + 1
([(0,3),(1,3),(2,3)],4)
=> [3,2,2,2]
=> 1011100 => 0011101 => 3 = 2 + 1
([(0,3),(1,2)],4)
=> [3,3,3]
=> 111000 => 000111 => 4 = 3 + 1
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> 1001000 => 0001001 => 4 = 3 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> 101100 => 001101 => 3 = 2 + 1
([(0,3),(2,1),(3,2)],4)
=> [5]
=> 100000 => 000001 => 6 = 5 + 1
([(0,3),(1,2),(2,3)],4)
=> [7]
=> 10000000 => 00000001 => 8 = 7 + 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [7,6]
=> 101000000 => 000000101 => 7 = 6 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> 10011100 => 00111001 => 3 = 2 + 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [4,4,2,2]
=> 11001100 => 00110011 => 3 = 2 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> 1000100 => 0010001 => 3 = 2 + 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,3,3]
=> 1011000 => 0001101 => 4 = 3 + 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> 1010000 => 0000101 => 5 = 4 + 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> 1001100 => 0011001 => 3 = 2 + 1
([(2,3),(3,4)],5)
=> [4,4,4,4]
=> 11110000 => 00001111 => 5 = 4 + 1
([(1,4),(4,2),(4,3)],5)
=> [4,4,2,2]
=> 11001100 => 00110011 => 3 = 2 + 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [4,2,2,2]
=> 10011100 => 00111001 => 3 = 2 + 1
([(1,4),(2,4),(4,3)],5)
=> [4,4,2,2]
=> 11001100 => 00110011 => 3 = 2 + 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> 1001100 => 0011001 => 3 = 2 + 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [4,2,2,2]
=> 10011100 => 00111001 => 3 = 2 + 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5,3,2,2]
=> 100101100 => 001101001 => 3 = 2 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2,2,2,2]
=> 10111100 => 00111101 => 3 = 2 + 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> 1000100 => 0010001 => 3 = 2 + 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> [6,5,3]
=> 101001000 => 000100101 => 4 = 3 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [7,6]
=> 101000000 => 000000101 => 7 = 6 + 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [5,4]
=> 1010000 => 0000101 => 5 = 4 + 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [7,2]
=> 100000100 => 001000001 => 3 = 2 + 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> 1001100 => 0011001 => 3 = 2 + 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> [6,5,3]
=> 101001000 => 000100101 => 4 = 3 + 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> 1010000 => 0000101 => 5 = 4 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> 100000000 => 000000001 => 9 = 8 + 1
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [5,3,2,2]
=> 100101100 => 001101001 => 3 = 2 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [3,2,2,2,2]
=> 10111100 => 00111101 => 3 = 2 + 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [7,2]
=> 100000100 => 001000001 => 3 = 2 + 1
Description
The position of the first one in a binary word after appending a 1 at the end. Regarding the binary word as a subset of $\{1,\dots,n,n+1\}$ that contains $n+1$, this is the minimal element of the set.
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000993: Integer partitions ⟶ ℤResult quality: 94% values known / values provided: 94%distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> [1,1]
=> [1]
=> ? = 2 - 1
([],2)
=> [2,2]
=> [2,2]
=> [2]
=> 1 = 2 - 1
([(0,1)],2)
=> [3]
=> [1,1,1]
=> [1,1]
=> 2 = 3 - 1
([],3)
=> [2,2,2,2]
=> [4,4]
=> [4]
=> 1 = 2 - 1
([(1,2)],3)
=> [6]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 5 = 6 - 1
([(0,1),(0,2)],3)
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 1 = 2 - 1
([(0,2),(2,1)],3)
=> [4]
=> [1,1,1,1]
=> [1,1,1]
=> 3 = 4 - 1
([(0,2),(1,2)],3)
=> [3,2]
=> [2,2,1]
=> [2,1]
=> 1 = 2 - 1
([(2,3)],4)
=> [6,6]
=> [2,2,2,2,2,2]
=> [2,2,2,2,2]
=> 5 = 6 - 1
([(1,2),(1,3)],4)
=> [6,2,2]
=> [3,3,1,1,1,1]
=> [3,1,1,1,1]
=> 1 = 2 - 1
([(0,1),(0,2),(0,3)],4)
=> [3,2,2,2]
=> [4,4,1]
=> [4,1]
=> 1 = 2 - 1
([(0,2),(0,3),(3,1)],4)
=> [7]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 6 = 7 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [2,2,1,1]
=> [2,1,1]
=> 1 = 2 - 1
([(1,2),(2,3)],4)
=> [4,4]
=> [2,2,2,2]
=> [2,2,2]
=> 3 = 4 - 1
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> [2,2,1,1]
=> [2,1,1]
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> [6,2,2]
=> [3,3,1,1,1,1]
=> [3,1,1,1,1]
=> 1 = 2 - 1
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [2,2,1,1]
=> [2,1,1]
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> [3,2,2,2]
=> [4,4,1]
=> [4,1]
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> [3,3,3]
=> [3,3,3]
=> [3,3]
=> 2 = 3 - 1
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> [3,3,1]
=> [3,1]
=> 1 = 2 - 1
([(0,3),(2,1),(3,2)],4)
=> [5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 4 = 5 - 1
([(0,3),(1,2),(2,3)],4)
=> [7]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 6 = 7 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [7,6]
=> [2,2,2,2,2,2,1]
=> [2,2,2,2,2,1]
=> 5 = 6 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> [4,4,1,1]
=> [4,1,1]
=> 1 = 2 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [4,4,2,2]
=> [4,4,2,2]
=> [4,2,2]
=> 1 = 2 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,3,3]
=> [3,3,3,1]
=> [3,3,1]
=> 2 = 3 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> [2,2,2,2,1]
=> [2,2,2,1]
=> 3 = 4 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> [3,3,1,1]
=> [3,1,1]
=> 1 = 2 - 1
([(2,3),(3,4)],5)
=> [4,4,4,4]
=> [4,4,4,4]
=> [4,4,4]
=> 3 = 4 - 1
([(1,4),(4,2),(4,3)],5)
=> [4,4,2,2]
=> [4,4,2,2]
=> [4,2,2]
=> 1 = 2 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [4,2,2,2]
=> [4,4,1,1]
=> [4,1,1]
=> 1 = 2 - 1
([(1,4),(2,4),(4,3)],5)
=> [4,4,2,2]
=> [4,4,2,2]
=> [4,2,2]
=> 1 = 2 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> [3,3,1,1]
=> [3,1,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [4,2,2,2]
=> [4,4,1,1]
=> [4,1,1]
=> 1 = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5,3,2,2]
=> [4,4,2,1,1]
=> [4,2,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2,2,2,2]
=> [5,5,1]
=> [5,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> [6,5,3]
=> [3,3,3,2,2,1]
=> [3,3,2,2,1]
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [7,6]
=> [2,2,2,2,2,2,1]
=> [2,2,2,2,2,1]
=> 5 = 6 - 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [5,4]
=> [2,2,2,2,1]
=> [2,2,2,1]
=> 3 = 4 - 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [7,2]
=> [2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> [3,3,1,1]
=> [3,1,1]
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> [6,5,3]
=> [3,3,3,2,2,1]
=> [3,3,2,2,1]
=> 2 = 3 - 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> [2,2,2,2,1]
=> [2,2,2,1]
=> 3 = 4 - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> 7 = 8 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [5,3,2,2]
=> [4,4,2,1,1]
=> [4,2,1,1]
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [3,2,2,2,2]
=> [5,5,1]
=> [5,1]
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [7,2]
=> [2,2,1,1,1,1,1]
=> [2,1,1,1,1,1]
=> 1 = 2 - 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> 1 = 2 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [5,4,4,4]
=> [4,4,4,4,1]
=> [4,4,4,1]
=> ? = 4 - 1
([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> [5,4,4,4]
=> [4,4,4,4,1]
=> [4,4,4,1]
=> ? = 4 - 1
([(0,6),(1,6),(2,3),(2,6),(3,5),(5,4),(6,5)],7)
=> [6,5,5]
=> [3,3,3,3,3,1]
=> [3,3,3,3,1]
=> ? = 5 - 1
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> [6,5,5]
=> [3,3,3,3,3,1]
=> [3,3,3,3,1]
=> ? = 5 - 1
([(0,5),(1,2),(1,3),(1,5),(2,6),(3,6),(5,6),(6,4)],7)
=> [6,5,5]
=> [3,3,3,3,3,1]
=> [3,3,3,3,1]
=> ? = 5 - 1
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> [6,5,5]
=> [3,3,3,3,3,1]
=> [3,3,3,3,1]
=> ? = 5 - 1
([(0,5),(2,6),(3,6),(4,1),(4,6),(5,2),(5,3),(5,4)],7)
=> [6,5,5]
=> [3,3,3,3,3,1]
=> [3,3,3,3,1]
=> ? = 5 - 1
([(0,5),(3,6),(4,1),(4,2),(4,6),(5,3),(5,4)],7)
=> [6,5,5]
=> [3,3,3,3,3,1]
=> [3,3,3,3,1]
=> ? = 5 - 1
([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7)
=> [5,4,4,4]
=> [4,4,4,4,1]
=> [4,4,4,1]
=> ? = 4 - 1
([(0,5),(0,6),(1,4),(1,6),(2,5),(3,2),(4,3)],7)
=> [6,5,5]
=> [3,3,3,3,3,1]
=> [3,3,3,3,1]
=> ? = 5 - 1
([(0,5),(1,4),(2,6),(3,6),(4,2),(5,3)],7)
=> [5,4,4,4]
=> [4,4,4,4,1]
=> [4,4,4,1]
=> ? = 4 - 1
Description
The multiplicity of the largest part of an integer partition.
St000642: Posets ⟶ ℤResult quality: 71% values known / values provided: 71%distinct values known / distinct values provided: 100%
Values
([],1)
=> ? = 2
([],2)
=> 2
([(0,1)],2)
=> 3
([],3)
=> 2
([(1,2)],3)
=> 6
([(0,1),(0,2)],3)
=> 2
([(0,2),(2,1)],3)
=> 4
([(0,2),(1,2)],3)
=> 2
([(2,3)],4)
=> 6
([(1,2),(1,3)],4)
=> 2
([(0,1),(0,2),(0,3)],4)
=> 2
([(0,2),(0,3),(3,1)],4)
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(2,3)],4)
=> 4
([(0,3),(3,1),(3,2)],4)
=> 2
([(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(3,2)],4)
=> 2
([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> 3
([(0,3),(1,2),(1,3)],4)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,3),(2,1),(3,2)],4)
=> 5
([(0,3),(1,2),(2,3)],4)
=> 7
([(0,2),(0,3),(0,4),(4,1)],5)
=> 6
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 4
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(2,3),(3,4)],5)
=> 4
([(1,4),(4,2),(4,3)],5)
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> 2
([(1,4),(2,4),(4,3)],5)
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,4),(1,4),(2,3),(4,2)],5)
=> 2
([(0,4),(1,4),(2,3),(2,4)],5)
=> 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> 6
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> 4
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 2
([(0,4),(1,2),(1,3),(1,4)],5)
=> 3
([(0,2),(0,4),(3,1),(4,3)],5)
=> 4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 8
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 2
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> 2
([(0,3),(3,4),(4,1),(4,2)],5)
=> 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> ? = 5
([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ? = 3
([(0,2),(0,3),(1,5),(1,6),(2,4),(3,1),(3,4),(4,5),(4,6)],7)
=> ? = 2
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 5
([(0,3),(0,5),(3,6),(4,1),(4,6),(5,4),(6,2)],7)
=> ? = 6
([(0,3),(0,4),(2,6),(3,5),(3,6),(4,2),(4,5),(6,1)],7)
=> ? = 6
([(0,3),(0,4),(2,5),(3,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ? = 3
([(0,4),(0,5),(2,6),(4,2),(5,1),(5,6),(6,3)],7)
=> ? = 3
([(0,3),(1,2),(1,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> ? = 3
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> ? = 4
([(0,2),(0,4),(1,5),(1,6),(2,5),(2,6),(3,1),(4,3)],7)
=> ? = 2
([(0,2),(0,5),(2,6),(3,4),(4,1),(4,6),(5,3)],7)
=> ? = 6
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 2
([(0,2),(0,3),(2,5),(2,6),(3,5),(3,6),(4,1),(6,4)],7)
=> ? = 2
([(0,3),(0,5),(3,6),(4,2),(5,1),(5,6),(6,4)],7)
=> ? = 6
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> ? = 3
([(0,2),(0,5),(2,6),(3,1),(4,3),(4,6),(5,4)],7)
=> ? = 3
([(0,2),(0,4),(1,5),(2,5),(2,6),(3,1),(3,6),(4,3)],7)
=> ? = 6
([(0,3),(0,4),(3,6),(4,6),(5,1),(5,2),(6,5)],7)
=> ? = 2
([(0,3),(1,5),(1,6),(2,6),(3,2),(3,5),(5,4),(6,4)],7)
=> ? = 6
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 5
([(0,2),(1,5),(1,6),(2,3),(3,5),(3,6),(5,4),(6,4)],7)
=> ? = 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2),(4,6),(5,6)],7)
=> ? = 2
([(0,5),(1,6),(2,6),(5,1),(5,2),(6,3),(6,4)],7)
=> ? = 2
([(0,5),(1,4),(4,6),(5,6),(6,2),(6,3)],7)
=> ? = 2
([(0,3),(1,2),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> ? = 2
([(0,6),(1,5),(2,6),(5,2),(6,3),(6,4)],7)
=> ? = 2
([(0,6),(1,3),(1,6),(2,4),(3,2),(3,5),(5,4),(6,5)],7)
=> ? = 3
([(0,6),(1,2),(1,6),(2,4),(2,5),(4,3),(5,3),(6,4),(6,5)],7)
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(2,6),(3,2),(4,1),(4,6)],7)
=> ? = 3
([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7)
=> ? = 5
([(0,6),(1,3),(1,6),(2,5),(3,5),(4,2),(6,4)],7)
=> ? = 6
([(0,5),(2,6),(3,6),(4,1),(4,6),(5,2),(5,3),(5,4)],7)
=> ? = 5
([(0,5),(3,6),(4,1),(4,2),(4,6),(5,3),(5,4)],7)
=> ? = 5
([(0,5),(0,6),(3,2),(4,1),(5,3),(6,4)],7)
=> ? = 4
([(0,3),(0,5),(1,5),(1,6),(2,4),(3,6),(5,2),(6,4)],7)
=> ? = 3
([(0,3),(0,6),(1,4),(1,6),(2,5),(3,4),(4,2),(6,5)],7)
=> ? = 6
([(0,5),(0,6),(1,4),(1,6),(2,5),(3,2),(4,3)],7)
=> ? = 5
([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,1),(4,2)],7)
=> ? = 2
([(0,4),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3)],7)
=> ? = 5
([(0,3),(1,4),(1,6),(2,5),(3,6),(4,5),(6,2)],7)
=> ? = 3
([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> ? = 6
([(0,5),(3,4),(4,6),(5,3),(6,1),(6,2)],7)
=> ? = 2
([(0,5),(3,4),(4,1),(5,6),(6,2),(6,3)],7)
=> ? = 4
([(0,6),(1,4),(2,5),(3,5),(4,3),(4,6),(6,2)],7)
=> ? = 6
([(0,5),(3,2),(4,1),(5,6),(6,3),(6,4)],7)
=> ? = 3
([(0,6),(1,4),(2,5),(3,2),(3,6),(4,3),(6,5)],7)
=> ? = 6
([(0,6),(1,4),(2,5),(3,2),(4,3),(4,6),(6,5)],7)
=> ? = 3
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? = 8
Description
The size of the smallest orbit of antichains under Panyushev complementation.
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
St000733: Standard tableaux ⟶ ℤResult quality: 62% values known / values provided: 62%distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> [1,1]
=> [[1],[2]]
=> 2
([],2)
=> [2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 2
([(0,1)],2)
=> [3]
=> [1,1,1]
=> [[1],[2],[3]]
=> 3
([],3)
=> [2,2,2,2]
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> 2
([(1,2)],3)
=> [6]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 6
([(0,1),(0,2)],3)
=> [3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 2
([(0,2),(2,1)],3)
=> [4]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 4
([(0,2),(1,2)],3)
=> [3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 2
([(2,3)],4)
=> [6,6]
=> [2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]]
=> 6
([(1,2),(1,3)],4)
=> [6,2,2]
=> [3,3,1,1,1,1]
=> [[1,6,7],[2,9,10],[3],[4],[5],[8]]
=> 2
([(0,1),(0,2),(0,3)],4)
=> [3,2,2,2]
=> [4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> 2
([(0,2),(0,3),(3,1)],4)
=> [7]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 2
([(1,2),(2,3)],4)
=> [4,4]
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> 4
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 2
([(1,3),(2,3)],4)
=> [6,2,2]
=> [3,3,1,1,1,1]
=> [[1,6,7],[2,9,10],[3],[4],[5],[8]]
=> 2
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [3,2,2,2]
=> [4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6]]
=> 2
([(0,3),(1,2)],4)
=> [3,3,3]
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> 3
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> [2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5],[7]]
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> 2
([(0,3),(2,1),(3,2)],4)
=> [5]
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 5
([(0,3),(1,2),(2,3)],4)
=> [7]
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 7
([(0,2),(0,3),(0,4),(4,1)],5)
=> [7,6]
=> [2,2,2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8,11],[10,13],[12]]
=> ? = 6
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> [4,4,1,1]
=> [[1,4,5,6],[2,8,9,10],[3],[7]]
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> [4,4,2,2]
=> [4,4,2,2]
=> [[1,2,7,8],[3,4,11,12],[5,6],[9,10]]
=> 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,3,3]
=> [3,3,3,1]
=> [[1,3,4],[2,6,7],[5,9,10],[8]]
=> 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> [2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8]]
=> 4
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> [3,3,1,1]
=> [[1,4,5],[2,7,8],[3],[6]]
=> 2
([(2,3),(3,4)],5)
=> [4,4,4,4]
=> [4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
=> ? = 4
([(1,4),(4,2),(4,3)],5)
=> [4,4,2,2]
=> [4,4,2,2]
=> [[1,2,7,8],[3,4,11,12],[5,6],[9,10]]
=> 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> [4,2,2,2]
=> [4,4,1,1]
=> [[1,4,5,6],[2,8,9,10],[3],[7]]
=> 2
([(1,4),(2,4),(4,3)],5)
=> [4,4,2,2]
=> [4,4,2,2]
=> [[1,2,7,8],[3,4,11,12],[5,6],[9,10]]
=> 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> [3,3,1,1]
=> [[1,4,5],[2,7,8],[3],[6]]
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> [4,2,2,2]
=> [4,4,1,1]
=> [[1,4,5,6],[2,8,9,10],[3],[7]]
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5,3,2,2]
=> [4,4,2,1,1]
=> [[1,4,7,8],[2,6,11,12],[3,10],[5],[9]]
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2,2,2,2]
=> [5,5,1]
=> [[1,3,4,5,6],[2,8,9,10,11],[7]]
=> ? = 2
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> 2
([(0,4),(1,4),(2,3),(2,4)],5)
=> [6,5,3]
=> [3,3,3,2,2,1]
=> [[1,3,8],[2,5,11],[4,7,14],[6,10],[9,13],[12]]
=> ? = 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [7,6]
=> [2,2,2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8,11],[10,13],[12]]
=> ? = 6
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [5,4]
=> [2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8]]
=> 4
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [7,2]
=> [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> [3,3,1,1]
=> [[1,4,5],[2,7,8],[3],[6]]
=> 2
([(0,4),(1,2),(1,3),(1,4)],5)
=> [6,5,3]
=> [3,3,3,2,2,1]
=> [[1,3,8],[2,5,11],[4,7,14],[6,10],[9,13],[12]]
=> ? = 3
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> [2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8]]
=> 4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> 8
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [5,3,2,2]
=> [4,4,2,1,1]
=> [[1,4,7,8],[2,6,11,12],[3,10],[5],[9]]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [3,2,2,2,2]
=> [5,5,1]
=> [[1,3,4,5,6],[2,8,9,10,11],[7]]
=> ? = 2
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [7,2]
=> [2,2,1,1,1,1,1]
=> [[1,7],[2,9],[3],[4],[5],[6],[8]]
=> 2
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> 2
([(0,4),(1,2),(2,4),(4,3)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> 8
([(0,4),(3,2),(4,1),(4,3)],5)
=> [8]
=> [1,1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> 8
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> 6
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,3,3]
=> [3,3,3,1]
=> [[1,3,4],[2,6,7],[5,9,10],[8]]
=> 3
([(0,4),(1,2),(2,3),(3,4)],5)
=> [5,4]
=> [2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8]]
=> 4
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2,2,2,2]
=> [5,5,1,1]
=> [[1,4,5,6,7],[2,9,10,11,12],[3],[8]]
=> ? = 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> [6,5,4]
=> [3,3,3,3,2,1]
=> [[1,3,6],[2,5,9],[4,8,12],[7,11,15],[10,14],[13]]
=> ? = 4
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6)
=> [6,5,4]
=> [3,3,3,3,2,1]
=> [[1,3,6],[2,5,9],[4,8,12],[7,11,15],[10,14],[13]]
=> ? = 4
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [4,2,2,2,2]
=> [5,5,1,1]
=> [[1,4,5,6,7],[2,9,10,11,12],[3],[8]]
=> ? = 2
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> [4,2,2,2,2]
=> [5,5,1,1]
=> [[1,4,5,6,7],[2,9,10,11,12],[3],[8]]
=> ? = 2
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> [4,2,2,2,2]
=> [5,5,1,1]
=> [[1,4,5,6,7],[2,9,10,11,12],[3],[8]]
=> ? = 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2,2,2,2]
=> [5,5,1,1]
=> [[1,4,5,6,7],[2,9,10,11,12],[3],[8]]
=> ? = 2
([(0,5),(1,5),(2,3),(2,5),(3,4),(5,4)],6)
=> [6,5,4]
=> [3,3,3,3,2,1]
=> [[1,3,6],[2,5,9],[4,8,12],[7,11,15],[10,14],[13]]
=> ? = 4
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [5,4,4,4]
=> [4,4,4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6,11,12,13],[10,15,16,17],[14]]
=> ? = 4
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> [6,4,3]
=> [3,3,3,2,1,1]
=> [[1,4,7],[2,6,10],[3,9,13],[5,12],[8],[11]]
=> ? = 3
([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> [6,5,4]
=> [3,3,3,3,2,1]
=> [[1,3,6],[2,5,9],[4,8,12],[7,11,15],[10,14],[13]]
=> ? = 4
([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> [5,4,4,4]
=> [4,4,4,4,1]
=> [[1,3,4,5],[2,7,8,9],[6,11,12,13],[10,15,16,17],[14]]
=> ? = 4
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> [4,2,2,2,2]
=> [5,5,1,1]
=> [[1,4,5,6,7],[2,9,10,11,12],[3],[8]]
=> ? = 2
([(0,4),(0,5),(1,2),(1,4),(2,5),(4,3)],6)
=> [6,4,3]
=> [3,3,3,2,1,1]
=> [[1,4,7],[2,6,10],[3,9,13],[5,12],[8],[11]]
=> ? = 3
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> [7,5]
=> [2,2,2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5,10],[7,12],[9],[11]]
=> ? = 5
([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> [5,5,3]
=> [3,3,3,2,2]
=> [[1,2,7],[3,4,10],[5,6,13],[8,9],[11,12]]
=> ? = 3
([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6)
=> [6,4,3]
=> [3,3,3,2,1,1]
=> [[1,4,7],[2,6,10],[3,9,13],[5,12],[8],[11]]
=> ? = 3
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> [7,5]
=> [2,2,2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5,10],[7,12],[9],[11]]
=> ? = 5
([(0,5),(1,4),(4,2),(5,3)],6)
=> [4,4,4,4]
=> [4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
=> ? = 4
([(0,5),(1,3),(1,5),(4,2),(5,4)],6)
=> [7,5]
=> [2,2,2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5,10],[7,12],[9],[11]]
=> ? = 5
([(0,5),(1,4),(3,2),(4,3),(4,5)],6)
=> [5,5,3]
=> [3,3,3,2,2]
=> [[1,2,7],[3,4,10],[5,6,13],[8,9],[11,12]]
=> ? = 3
([(0,5),(1,3),(3,4),(4,2),(4,5)],6)
=> [7,5]
=> [2,2,2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5,10],[7,12],[9],[11]]
=> ? = 5
([(0,2),(0,3),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1),(6,5)],7)
=> [5,5,2]
=> [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 2
([(0,6),(1,6),(2,3),(2,6),(3,5),(5,4),(6,5)],7)
=> [6,5,5]
=> [3,3,3,3,3,1]
=> [[1,3,4],[2,6,7],[5,9,10],[8,12,13],[11,15,16],[14]]
=> ? = 5
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)
=> [6,5,5]
=> [3,3,3,3,3,1]
=> [[1,3,4],[2,6,7],[5,9,10],[8,12,13],[11,15,16],[14]]
=> ? = 5
([(0,6),(1,6),(3,5),(4,2),(4,5),(6,3),(6,4)],7)
=> [5,5,2]
=> [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(4,3),(5,4),(6,2),(6,4)],7)
=> [5,5,2]
=> [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 2
([(0,5),(1,4),(1,5),(4,6),(5,6),(6,2),(6,3)],7)
=> [5,5,2]
=> [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 2
([(0,5),(1,2),(1,3),(1,5),(2,6),(3,6),(5,6),(6,4)],7)
=> [6,5,5]
=> [3,3,3,3,3,1]
=> [[1,3,4],[2,6,7],[5,9,10],[8,12,13],[11,15,16],[14]]
=> ? = 5
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)
=> [6,5,5]
=> [3,3,3,3,3,1]
=> [[1,3,4],[2,6,7],[5,9,10],[8,12,13],[11,15,16],[14]]
=> ? = 5
([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> [6,5,3]
=> [3,3,3,2,2,1]
=> [[1,3,8],[2,5,11],[4,7,14],[6,10],[9,13],[12]]
=> ? = 3
([(0,2),(0,3),(1,5),(1,6),(2,4),(3,1),(3,4),(4,5),(4,6)],7)
=> [5,5,2]
=> [3,3,2,2,2]
=> [[1,2,9],[3,4,12],[5,6],[7,8],[10,11]]
=> ? = 2
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> [6,5]
=> [2,2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? = 5
([(0,3),(0,5),(3,6),(4,1),(4,6),(5,4),(6,2)],7)
=> [7,6]
=> [2,2,2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8,11],[10,13],[12]]
=> ? = 6
([(0,3),(0,4),(2,6),(3,5),(3,6),(4,2),(4,5),(6,1)],7)
=> [7,6]
=> [2,2,2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8,11],[10,13],[12]]
=> ? = 6
([(0,3),(0,4),(2,5),(3,5),(3,6),(4,2),(4,6),(6,1)],7)
=> [6,5,3]
=> [3,3,3,2,2,1]
=> [[1,3,8],[2,5,11],[4,7,14],[6,10],[9,13],[12]]
=> ? = 3
([(0,4),(0,5),(2,6),(4,2),(5,1),(5,6),(6,3)],7)
=> [6,5,3]
=> [3,3,3,2,2,1]
=> [[1,3,8],[2,5,11],[4,7,14],[6,10],[9,13],[12]]
=> ? = 3
([(0,3),(1,2),(1,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> [6,5,3]
=> [3,3,3,2,2,1]
=> [[1,3,8],[2,5,11],[4,7,14],[6,10],[9,13],[12]]
=> ? = 3
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> [7,4]
=> [2,2,2,2,1,1,1]
=> [[1,5],[2,7],[3,9],[4,11],[6],[8],[10]]
=> ? = 4
([(0,2),(0,5),(2,6),(3,4),(4,1),(4,6),(5,3)],7)
=> [7,6]
=> [2,2,2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8,11],[10,13],[12]]
=> ? = 6
([(0,3),(0,5),(3,6),(4,2),(5,1),(5,6),(6,4)],7)
=> [7,6]
=> [2,2,2,2,2,2,1]
=> [[1,3],[2,5],[4,7],[6,9],[8,11],[10,13],[12]]
=> ? = 6
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)
=> [6,3,3]
=> [3,3,3,1,1,1]
=> [[1,5,6],[2,8,9],[3,11,12],[4],[7],[10]]
=> ? = 3
([(0,2),(0,5),(2,6),(3,1),(4,3),(4,6),(5,4)],7)
=> [6,5,3]
=> [3,3,3,2,2,1]
=> [[1,3,8],[2,5,11],[4,7,14],[6,10],[9,13],[12]]
=> ? = 3
Description
The row containing the largest entry of a standard tableau.
Matching statistic: St000745
Mp00306: Posets rowmotion cycle typeInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
Mp00084: Standard tableaux conjugateStandard tableaux
St000745: Standard tableaux ⟶ ℤResult quality: 40% values known / values provided: 40%distinct values known / distinct values provided: 100%
Values
([],1)
=> [2]
=> [[1,2]]
=> [[1],[2]]
=> 2
([],2)
=> [2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 2
([(0,1)],2)
=> [3]
=> [[1,2,3]]
=> [[1],[2],[3]]
=> 3
([],3)
=> [2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8]]
=> [[1,3,5,7],[2,4,6,8]]
=> 2
([(1,2)],3)
=> [6]
=> [[1,2,3,4,5,6]]
=> [[1],[2],[3],[4],[5],[6]]
=> 6
([(0,1),(0,2)],3)
=> [3,2]
=> [[1,2,5],[3,4]]
=> [[1,3],[2,4],[5]]
=> 2
([(0,2),(2,1)],3)
=> [4]
=> [[1,2,3,4]]
=> [[1],[2],[3],[4]]
=> 4
([(0,2),(1,2)],3)
=> [3,2]
=> [[1,2,5],[3,4]]
=> [[1,3],[2,4],[5]]
=> 2
([(2,3)],4)
=> [6,6]
=> [[1,2,3,4,5,6],[7,8,9,10,11,12]]
=> [[1,7],[2,8],[3,9],[4,10],[5,11],[6,12]]
=> 6
([(1,2),(1,3)],4)
=> [6,2,2]
=> [[1,2,7,8,9,10],[3,4],[5,6]]
=> [[1,3,5],[2,4,6],[7],[8],[9],[10]]
=> 2
([(0,1),(0,2),(0,3)],4)
=> [3,2,2,2]
=> [[1,2,9],[3,4],[5,6],[7,8]]
=> [[1,3,5,7],[2,4,6,8],[9]]
=> 2
([(0,2),(0,3),(3,1)],4)
=> [7]
=> [[1,2,3,4,5,6,7]]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 7
([(0,1),(0,2),(1,3),(2,3)],4)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [[1,3],[2,4],[5],[6]]
=> 2
([(1,2),(2,3)],4)
=> [4,4]
=> [[1,2,3,4],[5,6,7,8]]
=> [[1,5],[2,6],[3,7],[4,8]]
=> 4
([(0,3),(3,1),(3,2)],4)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [[1,3],[2,4],[5],[6]]
=> 2
([(1,3),(2,3)],4)
=> [6,2,2]
=> [[1,2,7,8,9,10],[3,4],[5,6]]
=> [[1,3,5],[2,4,6],[7],[8],[9],[10]]
=> 2
([(0,3),(1,3),(3,2)],4)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [[1,3],[2,4],[5],[6]]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [3,2,2,2]
=> [[1,2,9],[3,4],[5,6],[7,8]]
=> [[1,3,5,7],[2,4,6,8],[9]]
=> 2
([(0,3),(1,2)],4)
=> [3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9]]
=> [[1,4,7],[2,5,8],[3,6,9]]
=> 3
([(0,3),(1,2),(1,3)],4)
=> [5,3]
=> [[1,2,3,7,8],[4,5,6]]
=> [[1,4],[2,5],[3,6],[7],[8]]
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> [3,2,2]
=> [[1,2,7],[3,4],[5,6]]
=> [[1,3,5],[2,4,6],[7]]
=> 2
([(0,3),(2,1),(3,2)],4)
=> [5]
=> [[1,2,3,4,5]]
=> [[1],[2],[3],[4],[5]]
=> 5
([(0,3),(1,2),(2,3)],4)
=> [7]
=> [[1,2,3,4,5,6,7]]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> 7
([(0,2),(0,3),(0,4),(4,1)],5)
=> [7,6]
=> [[1,2,3,4,5,6,13],[7,8,9,10,11,12]]
=> [[1,7],[2,8],[3,9],[4,10],[5,11],[6,12],[13]]
=> ? = 6
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [4,2,2,2]
=> [[1,2,9,10],[3,4],[5,6],[7,8]]
=> [[1,3,5,7],[2,4,6,8],[9],[10]]
=> 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> [4,4,2,2]
=> [[1,2,7,8],[3,4,11,12],[5,6],[9,10]]
=> [[1,3,5,9],[2,4,6,10],[7,11],[8,12]]
=> ? = 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [[1,3],[2,4],[5],[6],[7]]
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,3,3]
=> [[1,2,3,10],[4,5,6],[7,8,9]]
=> [[1,4,7],[2,5,8],[3,6,9],[10]]
=> 3
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> [[1,5],[2,6],[3,7],[4,8],[9]]
=> 4
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [4,2,2]
=> [[1,2,7,8],[3,4],[5,6]]
=> [[1,3,5],[2,4,6],[7],[8]]
=> 2
([(2,3),(3,4)],5)
=> [4,4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
=> [[1,5,9,13],[2,6,10,14],[3,7,11,15],[4,8,12,16]]
=> ? = 4
([(1,4),(4,2),(4,3)],5)
=> [4,4,2,2]
=> [[1,2,7,8],[3,4,11,12],[5,6],[9,10]]
=> [[1,3,5,9],[2,4,6,10],[7,11],[8,12]]
=> ? = 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> [4,2,2,2]
=> [[1,2,9,10],[3,4],[5,6],[7,8]]
=> [[1,3,5,7],[2,4,6,8],[9],[10]]
=> 2
([(1,4),(2,4),(4,3)],5)
=> [4,4,2,2]
=> [[1,2,7,8],[3,4,11,12],[5,6],[9,10]]
=> [[1,3,5,9],[2,4,6,10],[7,11],[8,12]]
=> ? = 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> [4,2,2]
=> [[1,2,7,8],[3,4],[5,6]]
=> [[1,3,5],[2,4,6],[7],[8]]
=> 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> [4,2,2,2]
=> [[1,2,9,10],[3,4],[5,6],[7,8]]
=> [[1,3,5,7],[2,4,6,8],[9],[10]]
=> 2
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [5,3,2,2]
=> [[1,2,7,11,12],[3,4,10],[5,6],[8,9]]
=> [[1,3,5,8],[2,4,6,9],[7,10],[11],[12]]
=> ? = 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2,2,2,2]
=> [[1,2,11],[3,4],[5,6],[7,8],[9,10]]
=> [[1,3,5,7,9],[2,4,6,8,10],[11]]
=> ? = 2
([(0,4),(1,4),(2,3),(4,2)],5)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [[1,3],[2,4],[5],[6],[7]]
=> 2
([(0,4),(1,4),(2,3),(2,4)],5)
=> [6,5,3]
=> [[1,2,3,7,8,14],[4,5,6,12,13],[9,10,11]]
=> [[1,4,9],[2,5,10],[3,6,11],[7,12],[8,13],[14]]
=> ? = 3
([(0,4),(1,4),(2,3),(3,4)],5)
=> [7,6]
=> [[1,2,3,4,5,6,13],[7,8,9,10,11,12]]
=> [[1,7],[2,8],[3,9],[4,10],[5,11],[6,12],[13]]
=> ? = 6
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> [[1,5],[2,6],[3,7],[4,8],[9]]
=> 4
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [7,2]
=> [[1,2,5,6,7,8,9],[3,4]]
=> [[1,3],[2,4],[5],[6],[7],[8],[9]]
=> 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [4,2,2]
=> [[1,2,7,8],[3,4],[5,6]]
=> [[1,3,5],[2,4,6],[7],[8]]
=> 2
([(0,4),(1,2),(1,3),(1,4)],5)
=> [6,5,3]
=> [[1,2,3,7,8,14],[4,5,6,12,13],[9,10,11]]
=> [[1,4,9],[2,5,10],[3,6,11],[7,12],[8,13],[14]]
=> ? = 3
([(0,2),(0,4),(3,1),(4,3)],5)
=> [5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> [[1,5],[2,6],[3,7],[4,8],[9]]
=> 4
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [8]
=> [[1,2,3,4,5,6,7,8]]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> 8
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [5,3,2,2]
=> [[1,2,7,11,12],[3,4,10],[5,6],[8,9]]
=> [[1,3,5,8],[2,4,6,9],[7,10],[11],[12]]
=> ? = 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [3,2,2,2,2]
=> [[1,2,11],[3,4],[5,6],[7,8],[9,10]]
=> [[1,3,5,7,9],[2,4,6,8,10],[11]]
=> ? = 2
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [7,2]
=> [[1,2,5,6,7,8,9],[3,4]]
=> [[1,3],[2,4],[5],[6],[7],[8],[9]]
=> 2
([(0,3),(3,4),(4,1),(4,2)],5)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [[1,3],[2,4],[5],[6],[7]]
=> 2
([(0,4),(1,2),(2,4),(4,3)],5)
=> [8]
=> [[1,2,3,4,5,6,7,8]]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> 8
([(0,4),(3,2),(4,1),(4,3)],5)
=> [8]
=> [[1,2,3,4,5,6,7,8]]
=> [[1],[2],[3],[4],[5],[6],[7],[8]]
=> 8
([(0,4),(2,3),(3,1),(4,2)],5)
=> [6]
=> [[1,2,3,4,5,6]]
=> [[1],[2],[3],[4],[5],[6]]
=> 6
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,3,3]
=> [[1,2,3,10],[4,5,6],[7,8,9]]
=> [[1,4,7],[2,5,8],[3,6,9],[10]]
=> 3
([(0,4),(1,2),(2,3),(3,4)],5)
=> [5,4]
=> [[1,2,3,4,9],[5,6,7,8]]
=> [[1,5],[2,6],[3,7],[4,8],[9]]
=> 4
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [[1,3],[2,4],[5],[6],[7]]
=> 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [5,2,2,2]
=> [[1,2,9,10,11],[3,4],[5,6],[7,8]]
=> [[1,3,5,7],[2,4,6,8],[9],[10],[11]]
=> ? = 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,4,2,2]
=> [[1,2,7,8,13],[3,4,11,12],[5,6],[9,10]]
=> [[1,3,5,9],[2,4,6,10],[7,11],[8,12],[13]]
=> ? = 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2,2,2,2]
=> [[1,2,11,12],[3,4],[5,6],[7,8],[9,10]]
=> ?
=> ? = 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> [6,5,4]
=> [[1,2,3,4,9,15],[5,6,7,8,14],[10,11,12,13]]
=> [[1,5,10],[2,6,11],[3,7,12],[4,8,13],[9,14],[15]]
=> ? = 4
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> [5,4,2,2]
=> [[1,2,7,8,13],[3,4,11,12],[5,6],[9,10]]
=> [[1,3,5,9],[2,4,6,10],[7,11],[8,12],[13]]
=> ? = 2
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [5,2,2]
=> [[1,2,7,8,9],[3,4],[5,6]]
=> [[1,3,5],[2,4,6],[7],[8],[9]]
=> 2
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [5,2,2]
=> [[1,2,7,8,9],[3,4],[5,6]]
=> [[1,3,5],[2,4,6],[7],[8],[9]]
=> 2
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6)
=> [6,5,4]
=> [[1,2,3,4,9,15],[5,6,7,8,14],[10,11,12,13]]
=> [[1,5,10],[2,6,11],[3,7,12],[4,8,13],[9,14],[15]]
=> ? = 4
([(0,2),(0,3),(2,4),(2,5),(3,1),(3,4),(3,5)],6)
=> [5,4,2,2]
=> [[1,2,7,8,13],[3,4,11,12],[5,6],[9,10]]
=> [[1,3,5,9],[2,4,6,10],[7,11],[8,12],[13]]
=> ? = 2
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [4,2,2,2,2]
=> [[1,2,11,12],[3,4],[5,6],[7,8],[9,10]]
=> ?
=> ? = 2
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> [5,2,2,2]
=> [[1,2,9,10,11],[3,4],[5,6],[7,8]]
=> [[1,3,5,7],[2,4,6,8],[9],[10],[11]]
=> ? = 2
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> [4,2,2,2,2]
=> [[1,2,11,12],[3,4],[5,6],[7,8],[9,10]]
=> ?
=> ? = 2
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> [4,2,2,2,2]
=> [[1,2,11,12],[3,4],[5,6],[7,8],[9,10]]
=> ?
=> ? = 2
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> [5,2,2,2]
=> [[1,2,9,10,11],[3,4],[5,6],[7,8]]
=> [[1,3,5,7],[2,4,6,8],[9],[10],[11]]
=> ? = 2
([(0,5),(1,3),(1,5),(2,3),(2,5),(3,4),(5,4)],6)
=> [5,4,2,2]
=> [[1,2,7,8,13],[3,4,11,12],[5,6],[9,10]]
=> [[1,3,5,9],[2,4,6,10],[7,11],[8,12],[13]]
=> ? = 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2,2,2,2]
=> [[1,2,11,12],[3,4],[5,6],[7,8],[9,10]]
=> ?
=> ? = 2
([(0,5),(1,5),(2,3),(2,5),(3,4),(5,4)],6)
=> [6,5,4]
=> [[1,2,3,4,9,15],[5,6,7,8,14],[10,11,12,13]]
=> [[1,5,10],[2,6,11],[3,7,12],[4,8,13],[9,14],[15]]
=> ? = 4
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [5,2,2]
=> [[1,2,7,8,9],[3,4],[5,6]]
=> [[1,3,5],[2,4,6],[7],[8],[9]]
=> 2
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6)
=> [5,4,2,2]
=> [[1,2,7,8,13],[3,4,11,12],[5,6],[9,10]]
=> [[1,3,5,9],[2,4,6,10],[7,11],[8,12],[13]]
=> ? = 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [5,3,3]
=> [[1,2,3,10,11],[4,5,6],[7,8,9]]
=> [[1,4,7],[2,5,8],[3,6,9],[10],[11]]
=> ? = 3
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [6,2]
=> [[1,2,5,6,7,8],[3,4]]
=> [[1,3],[2,4],[5],[6],[7],[8]]
=> 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [5,4,4,4]
=> [[1,2,3,4,17],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
=> ?
=> ? = 4
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [5,4,2,2]
=> [[1,2,7,8,13],[3,4,11,12],[5,6],[9,10]]
=> [[1,3,5,9],[2,4,6,10],[7,11],[8,12],[13]]
=> ? = 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> [5,2,2,2]
=> [[1,2,9,10,11],[3,4],[5,6],[7,8]]
=> [[1,3,5,7],[2,4,6,8],[9],[10],[11]]
=> ? = 2
([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [5,4,2,2]
=> [[1,2,7,8,13],[3,4,11,12],[5,6],[9,10]]
=> [[1,3,5,9],[2,4,6,10],[7,11],[8,12],[13]]
=> ? = 2
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [5,2,2]
=> [[1,2,7,8,9],[3,4],[5,6]]
=> [[1,3,5],[2,4,6],[7],[8],[9]]
=> 2
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> [6,4,3]
=> [[1,2,3,7,12,13],[4,5,6,11],[8,9,10]]
=> ?
=> ? = 3
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> [5,4,2]
=> [[1,2,5,6,11],[3,4,9,10],[7,8]]
=> [[1,3,7],[2,4,8],[5,9],[6,10],[11]]
=> ? = 2
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> [4,3,3,2]
=> [[1,2,5,12],[3,4,8],[6,7,11],[9,10]]
=> [[1,3,6,9],[2,4,7,10],[5,8,11],[12]]
=> ? = 2
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> [5,4,2]
=> [[1,2,5,6,11],[3,4,9,10],[7,8]]
=> [[1,3,7],[2,4,8],[5,9],[6,10],[11]]
=> ? = 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> [5,4,2]
=> [[1,2,5,6,11],[3,4,9,10],[7,8]]
=> [[1,3,7],[2,4,8],[5,9],[6,10],[11]]
=> ? = 2
([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> [6,5,4]
=> [[1,2,3,4,9,15],[5,6,7,8,14],[10,11,12,13]]
=> [[1,5,10],[2,6,11],[3,7,12],[4,8,13],[9,14],[15]]
=> ? = 4
([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> [5,4,4,4]
=> [[1,2,3,4,17],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
=> ?
=> ? = 4
([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> [5,4,2,2]
=> [[1,2,7,8,13],[3,4,11,12],[5,6],[9,10]]
=> [[1,3,5,9],[2,4,6,10],[7,11],[8,12],[13]]
=> ? = 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> [5,4,2,2]
=> [[1,2,7,8,13],[3,4,11,12],[5,6],[9,10]]
=> [[1,3,5,9],[2,4,6,10],[7,11],[8,12],[13]]
=> ? = 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> [4,2,2,2,2]
=> [[1,2,11,12],[3,4],[5,6],[7,8],[9,10]]
=> ?
=> ? = 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> [5,4,2,2]
=> [[1,2,7,8,13],[3,4,11,12],[5,6],[9,10]]
=> [[1,3,5,9],[2,4,6,10],[7,11],[8,12],[13]]
=> ? = 2
([(0,4),(0,5),(1,2),(1,4),(2,5),(4,3)],6)
=> [6,4,3]
=> [[1,2,3,7,12,13],[4,5,6,11],[8,9,10]]
=> ?
=> ? = 3
([(0,4),(0,5),(1,2),(1,4),(2,5),(5,3)],6)
=> [7,5]
=> [[1,2,3,4,5,11,12],[6,7,8,9,10]]
=> ?
=> ? = 5
([(0,4),(1,3),(1,5),(4,5),(5,2)],6)
=> [5,5,3]
=> [[1,2,3,7,8],[4,5,6,12,13],[9,10,11]]
=> [[1,4,9],[2,5,10],[3,6,11],[7,12],[8,13]]
=> ? = 3
([(0,3),(1,2),(1,4),(2,5),(3,4),(3,5)],6)
=> [6,4,3]
=> [[1,2,3,7,12,13],[4,5,6,11],[8,9,10]]
=> ?
=> ? = 3
([(0,4),(0,5),(1,2),(2,3),(2,5),(3,4)],6)
=> [7,5]
=> [[1,2,3,4,5,11,12],[6,7,8,9,10]]
=> ?
=> ? = 5
([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [5,3,3]
=> [[1,2,3,10,11],[4,5,6],[7,8,9]]
=> [[1,4,7],[2,5,8],[3,6,9],[10],[11]]
=> ? = 3
Description
The index of the last row whose first entry is the row number in a standard Young tableau.
Matching statistic: St000771
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
Mp00198: Posets incomparability graphGraphs
St000771: Graphs ⟶ ℤResult quality: 14% values known / values provided: 28%distinct values known / distinct values provided: 14%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3 - 1
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6 - 1
([(0,1),(0,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6 - 1
([(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 7 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 3 - 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 3 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 5 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 7 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 3 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(1,4),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6 - 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3 - 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8 - 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 6 - 1
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 3 - 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4 - 1
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4 - 1
([(0,2),(0,3),(2,4),(2,5),(3,1),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,5),(1,3),(1,5),(2,3),(2,5),(3,4),(5,4)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,5),(1,5),(2,3),(2,5),(3,4),(5,4)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4 - 1
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 3 - 1
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2 - 1
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 5 - 1
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4 - 1
([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $2$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St000772
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
Mp00198: Posets incomparability graphGraphs
St000772: Graphs ⟶ ℤResult quality: 14% values known / values provided: 28%distinct values known / distinct values provided: 14%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3 - 1
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6 - 1
([(0,1),(0,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6 - 1
([(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 7 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 3 - 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 3 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 5 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 7 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 3 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(1,4),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6 - 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3 - 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8 - 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 6 - 1
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 3 - 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4 - 1
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4 - 1
([(0,2),(0,3),(2,4),(2,5),(3,1),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,5),(1,3),(1,5),(2,3),(2,5),(3,4),(5,4)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,5),(1,5),(2,3),(2,5),(3,4),(5,4)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4 - 1
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 3 - 1
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2 - 1
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 5 - 1
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4 - 1
([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $1$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$. The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Matching statistic: St000777
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
Mp00198: Posets incomparability graphGraphs
St000777: Graphs ⟶ ℤResult quality: 14% values known / values provided: 28%distinct values known / distinct values provided: 14%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3 - 1
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6 - 1
([(0,1),(0,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6 - 1
([(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 7 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 3 - 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 3 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 5 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 7 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 3 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(1,4),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 6 - 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3 - 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 2 - 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8 - 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 8 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 6 - 1
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 3 - 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4 - 1
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4 - 1
([(0,2),(0,3),(2,4),(2,5),(3,1),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,5),(1,3),(1,5),(2,3),(2,5),(3,4),(5,4)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,5),(1,5),(2,3),(2,5),(3,4),(5,4)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4 - 1
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 3 - 1
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> ? = 3 - 1
([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2 - 1
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 5 - 1
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ? = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2 - 1
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 4 - 1
([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 4 - 1
([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([],1)
=> ([],1)
=> ([],1)
=> 1 = 2 - 1
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
The following 9 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001645The pebbling number of a connected graph. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001481The minimal height of a peak of a Dyck path. St001803The maximal overlap of the cylindrical tableau associated with a tableau.