searching the database
Your data matches 38 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001037
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
St001037: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
St001037: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
[2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 0
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 0
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> 0
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 0
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 0
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> 0
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> 0
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 0
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 0
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> 0
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0]
=> 0
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 0
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 0
Description
The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path.
Matching statistic: St000292
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00109: Permutations —descent word⟶ Binary words
St000292: Binary words ⟶ ℤResult quality: 95% ●values known / values provided: 95%●distinct values known / distinct values provided: 100%
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00109: Permutations —descent word⟶ Binary words
St000292: Binary words ⟶ ℤResult quality: 95% ●values known / values provided: 95%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [2,1] => 1 => 0
[2]
=> [1,1,0,0,1,0]
=> [3,1,2] => 10 => 0
[1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => 01 => 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 100 => 0
[2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 11 => 0
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 001 => 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => 1000 => 0
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 110 => 0
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 010 => 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 101 => 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 0001 => 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => 10000 => 0
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => 1100 => 0
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 110 => 0
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 101 => 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 011 => 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1001 => 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 00001 => 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,6] => 100000 => 0
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [6,2,1,3,4,5] => 11000 => 0
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => 1100 => 0
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 1010 => 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => 0100 => 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 111 => 0
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 1001 => 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 0010 => 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 0101 => 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => 10001 => 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => 000001 => 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => 110000 => 0
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [6,3,1,2,4,5] => 11000 => 0
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [6,2,3,1,4,5] => 10100 => 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => 1100 => 0
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => 1110 => 0
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 1001 => 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => 0110 => 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 1010 => 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 1101 => 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => 10001 => 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 0011 => 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,6,1] => 01001 => 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => 100001 => 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => 0000001 => 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [7,3,1,2,4,5,6] => 110000 => 0
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => 101000 => 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => 11000 => 0
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [6,3,2,1,4,5] => 11100 => 0
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,1,5] => 10010 => 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [5,6,1,2,3,4] => 01000 => 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => 1110 => 0
[5,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [6,3,2,4,5,7,8,1] => ? => ? = 1
[5,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [6,4,2,3,5,7,8,1] => ? => ? = 1
[5,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [6,3,4,2,5,7,8,1] => ? => ? = 2
[4,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [5,6,2,3,4,7,8,1] => ? => ? = 2
[4,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [5,3,4,6,2,7,8,1] => ? => ? = 2
[3,3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [4,5,3,6,2,7,8,1] => ? => ? = 3
[6,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [7,3,4,2,5,6,8,1] => ? => ? = 2
[5,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [6,4,3,2,5,7,8,1] => ? => ? = 1
[4,4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [5,6,3,2,4,7,8,1] => ? => ? = 2
[4,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [5,3,4,6,7,2,8,1] => ? => ? = 2
[6,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [7,3,4,5,2,6,8,1] => ? => ? = 2
[5,3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [6,4,3,5,2,7,8,1] => ? => ? = 2
[4,4,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> [5,6,3,4,2,7,8,1] => ? => ? = 3
[3,3,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [4,5,3,6,7,8,2,1] => ? => ? = 2
[5,3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [6,4,5,3,2,7,8,1] => ? => ? = 2
[4,4,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [5,6,4,3,2,7,8,1] => ? => ? = 2
[7,4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [8,5,3,2,4,6,7,1] => ? => ? = 1
[7,3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [8,4,3,5,2,6,7,1] => ? => ? = 2
[6,4,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> [7,5,3,4,2,6,8,1] => ? => ? = 2
[6,3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [7,4,5,3,2,6,8,1] => ? => ? = 2
[6,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [7,4,3,5,6,8,1,2] => ? => ? = 1
[6,3,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [7,4,3,5,6,2,8,1] => ? => ? = 2
[5,5,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> [6,7,4,2,3,5,8,1] => ? => ? = 2
[5,5,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,1,0,0,0]
=> [6,7,3,4,2,5,8,1] => ? => ? = 3
[5,4,4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> [6,5,7,2,3,4,8,1] => ? => ? = 2
[5,3,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [6,4,5,3,7,8,1,2] => ? => ? = 2
[5,3,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [6,4,3,5,7,8,2,1] => ? => ? = 1
[4,4,4,2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,1,1,1,0,0,0,0]
=> [5,6,7,3,2,4,8,1] => ? => ? = 2
[4,4,3,2,2,1,1]
=> [1,0,1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [5,6,4,3,7,2,8,1] => ? => ? = 3
[4,4,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [5,6,3,4,7,8,2,1] => ? => ? = 2
[4,3,3,3,2,1,1]
=> [1,0,1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [5,4,6,7,3,2,8,1] => ? => ? = 2
[4,3,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [5,4,6,3,7,8,2,1] => ? => ? = 2
Description
The number of ascents of a binary word.
Matching statistic: St000568
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
St000568: Binary trees ⟶ ℤResult quality: 93% ●values known / values provided: 93%●distinct values known / distinct values provided: 100%
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
St000568: Binary trees ⟶ ℤResult quality: 93% ●values known / values provided: 93%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,2] => [.,[.,.]]
=> 1 = 0 + 1
[2]
=> [1,1,0,0,1,0]
=> [2,1,3] => [[.,.],[.,.]]
=> 1 = 0 + 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => [.,[[.,.],.]]
=> 2 = 1 + 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [[[.,.],.],[.,.]]
=> 1 = 0 + 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => [.,[.,[.,.]]]
=> 1 = 0 + 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [.,[[[.,.],.],.]]
=> 2 = 1 + 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> 1 = 0 + 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> 1 = 0 + 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> 2 = 1 + 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [.,[[.,.],[.,.]]]
=> 2 = 1 + 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> 2 = 1 + 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,4,3,2,1,6] => [[[[[.,.],.],.],.],[.,.]]
=> 1 = 0 + 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => [[[.,.],.],[.,[.,.]]]
=> 1 = 0 + 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> 1 = 0 + 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [.,[[.,.],[.,.]]]
=> 2 = 1 + 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [.,[.,[[.,.],.]]]
=> 2 = 1 + 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [.,[[[.,.],.],[.,.]]]
=> 2 = 1 + 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => [.,[[[[[.,.],.],.],.],.]]
=> 2 = 1 + 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,5,4,3,2,1,7] => [[[[[[.,.],.],.],.],.],[.,.]]
=> 1 = 0 + 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,3,2,1,6] => [[[[.,.],.],.],[.,[.,.]]]
=> 1 = 0 + 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [[[.,.],.],[.,[.,.]]]
=> 1 = 0 + 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [[.,.],[[.,.],[.,.]]]
=> 2 = 1 + 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [[[.,.],.],[[.,.],.]]
=> 2 = 1 + 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 1 = 0 + 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [.,[[[.,.],.],[.,.]]]
=> 2 = 1 + 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> 2 = 1 + 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [.,[[.,.],[[.,.],.]]]
=> 3 = 2 + 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,4,3,2] => [.,[[[[.,.],.],.],[.,.]]]
=> 2 = 1 + 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,6,5,4,3,2] => [.,[[[[[[.,.],.],.],.],.],.]]
=> 2 = 1 + 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,4,3,2,1,7] => [[[[[.,.],.],.],.],[.,[.,.]]]
=> 1 = 0 + 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,3,5,2,1,6] => [[[[.,.],.],.],[.,[.,.]]]
=> 1 = 0 + 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,5,4,2,1,6] => [[[.,.],.],[[.,.],[.,.]]]
=> 2 = 1 + 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [[[.,.],.],[.,[.,.]]]
=> 1 = 0 + 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> 1 = 0 + 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> 2 = 1 + 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> 2 = 1 + 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> 2 = 1 + 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> 2 = 1 + 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,4,6,3,2] => [.,[[[[.,.],.],.],[.,.]]]
=> 2 = 1 + 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> 2 = 1 + 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,5,3,2] => [.,[[[.,.],.],[[.,.],.]]]
=> 3 = 2 + 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,5,4,3,2] => [.,[[[[[.,.],.],.],.],[.,.]]]
=> 2 = 1 + 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,8,7,6,5,4,3,2] => [.,[[[[[[[.,.],.],.],.],.],.],.]]
=> 2 = 1 + 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => [[[[[.,.],.],.],.],[.,[.,.]]]
=> 1 = 0 + 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,5,3,2,1,7] => [[[[.,.],.],.],[[.,.],[.,.]]]
=> 2 = 1 + 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,3,2,5,1,6] => [[[[.,.],.],.],[.,[.,.]]]
=> 1 = 0 + 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,2,1,6] => [[[.,.],.],[.,[.,[.,.]]]]
=> 1 = 0 + 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,4,3,1,6] => [[.,.],[[[.,.],.],[.,.]]]
=> 2 = 1 + 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,3,2,1,6,5] => [[[[.,.],.],.],[[.,.],.]]
=> 2 = 1 + 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [[.,.],[.,[.,[.,.]]]]
=> 1 = 0 + 1
[3,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,5,7,8,6,4,3,2] => ?
=> ? = 2 + 1
[5,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [1,6,7,5,4,8,3,2] => ?
=> ? = 1 + 1
[3,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,5,6,8,7,4,3,2] => ?
=> ? = 2 + 1
[5,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,6,5,7,4,8,3,2] => ?
=> ? = 1 + 1
[5,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [1,5,7,6,4,8,3,2] => ?
=> ? = 2 + 1
[4,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,6,5,4,8,7,3,2] => ?
=> ? = 2 + 1
[4,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,4,7,6,8,5,3,2] => ?
=> ? = 2 + 1
[3,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,5,4,8,7,6,3,2] => ?
=> ? = 2 + 1
[6,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [1,5,7,6,4,3,8,2] => ?
=> ? = 2 + 1
[5,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [1,5,6,7,4,8,3,2] => ?
=> ? = 1 + 1
[4,4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [1,5,6,4,8,7,3,2] => ?
=> ? = 2 + 1
[4,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,3,7,6,8,5,4,2] => ?
=> ? = 2 + 1
[7,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,5,7,6,4,3,2,8] => ?
=> ? = 2 + 1
[6,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,6,5,4,7,3,8,2] => ?
=> ? = 1 + 1
[6,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,4,7,6,5,3,8,2] => ?
=> ? = 2 + 1
[5,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [1,5,4,7,6,8,3,2] => ?
=> ? = 2 + 1
[5,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,3,7,6,5,8,4,2] => ?
=> ? = 2 + 1
[4,4,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [1,5,4,6,8,7,3,2] => ?
=> ? = 2 + 1
[4,3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,4,5,7,8,6,3,2] => ?
=> ? = 2 + 1
[3,3,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,2,6,8,7,5,4,3] => ?
=> ? = 2 + 1
[7,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,6,5,4,7,3,2,8] => ?
=> ? = 1 + 1
[6,5,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> [1,6,5,4,3,7,8,2] => ?
=> ? = 1 + 1
[6,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,5,4,7,6,3,8,2] => ?
=> ? = 2 + 1
[6,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,3,7,6,5,4,8,2] => ?
=> ? = 2 + 1
[5,4,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> [1,4,6,5,7,8,3,2] => ?
=> ? = 2 + 1
[5,3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [1,4,5,7,6,8,3,2] => ?
=> ? = 2 + 1
[4,4,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [1,4,5,6,8,7,3,2] => ?
=> ? = 2 + 1
[4,4,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,3,6,5,8,7,4,2] => ?
=> ? = 3 + 1
[7,5,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,6,5,4,3,7,2,8] => ?
=> ? = 1 + 1
[7,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,5,4,7,6,3,2,8] => ?
=> ? = 2 + 1
[7,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,3,7,6,5,4,2,8] => ?
=> ? = 2 + 1
[6,5,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,5,6,4,3,7,8,2] => ?
=> ? = 1 + 1
[6,3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,4,5,7,6,3,8,2] => ?
=> ? = 2 + 1
[6,3,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [1,3,6,7,5,4,8,2] => ?
=> ? = 2 + 1
[5,5,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> [1,5,4,6,3,8,7,2] => ?
=> ? = 2 + 1
[5,4,4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> [1,5,4,3,7,8,6,2] => ?
=> ? = 2 + 1
[5,3,3,2,2,1,1]
=> [1,0,1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [1,3,5,7,6,8,4,2] => ?
=> ? = 3 + 1
[5,3,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,2,6,7,5,8,4,3] => ?
=> ? = 1 + 1
[4,3,3,3,2,1,1]
=> [1,0,1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,3,4,7,8,6,5,2] => ?
=> ? = 2 + 1
[4,3,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,2,5,7,8,6,4,3] => ?
=> ? = 2 + 1
[7,6,5,4,3]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [3,2,1,4,5,6,7,8] => [[[.,.],.],[.,[.,[.,[.,[.,.]]]]]]
=> ? = 0 + 1
[6,6,5,4,3]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [3,2,1,4,5,6,8,7] => [[[.,.],.],[.,[.,[.,[[.,.],.]]]]]
=> ? = 1 + 1
[6,5,5,4,3]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,1,0,0]
=> [3,2,1,4,5,7,8,6] => [[[.,.],.],[.,[.,[[.,.],[.,.]]]]]
=> ? = 1 + 1
[5,4,4,4,3]
=> [1,1,1,0,0,0,1,0,1,1,1,0,1,0,0,0]
=> [3,2,1,4,7,8,6,5] => [[[.,.],.],[.,[[[.,.],.],[.,.]]]]
=> ? = 1 + 1
Description
The hook number of a binary tree.
A hook of a binary tree is a vertex together with is left- and its right-most branch. Then there is a unique decomposition of the tree into hooks and the hook number is the number of hooks in this decomposition.
Matching statistic: St000386
(load all 15 compositions to match this statistic)
(load all 15 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St000386: Dyck paths ⟶ ℤResult quality: 90% ●values known / values provided: 90%●distinct values known / distinct values provided: 100%
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St000386: Dyck paths ⟶ ℤResult quality: 90% ●values known / values provided: 90%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
[2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 0
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 0
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 0
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> 0
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 0
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 0
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> 0
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 0
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 0
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> 0
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 0
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 0
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 0
[7,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 1
[7,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1
[7,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,1,0,0]
=> ? = 2
[3,3,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[7,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 1
[7,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,1,1,0,0,0,0]
=> ? = 1
[7,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,1,0,0]
=> ? = 2
[6,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 1
[5,2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 1
[4,3,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[3,3,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2
[7,5,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 1
[7,4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,1,1,0,0,0,0]
=> ? = 1
[7,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,1,0,0]
=> ? = 2
[7,3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,1,0,0,0]
=> ? = 2
[6,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> ? = 1
[6,2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 1
[5,3,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,1,0,0,0]
=> ? = 1
[4,4,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 2
[4,3,3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 2
[4,3,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2
[3,3,3,3,3,2]
=> [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[3,3,3,3,3,1,1]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2
[3,3,3,3,2,2,1]
=> [1,0,1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
[5,5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
[6,6,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> ? = 2
[7,5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> ? = 1
[6,5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 1
[5,5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 2
[7,4,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> ? = 1
[6,4,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,1,0,0]
=> ? = 1
[5,4,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 1
[4,4,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[6,6,5,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> ? = 2
[6,4,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,1,0,0,0]
=> ? = 1
[5,4,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 1
[6,3,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,1,0,0]
=> ? = 1
[3,3,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[6,5,4,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,1,0,0,0]
=> ? = 2
[6,5,4,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[6,5,4,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 1
[6,5,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,1,1,0,0,0,0]
=> ? = 1
[6,4,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,1,1,0,0,0,0]
=> ? = 1
[5,4,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[6,5,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,1,0,0,0]
=> ? = 1
[7,2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[6,5,5,4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,1,0,0]
=> ? = 2
[4,4,4,4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 2
[6,5,5,4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,1,0,0]
=> ? = 2
[7,6,5,2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,1,0,0,0,0,0]
=> ? = 1
Description
The number of factors DDU in a Dyck path.
Matching statistic: St000201
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00034: Dyck paths —to binary tree: up step, left tree, down step, right tree⟶ Binary trees
St000201: Binary trees ⟶ ℤResult quality: 74% ●values known / values provided: 74%●distinct values known / distinct values provided: 100%
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00034: Dyck paths —to binary tree: up step, left tree, down step, right tree⟶ Binary trees
St000201: Binary trees ⟶ ℤResult quality: 74% ●values known / values provided: 74%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> [.,[.,.]]
=> 1 = 0 + 1
[2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [.,[[.,.],.]]
=> 1 = 0 + 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [[.,.],[.,.]]
=> 2 = 1 + 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [.,[[[.,.],.],.]]
=> 1 = 0 + 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [.,[.,[.,.]]]
=> 1 = 0 + 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[[.,.],.],[.,.]]
=> 2 = 1 + 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [.,[[[[.,.],.],.],.]]
=> 1 = 0 + 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> 1 = 0 + 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[.,.],[[.,.],.]]
=> 2 = 1 + 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[.,[.,.]],[.,.]]
=> 2 = 1 + 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[[[.,.],.],.],[.,.]]
=> 2 = 1 + 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [.,[[[[[.,.],.],.],.],.]]
=> 1 = 0 + 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [.,[[[.,[.,.]],.],.]]
=> 1 = 0 + 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [.,[.,[[.,.],.]]]
=> 1 = 0 + 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [.,[[.,.],[.,.]]]
=> 2 = 1 + 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[.,.],[.,[.,.]]]
=> 2 = 1 + 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[[.,[.,.]],.],[.,.]]
=> 2 = 1 + 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[[[.,.],.],.],.],[.,.]]
=> 2 = 1 + 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [.,[[[[[[.,.],.],.],.],.],.]]
=> 1 = 0 + 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [.,[[[[.,[.,.]],.],.],.]]
=> 1 = 0 + 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> 1 = 0 + 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> 2 = 1 + 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[.,.],[[[.,.],.],.]]
=> 2 = 1 + 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [.,[.,[.,[.,.]]]]
=> 1 = 0 + 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[.,[[.,.],.]],[.,.]]
=> 2 = 1 + 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[[.,.],.],[[.,.],.]]
=> 2 = 1 + 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[[.,.],[.,.]],[.,.]]
=> 3 = 2 + 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [[[[.,[.,.]],.],.],[.,.]]
=> 2 = 1 + 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[[[[[.,.],.],.],.],.],[.,.]]
=> 2 = 1 + 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [.,[[[[[.,[.,.]],.],.],.],.]]
=> 1 = 0 + 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [.,[[[.,[[.,.],.]],.],.]]
=> 1 = 0 + 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [.,[[[[.,.],[.,.]],.],.]]
=> 2 = 1 + 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [.,[.,[[[.,.],.],.]]]
=> 1 = 0 + 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [.,[[.,[.,[.,.]]],.]]
=> 1 = 0 + 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [.,[[[.,.],.],[.,.]]]
=> 2 = 1 + 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[.,.],[[.,[.,.]],.]]
=> 2 = 1 + 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> 2 = 1 + 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[.,[.,[.,.]]],[.,.]]
=> 2 = 1 + 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [[[.,[[.,.],.]],.],[.,.]]
=> 2 = 1 + 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[[.,.],.],[.,[.,.]]]
=> 2 = 1 + 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [[[[.,.],[.,.]],.],[.,.]]
=> 3 = 2 + 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[[[[.,[.,.]],.],.],.],[.,.]]
=> 2 = 1 + 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> 2 = 1 + 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [.,[[[[.,[[.,.],.]],.],.],.]]
=> 1 = 0 + 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [.,[[[[[.,.],[.,.]],.],.],.]]
=> 2 = 1 + 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [.,[[.,[[[.,.],.],.]],.]]
=> 1 = 0 + 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [.,[[[.,[.,[.,.]]],.],.]]
=> 1 = 0 + 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [.,[[[[.,.],.],[.,.]],.]]
=> 2 = 1 + 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [[.,.],[[[[.,.],.],.],.]]
=> 2 = 1 + 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [.,[.,[[.,[.,.]],.]]]
=> 1 = 0 + 1
[5,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[[.,[[[[.,.],.],.],.]],.],[.,.]]
=> ? = 1 + 1
[4,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [[[[.,[[.,[.,.]],.]],.],.],[.,.]]
=> ? = 1 + 1
[3,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> [[[[[.,.],[[.,.],.]],.],.],[.,.]]
=> ? = 2 + 1
[3,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> [[[[[.,[.,.]],[.,.]],.],.],[.,.]]
=> ? = 2 + 1
[6,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[.,[[[[[.,.],.],.],.],.]],[.,.]]
=> ? = 1 + 1
[5,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[[.,[[[.,[.,.]],.],.]],.],[.,.]]
=> ? = 1 + 1
[4,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0]
=> [[[[.,[.,[[.,.],.]]],.],.],[.,.]]
=> ? = 1 + 1
[4,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0,1,0]
=> [[[[.,[[.,.],[.,.]]],.],.],[.,.]]
=> ? = 2 + 1
[3,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0,1,0]
=> [[[[[.,.],[.,[.,.]]],.],.],[.,.]]
=> ? = 2 + 1
[3,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0,1,0]
=> [[[[[.,[.,.]],.],[.,.]],.],[.,.]]
=> ? = 2 + 1
[7,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [.,[[[[[[.,.],.],.],.],.],[.,.]]]
=> ? = 1 + 1
[6,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[.,[[[[.,[.,.]],.],.],.]],[.,.]]
=> ? = 1 + 1
[5,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[[.,[[.,[[.,.],.]],.]],.],[.,.]]
=> ? = 1 + 1
[5,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0,1,0]
=> [[[.,[[[.,.],[.,.]],.]],.],[.,.]]
=> ? = 2 + 1
[4,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0,1,0]
=> [[[[.,.],[[[.,.],.],.]],.],[.,.]]
=> ? = 2 + 1
[4,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0,1,0]
=> [[[[.,[.,[.,[.,.]]]],.],.],[.,.]]
=> ? = 1 + 1
[4,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0,1,0]
=> [[[[.,[[.,.],.]],[.,.]],.],[.,.]]
=> ? = 2 + 1
[3,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0,1,0]
=> [[[[[.,.],.],[[.,.],.]],.],[.,.]]
=> ? = 2 + 1
[3,3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0,1,0]
=> [[[[[.,.],[.,.]],[.,.]],.],[.,.]]
=> ? = 3 + 1
[3,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,1,0,0]
=> [[[[[.,[.,.]],.],.],.],[[.,.],.]]
=> ? = 1 + 1
[3,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0,1,0]
=> [[[[[.,[.,.]],.],.],[.,.]],[.,.]]
=> ? = 2 + 1
[2,2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [[[[[[.,.],.],.],.],.],[.,[.,.]]]
=> ? = 1 + 1
[7,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [.,[[[[[.,[.,.]],.],.],.],[.,.]]]
=> ? = 1 + 1
[6,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[.,[[[.,[[.,.],.]],.],.]],[.,.]]
=> ? = 1 + 1
[6,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [[.,[[[[.,.],[.,.]],.],.]],[.,.]]
=> ? = 2 + 1
[5,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0,1,0]
=> [[[.,[.,[[[.,.],.],.]]],.],[.,.]]
=> ? = 1 + 1
[5,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0,1,0]
=> [[[.,[[.,[.,[.,.]]],.]],.],[.,.]]
=> ? = 1 + 1
[5,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0,1,0]
=> [[[.,[[[.,.],.],[.,.]]],.],[.,.]]
=> ? = 2 + 1
[4,4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0,1,0]
=> [[[[.,.],[[.,[.,.]],.]],.],[.,.]]
=> ? = 2 + 1
[4,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,1,0,0,0,0,1,0]
=> [[[[.,[.,.]],[[.,.],.]],.],[.,.]]
=> ? = 2 + 1
[4,3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0,1,0]
=> [[[[.,[.,[.,.]]],[.,.]],.],[.,.]]
=> ? = 2 + 1
[4,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0,1,0]
=> [[[[.,[[.,.],.]],.],[.,.]],[.,.]]
=> ? = 2 + 1
[3,3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0,1,0]
=> [[[[[.,.],.],[.,[.,.]]],.],[.,.]]
=> ? = 2 + 1
[3,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,1,0,0]
=> [[[[[.,.],[.,.]],.],.],[[.,.],.]]
=> ? = 2 + 1
[3,3,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0,1,0]
=> [[[[[.,.],[.,.]],.],[.,.]],[.,.]]
=> ? = 3 + 1
[3,2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0,1,0]
=> [[[[[.,[.,.]],.],.],.],[.,[.,.]]]
=> ? = 1 + 1
[7,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [.,[[[[.,[[.,.],.]],.],.],[.,.]]]
=> ? = 1 + 1
[7,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [.,[[[[[.,.],[.,.]],.],.],[.,.]]]
=> ? = 2 + 1
[6,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [[.,[[.,[[[.,.],.],.]],.]],[.,.]]
=> ? = 1 + 1
[6,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [[.,[[[.,[.,[.,.]]],.],.]],[.,.]]
=> ? = 1 + 1
[6,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [[.,[[[[.,.],.],[.,.]],.]],[.,.]]
=> ? = 2 + 1
[5,5,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0,1,0]
=> [[[.,.],[[[[.,.],.],.],.]],[.,.]]
=> ? = 2 + 1
[5,4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0,1,0]
=> [[[.,[.,[[.,[.,.]],.]]],.],[.,.]]
=> ? = 1 + 1
[5,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,0,1,0]
=> [[[.,[[.,.],[[.,.],.]]],.],[.,.]]
=> ? = 2 + 1
[5,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,1,0,0]
=> [[[.,[[[.,.],.],.]],.],[[.,.],.]]
=> ? = 1 + 1
[5,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0,1,0]
=> [[[.,[[[.,.],.],.]],[.,.]],[.,.]]
=> ? = 2 + 1
[4,4,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0,1,0]
=> [[[[.,.],[.,[[.,.],.]]],.],[.,.]]
=> ? = 2 + 1
[4,4,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0,1,0]
=> [[[[.,.],[[.,.],[.,.]]],.],[.,.]]
=> ? = 3 + 1
[4,3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0,1,0]
=> [[[[.,[.,.]],[.,[.,.]]],.],[.,.]]
=> ? = 2 + 1
[4,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,1,0,0]
=> [[[[.,[.,[.,.]]],.],.],[[.,.],.]]
=> ? = 1 + 1
Description
The number of leaf nodes in a binary tree.
Equivalently, the number of cherries [1] in the complete binary tree.
The number of binary trees of size $n$, at least $1$, with exactly one leaf node for is $2^{n-1}$, see [2].
The number of binary tree of size $n$, at least $3$, with exactly two leaf nodes is $n(n+1)2^{n-2}$, see [3].
Matching statistic: St000068
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St000068: Posets ⟶ ℤResult quality: 69% ●values known / values provided: 69%●distinct values known / distinct values provided: 100%
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St000068: Posets ⟶ ℤResult quality: 69% ●values known / values provided: 69%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [[.,.],.]
=> ([(0,1)],2)
=> 1 = 0 + 1
[2]
=> [1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1]
=> [1,0,1,1,0,0]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,1]
=> [1,0,1,0,1,0]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> 2 = 1 + 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 2 = 1 + 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2 = 1 + 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 3 = 2 + 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 2 = 1 + 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> 2 = 1 + 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[[.,.],.]]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [[.,[.,[[.,.],[.,.]]]],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> 2 = 1 + 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 1 + 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 2 = 1 + 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [[.,.],[.,[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 3 = 2 + 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[[.,.],.]]]]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> 2 = 1 + 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [[.,[.,[.,[[.,[.,.]],.]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[[.,.],[.,.]]]]],.]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> 2 = 1 + 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [[.,[[.,[.,[.,.]]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [[.,[.,[[[.,.],.],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [[.,[[.,.],[.,[.,.]]]],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> 2 = 1 + 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 2 = 1 + 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 1 + 1
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ? = 2 + 1
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ? = 2 + 1
[5,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[.,[.,[.,.]]]],.]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[4,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[.,[[.,.],.]],.]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[3,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [[.,.],[.,[.,[[.,[.,.]],[.,.]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ? = 2 + 1
[3,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [[.,.],[.,[.,[[.,.],[[.,.],.]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ? = 2 + 1
[2,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [[.,.],[.,[[.,.],[.,[.,[.,.]]]]]]
=> ([(0,7),(1,6),(2,3),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 2 + 1
[6,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [[.,.],[[.,[.,[.,[.,[.,.]]]]],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[5,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[.,[[.,.],.]]],.]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[4,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[[.,[.,.]],.],.]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[4,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[[.,.],[.,.]],.]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ? = 2 + 1
[3,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [[.,.],[.,[.,[[[.,.],.],[.,.]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ? = 2 + 1
[3,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [[.,.],[.,[[.,.],[.,[[.,.],.]]]]]
=> ([(0,7),(1,6),(2,3),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 2 + 1
[2,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[.,[.,.]],[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ? = 1 + 1
[2,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [[.,.],[[.,.],[.,[.,[.,[.,.]]]]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ? = 2 + 1
[7,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[.,[.,[.,.]]]]]],.]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ? = 1 + 1
[6,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [[.,.],[[.,[.,[.,[[.,.],.]]]],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[5,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[[.,[.,.]],.]],.]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[5,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[[.,.],[.,.]]],.]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ? = 2 + 1
[4,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [[.,.],[.,[[.,[.,[.,.]]],[.,.]]]]
=> ([(0,7),(1,6),(2,3),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 2 + 1
[4,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[[[.,.],.],.],.]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[4,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [[.,.],[.,[[.,.],[[.,[.,.]],.]]]]
=> ([(0,7),(1,6),(2,3),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 2 + 1
[3,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [[.,.],[.,[[.,[.,.]],[.,[.,.]]]]]
=> ([(0,6),(1,4),(2,3),(3,7),(4,7),(5,6),(7,5)],8)
=> ? = 2 + 1
[3,3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [[.,.],[.,[[.,.],[[.,.],[.,.]]]]]
=> ([(0,6),(1,7),(2,5),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 3 + 1
[3,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[.,[.,.]],[.,[.,[.,[[.,.],.]]]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ? = 1 + 1
[3,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [[.,.],[[.,.],[.,[.,[[.,.],.]]]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ? = 2 + 1
[2,2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[.,.],.],[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ? = 1 + 1
[7,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[.,[[.,.],.]]]]],.]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ? = 1 + 1
[6,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [[.,.],[[.,[.,[[.,[.,.]],.]]],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[6,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [[.,.],[[.,[.,[[.,.],[.,.]]]],.]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ? = 2 + 1
[5,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [[.,.],[.,[[[.,[.,[.,.]]],.],.]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[5,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[[[.,.],.],.]],.]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[5,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [[.,.],[.,[[[.,.],[.,[.,.]]],.]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ? = 2 + 1
[4,4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [[.,.],[.,[[.,[[.,.],.]],[.,.]]]]
=> ([(0,7),(1,6),(2,3),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 2 + 1
[4,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [[.,.],[.,[[.,[.,.]],[[.,.],.]]]]
=> ([(0,6),(1,4),(2,3),(3,7),(4,7),(5,6),(7,5)],8)
=> ? = 2 + 1
[4,3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [[.,.],[.,[[.,.],[[[.,.],.],.]]]]
=> ([(0,7),(1,6),(2,3),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 2 + 1
[4,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [[.,[.,.]],[.,[.,[[.,[.,.]],.]]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ? = 1 + 1
[4,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [[.,.],[[.,.],[.,[[.,[.,.]],.]]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ? = 2 + 1
[3,3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [[.,.],[.,[[[.,.],.],[.,[.,.]]]]]
=> ([(0,6),(1,4),(2,3),(3,7),(4,7),(5,6),(7,5)],8)
=> ? = 2 + 1
[3,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [[.,[.,.]],[.,[.,[[.,.],[.,.]]]]]
=> ([(0,6),(1,6),(2,3),(3,7),(4,5),(5,7),(6,4)],8)
=> ? = 2 + 1
[3,3,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [[.,.],[[.,.],[.,[[.,.],[.,.]]]]]
=> ([(0,6),(1,6),(2,7),(3,5),(4,7),(6,4),(7,5)],8)
=> ? = 3 + 1
[3,2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[[.,.],.],[.,[.,[.,[[.,.],.]]]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ? = 1 + 1
[7,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[[.,[.,.]],.]]]],.]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ? = 1 + 1
[7,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[[.,.],[.,.]]]]],.]
=> ([(0,6),(1,6),(2,7),(4,5),(5,7),(6,4),(7,3)],8)
=> ? = 2 + 1
[6,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [[.,.],[[.,[[.,[.,[.,.]]],.]],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
Description
The number of minimal elements in a poset.
Matching statistic: St000071
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St000071: Posets ⟶ ℤResult quality: 69% ●values known / values provided: 69%●distinct values known / distinct values provided: 100%
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St000071: Posets ⟶ ℤResult quality: 69% ●values known / values provided: 69%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [[.,.],.]
=> ([(0,1)],2)
=> 1 = 0 + 1
[2]
=> [1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1]
=> [1,0,1,1,0,0]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,1]
=> [1,0,1,0,1,0]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> 2 = 1 + 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 2 = 1 + 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2 = 1 + 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 3 = 2 + 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 2 = 1 + 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> 2 = 1 + 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[[.,.],.]]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [[.,[.,[[.,.],[.,.]]]],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> 2 = 1 + 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 1 + 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 2 = 1 + 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [[.,.],[.,[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 3 = 2 + 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[[.,.],.]]]]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> 2 = 1 + 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [[.,[.,[.,[[.,[.,.]],.]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[[.,.],[.,.]]]]],.]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> 2 = 1 + 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [[.,[[.,[.,[.,.]]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [[.,[.,[[[.,.],.],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [[.,[[.,.],[.,[.,.]]]],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> 2 = 1 + 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 2 = 1 + 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 1 + 1
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ? = 2 + 1
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ? = 2 + 1
[5,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[.,[.,[.,.]]]],.]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[4,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[.,[[.,.],.]],.]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[3,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [[.,.],[.,[.,[[.,[.,.]],[.,.]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ? = 2 + 1
[3,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [[.,.],[.,[.,[[.,.],[[.,.],.]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ? = 2 + 1
[2,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [[.,.],[.,[[.,.],[.,[.,[.,.]]]]]]
=> ([(0,7),(1,6),(2,3),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 2 + 1
[6,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [[.,.],[[.,[.,[.,[.,[.,.]]]]],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[5,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[.,[[.,.],.]]],.]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[4,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[[.,[.,.]],.],.]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[4,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[[.,.],[.,.]],.]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ? = 2 + 1
[3,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [[.,.],[.,[.,[[[.,.],.],[.,.]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ? = 2 + 1
[3,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [[.,.],[.,[[.,.],[.,[[.,.],.]]]]]
=> ([(0,7),(1,6),(2,3),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 2 + 1
[2,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[.,[.,.]],[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ? = 1 + 1
[2,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [[.,.],[[.,.],[.,[.,[.,[.,.]]]]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ? = 2 + 1
[7,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[.,[.,[.,.]]]]]],.]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ? = 1 + 1
[6,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [[.,.],[[.,[.,[.,[[.,.],.]]]],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[5,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[[.,[.,.]],.]],.]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[5,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[[.,.],[.,.]]],.]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ? = 2 + 1
[4,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [[.,.],[.,[[.,[.,[.,.]]],[.,.]]]]
=> ([(0,7),(1,6),(2,3),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 2 + 1
[4,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[[[.,.],.],.],.]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[4,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [[.,.],[.,[[.,.],[[.,[.,.]],.]]]]
=> ([(0,7),(1,6),(2,3),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 2 + 1
[3,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [[.,.],[.,[[.,[.,.]],[.,[.,.]]]]]
=> ([(0,6),(1,4),(2,3),(3,7),(4,7),(5,6),(7,5)],8)
=> ? = 2 + 1
[3,3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [[.,.],[.,[[.,.],[[.,.],[.,.]]]]]
=> ([(0,6),(1,7),(2,5),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 3 + 1
[3,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[.,[.,.]],[.,[.,[.,[[.,.],.]]]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ? = 1 + 1
[3,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [[.,.],[[.,.],[.,[.,[[.,.],.]]]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ? = 2 + 1
[2,2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[.,.],.],[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ? = 1 + 1
[7,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[.,[[.,.],.]]]]],.]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ? = 1 + 1
[6,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [[.,.],[[.,[.,[[.,[.,.]],.]]],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[6,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [[.,.],[[.,[.,[[.,.],[.,.]]]],.]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ? = 2 + 1
[5,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [[.,.],[.,[[[.,[.,[.,.]]],.],.]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[5,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[[[.,.],.],.]],.]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[5,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [[.,.],[.,[[[.,.],[.,[.,.]]],.]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ? = 2 + 1
[4,4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [[.,.],[.,[[.,[[.,.],.]],[.,.]]]]
=> ([(0,7),(1,6),(2,3),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 2 + 1
[4,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [[.,.],[.,[[.,[.,.]],[[.,.],.]]]]
=> ([(0,6),(1,4),(2,3),(3,7),(4,7),(5,6),(7,5)],8)
=> ? = 2 + 1
[4,3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [[.,.],[.,[[.,.],[[[.,.],.],.]]]]
=> ([(0,7),(1,6),(2,3),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 2 + 1
[4,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [[.,[.,.]],[.,[.,[[.,[.,.]],.]]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ? = 1 + 1
[4,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [[.,.],[[.,.],[.,[[.,[.,.]],.]]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ? = 2 + 1
[3,3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [[.,.],[.,[[[.,.],.],[.,[.,.]]]]]
=> ([(0,6),(1,4),(2,3),(3,7),(4,7),(5,6),(7,5)],8)
=> ? = 2 + 1
[3,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [[.,[.,.]],[.,[.,[[.,.],[.,.]]]]]
=> ([(0,6),(1,6),(2,3),(3,7),(4,5),(5,7),(6,4)],8)
=> ? = 2 + 1
[3,3,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [[.,.],[[.,.],[.,[[.,.],[.,.]]]]]
=> ([(0,6),(1,6),(2,7),(3,5),(4,7),(6,4),(7,5)],8)
=> ? = 3 + 1
[3,2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[[.,.],.],[.,[.,[.,[[.,.],.]]]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ? = 1 + 1
[7,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[[.,[.,.]],.]]]],.]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ? = 1 + 1
[7,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[[.,.],[.,.]]]]],.]
=> ([(0,6),(1,6),(2,7),(4,5),(5,7),(6,4),(7,3)],8)
=> ? = 2 + 1
[6,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [[.,.],[[.,[[.,[.,[.,.]]],.]],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
Description
The number of maximal chains in a poset.
Matching statistic: St000527
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St000527: Posets ⟶ ℤResult quality: 68% ●values known / values provided: 68%●distinct values known / distinct values provided: 100%
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St000527: Posets ⟶ ℤResult quality: 68% ●values known / values provided: 68%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [[.,.],.]
=> ([(0,1)],2)
=> 1 = 0 + 1
[2]
=> [1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1]
=> [1,0,1,1,0,0]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,1]
=> [1,0,1,0,1,0]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> 2 = 1 + 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 2 = 1 + 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2 = 1 + 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 3 = 2 + 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 2 = 1 + 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> 2 = 1 + 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[[.,.],.]]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [[.,[.,[[.,.],[.,.]]]],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> 2 = 1 + 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 1 + 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 2 = 1 + 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [[.,.],[.,[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 3 = 2 + 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[[.,.],.]]]]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> 2 = 1 + 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [[.,[.,[.,[[.,[.,.]],.]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[[.,.],[.,.]]]]],.]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> 2 = 1 + 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [[.,[[.,[.,[.,.]]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [[.,[.,[[[.,.],.],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [[.,[[.,.],[.,[.,.]]]],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> 2 = 1 + 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 2 = 1 + 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 1 + 1
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ? = 2 + 1
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ? = 2 + 1
[5,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[.,[.,[.,.]]]],.]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[4,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[.,[[.,.],.]],.]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[3,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [[.,.],[.,[.,[[.,[.,.]],[.,.]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ? = 2 + 1
[3,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [[.,.],[.,[.,[[.,.],[[.,.],.]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ? = 2 + 1
[2,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [[.,.],[.,[[.,.],[.,[.,[.,.]]]]]]
=> ([(0,7),(1,6),(2,3),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 2 + 1
[6,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [[.,.],[[.,[.,[.,[.,[.,.]]]]],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[5,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[.,[[.,.],.]]],.]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[4,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[[.,[.,.]],.],.]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[4,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[[.,.],[.,.]],.]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ? = 2 + 1
[3,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [[.,.],[.,[.,[[[.,.],.],[.,.]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ? = 2 + 1
[3,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [[.,.],[.,[[.,.],[.,[[.,.],.]]]]]
=> ([(0,7),(1,6),(2,3),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 2 + 1
[2,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[.,[.,.]],[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ? = 1 + 1
[2,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [[.,.],[[.,.],[.,[.,[.,[.,.]]]]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ? = 2 + 1
[7,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[.,[.,[.,.]]]]]],.]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ? = 1 + 1
[6,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [[.,.],[[.,[.,[.,[[.,.],.]]]],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[5,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[[.,[.,.]],.]],.]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[5,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[[.,.],[.,.]]],.]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ? = 2 + 1
[4,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [[.,.],[.,[[.,[.,[.,.]]],[.,.]]]]
=> ([(0,7),(1,6),(2,3),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 2 + 1
[4,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[[[.,.],.],.],.]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[4,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [[.,.],[.,[[.,.],[[.,[.,.]],.]]]]
=> ([(0,7),(1,6),(2,3),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 2 + 1
[3,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [[.,.],[.,[[.,[.,.]],[.,[.,.]]]]]
=> ([(0,6),(1,4),(2,3),(3,7),(4,7),(5,6),(7,5)],8)
=> ? = 2 + 1
[3,3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [[.,.],[.,[[.,.],[[.,.],[.,.]]]]]
=> ([(0,6),(1,7),(2,5),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 3 + 1
[3,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[.,[.,.]],[.,[.,[.,[[.,.],.]]]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ? = 1 + 1
[3,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [[.,.],[[.,.],[.,[.,[[.,.],.]]]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ? = 2 + 1
[2,2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[.,.],.],[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ? = 1 + 1
[7,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[.,[[.,.],.]]]]],.]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ? = 1 + 1
[6,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [[.,.],[[.,[.,[[.,[.,.]],.]]],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[6,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [[.,.],[[.,[.,[[.,.],[.,.]]]],.]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ? = 2 + 1
[5,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [[.,.],[.,[[[.,[.,[.,.]]],.],.]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[5,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[[[.,.],.],.]],.]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
[5,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [[.,.],[.,[[[.,.],[.,[.,.]]],.]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ? = 2 + 1
[4,4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [[.,.],[.,[[.,[[.,.],.]],[.,.]]]]
=> ([(0,7),(1,6),(2,3),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 2 + 1
[4,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [[.,.],[.,[[.,[.,.]],[[.,.],.]]]]
=> ([(0,6),(1,4),(2,3),(3,7),(4,7),(5,6),(7,5)],8)
=> ? = 2 + 1
[4,3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [[.,.],[.,[[.,.],[[[.,.],.],.]]]]
=> ([(0,7),(1,6),(2,3),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 2 + 1
[4,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [[.,[.,.]],[.,[.,[[.,[.,.]],.]]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ? = 1 + 1
[4,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [[.,.],[[.,.],[.,[[.,[.,.]],.]]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ? = 2 + 1
[3,3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [[.,.],[.,[[[.,.],.],[.,[.,.]]]]]
=> ([(0,6),(1,4),(2,3),(3,7),(4,7),(5,6),(7,5)],8)
=> ? = 2 + 1
[3,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [[.,[.,.]],[.,[.,[[.,.],[.,.]]]]]
=> ([(0,6),(1,6),(2,3),(3,7),(4,5),(5,7),(6,4)],8)
=> ? = 2 + 1
[3,3,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [[.,.],[[.,.],[.,[[.,.],[.,.]]]]]
=> ([(0,6),(1,6),(2,7),(3,5),(4,7),(6,4),(7,5)],8)
=> ? = 3 + 1
[3,2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[[.,.],.],[.,[.,[.,[[.,.],.]]]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ? = 1 + 1
[7,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[[.,[.,.]],.]]]],.]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ? = 1 + 1
[7,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[[.,.],[.,.]]]]],.]
=> ([(0,6),(1,6),(2,7),(4,5),(5,7),(6,4),(7,3)],8)
=> ? = 2 + 1
[6,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [[.,.],[[.,[[.,[.,[.,.]]],.]],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1 + 1
Description
The width of the poset.
This is the size of the poset's longest antichain, also called Dilworth number.
Matching statistic: St000196
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
St000196: Binary trees ⟶ ℤResult quality: 68% ●values known / values provided: 68%●distinct values known / distinct values provided: 100%
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
St000196: Binary trees ⟶ ℤResult quality: 68% ●values known / values provided: 68%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [[.,.],.]
=> 0
[2]
=> [1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> 0
[1,1]
=> [1,0,1,1,0,0]
=> [[.,.],[.,.]]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [[.,[.,[.,.]]],.]
=> 0
[2,1]
=> [1,0,1,0,1,0]
=> [[[.,.],.],.]
=> 0
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [[.,.],[.,[.,.]]]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> 0
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [[.,[[.,.],.]],.]
=> 0
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [[.,[.,.]],[.,.]]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[.,.],[.,[.,[.,.]]]]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 0
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> 0
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [[[.,[.,.]],.],.]
=> 0
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[[.,.],[.,.]],.]
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[[.,.],.],[.,.]]
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> 0
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [[.,[.,[.,[[.,.],.]]]],.]
=> 0
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[.,[[.,[.,.]],.]],.]
=> 0
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[.,[[.,.],[.,.]]],.]
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[.,[.,[.,.]]],[.,.]]
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[[[.,.],.],.],.]
=> 0
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[.,.],[[.,[.,.]],.]]
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[.,[.,.]],[.,[.,.]]]
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[.,.],[[.,.],[.,.]]]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[.,.],.]]]]
=> 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,[.,.]]]]]]
=> 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[[.,.],.]]]]],.]
=> 0
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [[.,[.,[[.,[.,.]],.]]],.]
=> 0
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [[.,[.,[[.,.],[.,.]]]],.]
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[[.,[.,[.,.]]],.],.]
=> 0
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[.,[[[.,.],.],.]],.]
=> 0
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[[.,.],[.,[.,.]]],.]
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[.,[[.,.],.]],[.,.]]
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[.,.],[[[.,.],.],.]]
=> 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[.,.]],.]]]
=> 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[[.,.],.],[.,[.,.]]]
=> 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [[.,.],[.,[[.,.],[.,.]]]]
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[[.,.],.]]]]]
=> 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ? = 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [[.,[.,[.,[[.,[.,.]],.]]]],.]
=> 0
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[[.,.],[.,.]]]]],.]
=> 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [[.,[[.,[.,[.,.]]],.]],.]
=> 0
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [[.,[.,[[[.,.],.],.]]],.]
=> 0
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [[.,[[.,.],[.,[.,.]]]],.]
=> 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[[.,[[.,.],.]],.],.]
=> 0
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[[.,[.,.]],[.,.]],.]
=> 1
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> ? = 1
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> ? = 1
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> ? = 2
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> ? = 1
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> ? = 1
[2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> ? = 2
[5,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[.,[.,[.,.]]]],.]]]
=> ? = 1
[4,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[.,[[.,.],.]],.]]]]
=> ? = 1
[3,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [[.,.],[.,[.,[[.,[.,.]],[.,.]]]]]
=> ? = 2
[3,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [[.,.],[.,[.,[[.,.],[[.,.],.]]]]]
=> ? = 2
[2,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [[.,.],[.,[[.,.],[.,[.,[.,.]]]]]]
=> ? = 2
[6,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [[.,.],[[.,[.,[.,[.,[.,.]]]]],.]]
=> ? = 1
[5,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[.,[[.,.],.]]],.]]]
=> ? = 1
[4,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[[.,[.,.]],.],.]]]]
=> ? = 1
[4,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[[.,.],[.,.]],.]]]]
=> ? = 2
[3,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [[.,.],[.,[.,[[[.,.],.],[.,.]]]]]
=> ? = 2
[3,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [[.,.],[.,[[.,.],[.,[[.,.],.]]]]]
=> ? = 2
[2,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[.,[.,.]],[.,[.,[.,[.,[.,.]]]]]]
=> ? = 1
[2,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [[.,.],[[.,.],[.,[.,[.,[.,.]]]]]]
=> ? = 2
[7,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[.,[.,[.,.]]]]]],.]
=> ? = 1
[6,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [[.,.],[[.,[.,[.,[[.,.],.]]]],.]]
=> ? = 1
[5,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[[.,[.,.]],.]],.]]]
=> ? = 1
[5,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[[.,.],[.,.]]],.]]]
=> ? = 2
[4,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [[.,.],[.,[[.,[.,[.,.]]],[.,.]]]]
=> ? = 2
[4,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[[[.,.],.],.],.]]]]
=> ? = 1
[4,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [[.,.],[.,[[.,.],[[.,[.,.]],.]]]]
=> ? = 2
[3,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [[.,.],[.,[[.,[.,.]],[.,[.,.]]]]]
=> ? = 2
[3,3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [[.,.],[.,[[.,.],[[.,.],[.,.]]]]]
=> ? = 3
[3,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[.,[.,.]],[.,[.,[.,[[.,.],.]]]]]
=> ? = 1
[3,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [[.,.],[[.,.],[.,[.,[[.,.],.]]]]]
=> ? = 2
[2,2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[.,.],.],[.,[.,[.,[.,[.,.]]]]]]
=> ? = 1
[7,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[.,[[.,.],.]]]]],.]
=> ? = 1
[6,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [[.,.],[[.,[.,[[.,[.,.]],.]]],.]]
=> ? = 1
[6,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [[.,.],[[.,[.,[[.,.],[.,.]]]],.]]
=> ? = 2
[5,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [[.,.],[.,[[[.,[.,[.,.]]],.],.]]]
=> ? = 1
[5,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[[[.,.],.],.]],.]]]
=> ? = 1
[5,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [[.,.],[.,[[[.,.],[.,[.,.]]],.]]]
=> ? = 2
[4,4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [[.,.],[.,[[.,[[.,.],.]],[.,.]]]]
=> ? = 2
[4,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [[.,.],[.,[[.,[.,.]],[[.,.],.]]]]
=> ? = 2
[4,3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [[.,.],[.,[[.,.],[[[.,.],.],.]]]]
=> ? = 2
[4,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [[.,[.,.]],[.,[.,[[.,[.,.]],.]]]]
=> ? = 1
[4,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [[.,.],[[.,.],[.,[[.,[.,.]],.]]]]
=> ? = 2
[3,3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [[.,.],[.,[[[.,.],.],[.,[.,.]]]]]
=> ? = 2
[3,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [[.,[.,.]],[.,[.,[[.,.],[.,.]]]]]
=> ? = 2
[3,3,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [[.,.],[[.,.],[.,[[.,.],[.,.]]]]]
=> ? = 3
[3,2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[[.,.],.],[.,[.,[.,[[.,.],.]]]]]
=> ? = 1
[7,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[[.,[.,.]],.]]]],.]
=> ? = 1
[7,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[[.,.],[.,.]]]]],.]
=> ? = 2
[6,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [[.,.],[[.,[[.,[.,[.,.]]],.]],.]]
=> ? = 1
Description
The number of occurrences of the contiguous pattern {{{[[.,.],[.,.]]}}} in a binary tree.
Equivalently, this is the number of branches in the tree, i.e. the number of nodes with two children. Binary trees avoiding this pattern are counted by $2^{n-2}$.
Matching statistic: St000632
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St000632: Posets ⟶ ℤResult quality: 68% ●values known / values provided: 68%●distinct values known / distinct values provided: 100%
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St000632: Posets ⟶ ℤResult quality: 68% ●values known / values provided: 68%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [[.,.],.]
=> ([(0,1)],2)
=> 0
[2]
=> [1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 0
[1,1]
=> [1,0,1,1,0,0]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[2,1]
=> [1,0,1,0,1,0]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 0
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[[.,.],.]]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [[.,[.,[[.,.],[.,.]]]],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [[.,.],[.,[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[[.,.],.]]]]]
=> ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [[.,[.,[.,[[.,[.,.]],.]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[[.,.],[.,.]]]]],.]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [[.,[[.,[.,[.,.]]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [[.,[.,[[[.,.],.],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [[.,[[.,.],[.,[.,.]]]],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 1
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ? = 2
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1
[2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ? = 2
[5,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[.,[.,[.,.]]]],.]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1
[4,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[.,[[.,.],.]],.]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1
[3,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [[.,.],[.,[.,[[.,[.,.]],[.,.]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ? = 2
[3,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [[.,.],[.,[.,[[.,.],[[.,.],.]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ? = 2
[2,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [[.,.],[.,[[.,.],[.,[.,[.,.]]]]]]
=> ([(0,7),(1,6),(2,3),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 2
[6,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [[.,.],[[.,[.,[.,[.,[.,.]]]]],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1
[5,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[.,[[.,.],.]]],.]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1
[4,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[[.,[.,.]],.],.]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1
[4,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[[.,.],[.,.]],.]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ? = 2
[3,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [[.,.],[.,[.,[[[.,.],.],[.,.]]]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ? = 2
[3,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [[.,.],[.,[[.,.],[.,[[.,.],.]]]]]
=> ([(0,7),(1,6),(2,3),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 2
[2,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[.,[.,.]],[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ? = 1
[2,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [[.,.],[[.,.],[.,[.,[.,[.,.]]]]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ? = 2
[7,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[.,[.,[.,.]]]]]],.]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ? = 1
[6,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [[.,.],[[.,[.,[.,[[.,.],.]]]],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1
[5,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[[.,[.,.]],.]],.]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1
[5,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[[.,.],[.,.]]],.]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ? = 2
[4,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [[.,.],[.,[[.,[.,[.,.]]],[.,.]]]]
=> ([(0,7),(1,6),(2,3),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 2
[4,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [[.,.],[.,[.,[[[[.,.],.],.],.]]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1
[4,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [[.,.],[.,[[.,.],[[.,[.,.]],.]]]]
=> ([(0,7),(1,6),(2,3),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 2
[3,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [[.,.],[.,[[.,[.,.]],[.,[.,.]]]]]
=> ([(0,6),(1,4),(2,3),(3,7),(4,7),(5,6),(7,5)],8)
=> ? = 2
[3,3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [[.,.],[.,[[.,.],[[.,.],[.,.]]]]]
=> ([(0,6),(1,7),(2,5),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 3
[3,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[.,[.,.]],[.,[.,[.,[[.,.],.]]]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ? = 1
[3,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [[.,.],[[.,.],[.,[.,[[.,.],.]]]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ? = 2
[2,2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[.,.],.],[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ? = 1
[7,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[.,[[.,.],.]]]]],.]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ? = 1
[6,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [[.,.],[[.,[.,[[.,[.,.]],.]]],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1
[6,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [[.,.],[[.,[.,[[.,.],[.,.]]]],.]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,7),(5,4),(6,3)],8)
=> ? = 2
[5,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [[.,.],[.,[[[.,[.,[.,.]]],.],.]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1
[5,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [[.,.],[.,[[.,[[[.,.],.],.]],.]]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1
[5,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [[.,.],[.,[[[.,.],[.,[.,.]]],.]]]
=> ([(0,7),(1,6),(2,3),(3,7),(4,5),(5,6),(7,4)],8)
=> ? = 2
[4,4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [[.,.],[.,[[.,[[.,.],.]],[.,.]]]]
=> ([(0,7),(1,6),(2,3),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 2
[4,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [[.,.],[.,[[.,[.,.]],[[.,.],.]]]]
=> ([(0,6),(1,4),(2,3),(3,7),(4,7),(5,6),(7,5)],8)
=> ? = 2
[4,3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [[.,.],[.,[[.,.],[[[.,.],.],.]]]]
=> ([(0,7),(1,6),(2,3),(3,5),(4,7),(5,6),(6,4)],8)
=> ? = 2
[4,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [[.,[.,.]],[.,[.,[[.,[.,.]],.]]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ? = 1
[4,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [[.,.],[[.,.],[.,[[.,[.,.]],.]]]]
=> ([(0,7),(1,3),(2,6),(3,5),(4,7),(5,4),(7,6)],8)
=> ? = 2
[3,3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [[.,.],[.,[[[.,.],.],[.,[.,.]]]]]
=> ([(0,6),(1,4),(2,3),(3,7),(4,7),(5,6),(7,5)],8)
=> ? = 2
[3,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [[.,[.,.]],[.,[.,[[.,.],[.,.]]]]]
=> ([(0,6),(1,6),(2,3),(3,7),(4,5),(5,7),(6,4)],8)
=> ? = 2
[3,3,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [[.,.],[[.,.],[.,[[.,.],[.,.]]]]]
=> ([(0,6),(1,6),(2,7),(3,5),(4,7),(6,4),(7,5)],8)
=> ? = 3
[3,2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[[.,.],.],[.,[.,[.,[[.,.],.]]]]]
=> ([(0,6),(1,3),(2,7),(3,7),(4,5),(5,2),(6,4)],8)
=> ? = 1
[7,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[[.,[.,.]],.]]]],.]
=> ([(0,7),(1,6),(2,7),(4,5),(5,2),(6,4),(7,3)],8)
=> ? = 1
[7,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[[.,.],[.,.]]]]],.]
=> ([(0,6),(1,6),(2,7),(4,5),(5,7),(6,4),(7,3)],8)
=> ? = 2
[6,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [[.,.],[[.,[[.,[.,[.,.]]],.]],.]]
=> ([(0,7),(1,6),(2,7),(3,5),(4,3),(5,2),(6,4)],8)
=> ? = 1
Description
The jump number of the poset.
A jump in a linear extension $e_1, \dots, e_n$ of a poset $P$ is a pair $(e_i, e_{i+1})$ so that $e_{i+1}$ does not cover $e_i$ in $P$. The jump number of a poset is the minimal number of jumps in linear extensions of a poset.
The following 28 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001840The number of descents of a set partition. St000257The number of distinct parts of a partition that occur at least twice. St001092The number of distinct even parts of a partition. St000659The number of rises of length at least 2 of a Dyck path. St000647The number of big descents of a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St000353The number of inner valleys of a permutation. St000779The tier of a permutation. St000256The number of parts from which one can substract 2 and still get an integer partition. St000360The number of occurrences of the pattern 32-1. St000646The number of big ascents of a permutation. St000023The number of inner peaks of a permutation. St000099The number of valleys of a permutation, including the boundary. St000523The number of 2-protected nodes of a rooted tree. St000092The number of outer peaks of a permutation. St000919The number of maximal left branches of a binary tree. St000665The number of rafts of a permutation. St000834The number of right outer peaks of a permutation. St001729The number of visible descents of a permutation. St000252The number of nodes of degree 3 of a binary tree. St001960The number of descents of a permutation minus one if its first entry is not one. St000243The number of cyclic valleys and cyclic peaks of a permutation. St000354The number of recoils of a permutation. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001022Number of simple modules with projective dimension 3 in the Nakayama algebra corresponding to the Dyck path. St001487The number of inner corners of a skew partition.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!