searching the database
Your data matches 178 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001036
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00307: Posets —promotion cycle type⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St001036: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St001036: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([],2)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,1)],2)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([],3)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
([(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
([(0,1),(0,2)],3)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,2),(2,1)],3)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([(0,2),(1,2)],3)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(2,3)],4)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
([(0,2),(0,3),(3,1)],4)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(1,2),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(0,3),(3,1),(3,2)],4)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,3),(1,3),(3,2)],4)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
([(0,3),(1,2)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 0
([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
([(0,3),(2,1),(3,2)],4)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 0
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
([(2,3),(3,4)],5)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
([(1,4),(4,2),(4,3)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
([(1,4),(2,4),(4,3)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
([(0,4),(1,2),(1,4),(4,3)],5)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0
([(0,2),(0,4),(3,1),(4,3)],5)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
Description
The number of inner corners of the parallelogram polyomino associated with the Dyck path.
Matching statistic: St001732
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00307: Posets —promotion cycle type⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St001732: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St001732: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1,0]
=> [1,0]
=> 1 = 0 + 1
([],2)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
([(0,1)],2)
=> [1]
=> [1,0]
=> [1,0]
=> 1 = 0 + 1
([],3)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
([(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
([(0,1),(0,2)],3)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
([(0,2),(2,1)],3)
=> [1]
=> [1,0]
=> [1,0]
=> 1 = 0 + 1
([(0,2),(1,2)],3)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
([(2,3)],4)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
([(0,2),(0,3),(3,1)],4)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
([(1,2),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
([(0,3),(3,1),(3,2)],4)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
([(0,3),(1,3),(3,2)],4)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
([(0,3),(1,2)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1 = 0 + 1
([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 1 = 0 + 1
([(0,3),(2,1),(3,2)],4)
=> [1]
=> [1,0]
=> [1,0]
=> 1 = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1 = 0 + 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 1 = 0 + 1
([(2,3),(3,4)],5)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
([(1,4),(4,2),(4,3)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
([(1,4),(2,4),(4,3)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 1 = 0 + 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> 2 = 1 + 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 1 = 0 + 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 1 = 0 + 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> 2 = 1 + 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
Description
The number of peaks visible from the left.
This is, the number of left-to-right maxima of the heights of the peaks of a Dyck path.
Matching statistic: St000386
Mp00307: Posets —promotion cycle type⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St000386: Dyck paths ⟶ ℤResult quality: 98% ●values known / values provided: 98%●distinct values known / distinct values provided: 100%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St000386: Dyck paths ⟶ ℤResult quality: 98% ●values known / values provided: 98%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([],2)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,1)],2)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([],3)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
([(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
([(0,1),(0,2)],3)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,2),(2,1)],3)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([(0,2),(1,2)],3)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(2,3)],4)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1
([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
([(0,2),(0,3),(3,1)],4)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(1,2),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(0,3),(3,1),(3,2)],4)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,3),(1,3),(3,2)],4)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
([(0,3),(1,2)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0
([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
([(0,3),(2,1),(3,2)],4)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
([(2,3),(3,4)],5)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
([(1,4),(4,2),(4,3)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
([(1,4),(2,4),(4,3)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
([(0,4),(1,2),(1,4),(4,3)],5)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0
([(0,2),(0,4),(3,1),(4,3)],5)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
([(1,6),(2,6),(3,5),(5,4),(6,3)],7)
=> [7,7]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
([(1,4),(2,6),(3,6),(4,5),(5,2),(5,3)],7)
=> [7,7]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
([(1,3),(1,4),(3,6),(4,6),(5,2),(6,5)],7)
=> [7,7]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
([(1,5),(2,6),(3,6),(5,2),(5,3),(6,4)],7)
=> [7,7]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
([(1,5),(4,6),(5,4),(6,2),(6,3)],7)
=> [7,7]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
Description
The number of factors DDU in a Dyck path.
Matching statistic: St001503
Mp00307: Posets —promotion cycle type⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St001503: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 76%●distinct values known / distinct values provided: 67%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St001503: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 76%●distinct values known / distinct values provided: 67%
Values
([],1)
=> [1]
=> [1,0]
=> [1,0]
=> 1 = 0 + 1
([],2)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
([(0,1)],2)
=> [1]
=> [1,0]
=> [1,0]
=> 1 = 0 + 1
([],3)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
([(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
([(0,1),(0,2)],3)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
([(0,2),(2,1)],3)
=> [1]
=> [1,0]
=> [1,0]
=> 1 = 0 + 1
([(0,2),(1,2)],3)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
([(2,3)],4)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 2 = 1 + 1
([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
([(0,2),(0,3),(3,1)],4)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
([(1,2),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
([(0,3),(3,1),(3,2)],4)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
([(0,3),(1,3),(3,2)],4)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
([(0,3),(1,2)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1 = 0 + 1
([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1 = 0 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 1 = 0 + 1
([(0,3),(2,1),(3,2)],4)
=> [1]
=> [1,0]
=> [1,0]
=> 1 = 0 + 1
([(0,3),(1,2),(2,3)],4)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 2 = 1 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1 = 0 + 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1 = 0 + 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 1 = 0 + 1
([(2,3),(3,4)],5)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
([(1,4),(4,2),(4,3)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
([(1,4),(2,4),(4,3)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 1 = 0 + 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 2 = 1 + 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1 = 0 + 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 1 = 0 + 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 2 = 1 + 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1 = 0 + 1
([(1,4),(3,2),(4,3)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
([(0,3),(1,4),(4,2)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 1
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6)
=> [3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? = 1 + 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
([(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? = 1 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 1
([(0,3),(1,2),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 1
([(0,5),(1,3),(4,2),(5,4)],6)
=> [6,6,3]
=> [1,1,1,0,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1 + 1
([(0,5),(1,2),(2,3),(2,5),(3,4),(5,4)],6)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 1
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,6),(6,1),(6,2)],7)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
([(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(6,1)],7)
=> [3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? = 1 + 1
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
([(0,1),(0,2),(0,3),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
([(0,4),(0,5),(4,6),(5,6),(6,1),(6,2),(6,3)],7)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
([(0,3),(0,4),(3,5),(3,6),(4,5),(4,6),(5,2),(6,1)],7)
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
([(0,6),(1,6),(2,6),(4,5),(6,3),(6,4)],7)
=> [3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? = 1 + 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(6,3)],7)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
([(0,6),(1,6),(2,6),(3,5),(4,5),(6,3),(6,4)],7)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
([(0,5),(1,5),(2,6),(3,6),(4,6),(5,2),(5,3),(5,4)],7)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(4,3),(5,4),(6,4)],7)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(5,4),(6,3)],7)
=> [3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? = 1 + 1
([(0,6),(1,6),(5,2),(5,3),(5,4),(6,5)],7)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 1
([(1,6),(2,6),(3,5),(5,4),(6,3)],7)
=> [7,7]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
([(1,4),(2,6),(3,6),(4,5),(5,2),(5,3)],7)
=> [7,7]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
([(0,6),(1,6),(2,3),(3,5),(5,6),(6,4)],7)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
([(0,6),(1,6),(4,3),(5,2),(6,4),(6,5)],7)
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
([(0,5),(0,6),(1,5),(1,6),(2,4),(3,4),(5,3),(6,2)],7)
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
([(0,5),(0,6),(1,5),(1,6),(4,2),(5,3),(5,4),(6,3),(6,4)],7)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
([(0,6),(1,4),(1,5),(2,4),(2,5),(4,6),(5,6),(6,3)],7)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(5,2),(6,3),(6,4)],7)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 1
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,2),(4,1)],7)
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
([(0,4),(2,5),(2,6),(3,5),(3,6),(4,1),(4,2),(4,3)],7)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
Description
The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra.
Matching statistic: St001198
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00307: Posets —promotion cycle type⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001198: Dyck paths ⟶ ℤResult quality: 48% ●values known / values provided: 48%●distinct values known / distinct values provided: 67%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001198: Dyck paths ⟶ ℤResult quality: 48% ●values known / values provided: 48%●distinct values known / distinct values provided: 67%
Values
([],1)
=> [1]
=> [1,0]
=> [1,0]
=> ? = 0 + 2
([],2)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 0 + 2
([(0,1)],2)
=> [1]
=> [1,0]
=> [1,0]
=> ? = 0 + 2
([],3)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? = 0 + 2
([(0,1),(0,2)],3)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 0 + 2
([(0,2),(2,1)],3)
=> [1]
=> [1,0]
=> [1,0]
=> ? = 0 + 2
([(0,2),(1,2)],3)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 0 + 2
([(2,3)],4)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,2),(0,3),(3,1)],4)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? = 0 + 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 0 + 2
([(1,2),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
([(0,3),(3,1),(3,2)],4)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 0 + 2
([(0,3),(1,3),(3,2)],4)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 0 + 2
([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,3),(1,2)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2 = 0 + 2
([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 0 + 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 0 + 2
([(0,3),(2,1),(3,2)],4)
=> [1]
=> [1,0]
=> [1,0]
=> ? = 0 + 2
([(0,3),(1,2),(2,3)],4)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? = 0 + 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3 = 1 + 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 0 + 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2 = 0 + 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 0 + 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 0 + 2
([(2,3),(3,4)],5)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 2
([(1,4),(4,2),(4,3)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3 = 1 + 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(1,4),(2,4),(4,3)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3 = 1 + 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 0 + 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 1 + 2
([(0,4),(1,4),(2,3),(4,2)],5)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 0 + 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 3 = 1 + 2
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 0 + 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 2
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 0 + 2
([(0,4),(1,2),(1,4),(4,3)],5)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 2
([(0,2),(0,4),(3,1),(4,3)],5)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 3 = 1 + 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? = 0 + 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 1 + 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 3 = 1 + 2
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
([(1,4),(3,2),(4,3)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
([(0,3),(3,4),(4,1),(4,2)],5)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 0 + 2
([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? = 0 + 2
([(0,3),(1,4),(4,2)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3 = 1 + 2
([(0,4),(3,2),(4,1),(4,3)],5)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? = 0 + 2
([(0,4),(1,2),(2,3),(2,4)],5)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> [1,0]
=> [1,0]
=> ? = 0 + 2
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2 = 0 + 2
([(0,4),(1,2),(2,3),(3,4)],5)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 0 + 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 1 + 2
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3 = 1 + 2
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 2
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 0 + 2
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 0 + 2
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 2
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 1 + 2
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 1 + 2
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 1 + 2
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6)
=> [3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 1 + 2
([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 0 + 2
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3 = 1 + 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2 = 0 + 2
([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 0 + 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 2
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3 = 1 + 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3 = 1 + 2
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 0 + 2
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 0 + 2
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> ? = 2 + 2
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> [4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3 = 1 + 2
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 0 + 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 2
([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 2
([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3 = 1 + 2
([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3 = 1 + 2
([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 3 = 1 + 2
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 0 + 2
Description
The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St001206
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00307: Posets —promotion cycle type⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001206: Dyck paths ⟶ ℤResult quality: 48% ●values known / values provided: 48%●distinct values known / distinct values provided: 67%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001206: Dyck paths ⟶ ℤResult quality: 48% ●values known / values provided: 48%●distinct values known / distinct values provided: 67%
Values
([],1)
=> [1]
=> [1,0]
=> [1,0]
=> ? = 0 + 2
([],2)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 0 + 2
([(0,1)],2)
=> [1]
=> [1,0]
=> [1,0]
=> ? = 0 + 2
([],3)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? = 0 + 2
([(0,1),(0,2)],3)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 0 + 2
([(0,2),(2,1)],3)
=> [1]
=> [1,0]
=> [1,0]
=> ? = 0 + 2
([(0,2),(1,2)],3)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 0 + 2
([(2,3)],4)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,2),(0,3),(3,1)],4)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? = 0 + 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 0 + 2
([(1,2),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
([(0,3),(3,1),(3,2)],4)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 0 + 2
([(0,3),(1,3),(3,2)],4)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 0 + 2
([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,3),(1,2)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2 = 0 + 2
([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 0 + 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 0 + 2
([(0,3),(2,1),(3,2)],4)
=> [1]
=> [1,0]
=> [1,0]
=> ? = 0 + 2
([(0,3),(1,2),(2,3)],4)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? = 0 + 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3 = 1 + 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 0 + 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2 = 0 + 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 0 + 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 0 + 2
([(2,3),(3,4)],5)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 2
([(1,4),(4,2),(4,3)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3 = 1 + 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(1,4),(2,4),(4,3)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3 = 1 + 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 0 + 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 1 + 2
([(0,4),(1,4),(2,3),(4,2)],5)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 0 + 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 3 = 1 + 2
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 0 + 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 2
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 0 + 2
([(0,4),(1,2),(1,4),(4,3)],5)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 2
([(0,2),(0,4),(3,1),(4,3)],5)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 3 = 1 + 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? = 0 + 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 1 + 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 3 = 1 + 2
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
([(1,4),(3,2),(4,3)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 0 + 2
([(0,3),(3,4),(4,1),(4,2)],5)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 0 + 2
([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? = 0 + 2
([(0,3),(1,4),(4,2)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3 = 1 + 2
([(0,4),(3,2),(4,1),(4,3)],5)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? = 0 + 2
([(0,4),(1,2),(2,3),(2,4)],5)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> [1,0]
=> [1,0]
=> ? = 0 + 2
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2 = 0 + 2
([(0,4),(1,2),(2,3),(3,4)],5)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 0 + 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 0 + 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 1 + 2
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3 = 1 + 2
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 2
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 0 + 2
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 0 + 2
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0 + 2
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 1 + 2
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 1 + 2
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 1 + 2
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6)
=> [3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 1 + 2
([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 0 + 2
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3 = 1 + 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2 = 0 + 2
([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 0 + 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 2
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3 = 1 + 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3 = 1 + 2
([(0,4),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 0 + 2
([(0,4),(1,2),(1,4),(2,5),(4,5),(5,3)],6)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 0 + 2
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> [4,4,2,2]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> ? = 2 + 2
([(0,4),(0,5),(1,4),(1,5),(4,2),(4,3),(5,2),(5,3)],6)
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(5,2)],6)
=> [4,4]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3 = 1 + 2
([(0,4),(0,5),(1,4),(1,5),(3,2),(4,3),(5,3)],6)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 0 + 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0 + 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 2
([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1 + 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 3 = 1 + 2
([(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 2
([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3 = 1 + 2
([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 3 = 1 + 2
([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 3 = 1 + 2
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 0 + 2
Description
The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$.
Matching statistic: St000264
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 0 + 2
([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 0 + 2
([(0,1)],2)
=> ([],2)
=> ([],1)
=> ([],1)
=> ? = 0 + 2
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 1 + 2
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 0 + 2
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> ([],1)
=> ? = 0 + 2
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 1 + 2
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 0 + 2
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 0 + 2
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ? = 0 + 2
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> ([],1)
=> ? = 0 + 2
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 0 + 2
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 1 + 2
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 0 + 2
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 3 = 1 + 2
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ? = 0 + 2
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 0 + 2
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 2
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ? = 0 + 2
([(1,4),(3,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 0 + 2
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
([(0,3),(1,4),(4,2)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ? = 1 + 2
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 2
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> ([],1)
=> ? = 0 + 2
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 0 + 2
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 0 + 2
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 0 + 2
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 0 + 2
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> ([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ? = 0 + 2
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0 + 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
([(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(0,2),(0,5),(1,4),(1,5),(2,4),(4,3),(5,3)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(0,5),(4,3),(5,1),(5,2),(5,4)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,6),(6,1),(6,2)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(6,1)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> 3 = 1 + 2
Description
The girth of a graph, which is not a tree.
This is the length of the shortest cycle in the graph.
Matching statistic: St001232
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00307: Posets —promotion cycle type⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 32% ●values known / values provided: 32%●distinct values known / distinct values provided: 33%
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 32% ●values known / values provided: 32%●distinct values known / distinct values provided: 33%
Values
([],1)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([],2)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,1)],2)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([],3)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? = 1
([(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
([(0,1),(0,2)],3)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,2),(2,1)],3)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([(0,2),(1,2)],3)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(2,3)],4)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,1),(0,2),(0,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? = 1
([(0,2),(0,3),(3,1)],4)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(1,2),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(0,3),(3,1),(3,2)],4)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,3),(1,3),(3,2)],4)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,3),(1,3),(2,3)],4)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? = 1
([(0,3),(1,2)],4)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ? = 0
([(0,3),(1,2),(1,3)],4)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ? = 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 0
([(0,3),(2,1),(3,2)],4)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([(0,3),(1,2),(2,3)],4)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? = 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,3),(0,4),(3,2),(4,1)],5)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ? = 0
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ? = 0
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 0
([(2,3),(3,4)],5)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(1,4),(4,2),(4,3)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? = 1
([(1,4),(2,4),(4,3)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 0
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? = 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> ? = 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 0
([(0,4),(1,2),(1,4),(4,3)],5)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0
([(0,2),(0,4),(3,1),(4,3)],5)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(0,4),(1,2),(1,3),(3,4)],5)
=> [4,4,3]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [5,3]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> [5,4]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
([(1,4),(3,2),(4,3)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
([(0,3),(3,4),(4,1),(4,2)],5)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,4),(1,2),(2,4),(4,3)],5)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
([(0,3),(1,4),(4,2)],5)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
([(0,4),(1,2),(2,3),(2,4)],5)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> [1]
=> [1,0]
=> [1,0]
=> 0
([(0,3),(1,2),(2,4),(3,4)],5)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ? = 0
([(0,4),(1,2),(2,3),(3,4)],5)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? = 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 0
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 0
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? = 1
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> [3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ? = 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6)
=> [3,3,3,3,3,3]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [6,6]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ? = 0
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ? = 0
([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> [4,4,4]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [5,5,5,5]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [5,5]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(4,2),(5,3)],6)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1)],6)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
([(0,2),(0,4),(2,5),(3,1),(3,5),(4,3)],6)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0
([(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
([(0,5),(1,2),(2,5),(5,3),(5,4)],6)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
([(1,5),(3,4),(4,2),(5,3)],6)
=> [6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,5),(3,4),(4,2),(5,1),(5,3)],6)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0
([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0
([(0,5),(1,2),(2,3),(2,5),(3,4),(5,4)],6)
=> [7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0
([(0,4),(3,2),(4,5),(5,1),(5,3)],6)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St000046
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000046: Integer partitions ⟶ ℤResult quality: 32% ●values known / values provided: 32%●distinct values known / distinct values provided: 33%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000046: Integer partitions ⟶ ℤResult quality: 32% ●values known / values provided: 32%●distinct values known / distinct values provided: 33%
Values
([],1)
=> [1]
=> []
=> ?
=> ? = 0
([],2)
=> [1,1]
=> [1]
=> []
=> ? = 0
([(0,1)],2)
=> [2]
=> []
=> ?
=> ? = 0
([],3)
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
([(1,2)],3)
=> [2,1]
=> [1]
=> []
=> ? = 0
([(0,1),(0,2)],3)
=> [2,1]
=> [1]
=> []
=> ? = 0
([(0,2),(2,1)],3)
=> [3]
=> []
=> ?
=> ? = 0
([(0,2),(1,2)],3)
=> [2,1]
=> [1]
=> []
=> ? = 0
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [1]
=> []
=> ? = 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? = 0
([(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? = 0
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [1]
=> []
=> ? = 0
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> []
=> ? = 0
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> []
=> ? = 0
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2]
=> []
=> ? = 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2]
=> []
=> ? = 0
([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ?
=> ? = 0
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? = 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [2]
=> []
=> ? = 0
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 0
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 0
([(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [2]
=> []
=> ? = 0
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> [3,2]
=> [2]
=> []
=> ? = 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [3,2]
=> [2]
=> []
=> ? = 0
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [3,2]
=> [2]
=> []
=> ? = 0
([(0,4),(1,2),(1,4),(4,3)],5)
=> [3,2]
=> [2]
=> []
=> ? = 0
([(0,2),(0,4),(3,1),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,4),(1,2),(1,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 0
([(1,4),(3,2),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,3),(3,4),(4,1),(4,2)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,3),(1,4),(4,2)],5)
=> [3,2]
=> [2]
=> []
=> ? = 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,4),(1,2),(2,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ?
=> ? = 0
([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 0
([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [4,2]
=> [2]
=> []
=> ? = 0
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> [4,2]
=> [2]
=> []
=> ? = 0
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> [2]
=> []
=> ? = 0
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> []
=> ? = 0
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> [4,2]
=> [2]
=> []
=> ? = 0
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [4,2]
=> [2]
=> []
=> ? = 0
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [2]
=> []
=> ? = 0
([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
([(0,5),(4,3),(5,1),(5,2),(5,4)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,6),(6,1),(6,2)],7)
=> [4,2,1]
=> [2,1]
=> [1]
=> 1
([(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(6,1)],7)
=> [4,2,1]
=> [2,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> [4,2,1]
=> [2,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(0,5),(4,6),(5,6),(6,1),(6,2),(6,3)],7)
=> [4,2,1]
=> [2,1]
=> [1]
=> 1
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> [1]
=> 1
Description
The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition.
Matching statistic: St000137
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000137: Integer partitions ⟶ ℤResult quality: 32% ●values known / values provided: 32%●distinct values known / distinct values provided: 33%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000137: Integer partitions ⟶ ℤResult quality: 32% ●values known / values provided: 32%●distinct values known / distinct values provided: 33%
Values
([],1)
=> [1]
=> []
=> ?
=> ? = 0
([],2)
=> [1,1]
=> [1]
=> []
=> ? = 0
([(0,1)],2)
=> [2]
=> []
=> ?
=> ? = 0
([],3)
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
([(1,2)],3)
=> [2,1]
=> [1]
=> []
=> ? = 0
([(0,1),(0,2)],3)
=> [2,1]
=> [1]
=> []
=> ? = 0
([(0,2),(2,1)],3)
=> [3]
=> []
=> ?
=> ? = 0
([(0,2),(1,2)],3)
=> [2,1]
=> [1]
=> []
=> ? = 0
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [1]
=> []
=> ? = 0
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? = 0
([(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? = 0
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [1]
=> []
=> ? = 0
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> []
=> ? = 0
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> []
=> ? = 0
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2]
=> []
=> ? = 0
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [2]
=> []
=> ? = 0
([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ?
=> ? = 0
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> []
=> ? = 0
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [2]
=> []
=> ? = 0
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 0
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 0
([(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [2]
=> []
=> ? = 0
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> [3,2]
=> [2]
=> []
=> ? = 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 0
([(1,3),(1,4),(2,3),(2,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> [3,2]
=> [2]
=> []
=> ? = 0
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> [3,2]
=> [2]
=> []
=> ? = 0
([(0,4),(1,2),(1,4),(4,3)],5)
=> [3,2]
=> [2]
=> []
=> ? = 0
([(0,2),(0,4),(3,1),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,4),(1,2),(1,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 0
([(1,4),(3,2),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,3),(3,4),(4,1),(4,2)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,3),(1,4),(4,2)],5)
=> [3,2]
=> [2]
=> []
=> ? = 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,4),(1,2),(2,3),(2,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 0
([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ?
=> ? = 0
([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> []
=> ? = 0
([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> [4,1]
=> [1]
=> []
=> ? = 0
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
([(0,2),(0,3),(0,4),(3,5),(4,5),(5,1)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> [4,2]
=> [2]
=> []
=> ? = 0
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> [4,2]
=> [2]
=> []
=> ? = 0
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [4,2]
=> [2]
=> []
=> ? = 0
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> []
=> ? = 0
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> [4,2]
=> [2]
=> []
=> ? = 0
([(0,5),(1,5),(4,2),(4,3),(5,4)],6)
=> [4,2]
=> [2]
=> []
=> ? = 0
([(0,3),(0,4),(1,5),(2,5),(4,1),(4,2)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> [4,2]
=> [2]
=> []
=> ? = 0
([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,5),(1,4),(2,5),(3,5),(4,2),(4,3)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(0,4),(2,5),(3,5),(4,1),(4,2)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
([(0,5),(4,3),(5,1),(5,2),(5,4)],6)
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,6),(6,1),(6,2)],7)
=> [4,2,1]
=> [2,1]
=> [1]
=> 1
([(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(6,1)],7)
=> [4,2,1]
=> [2,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> [4,2,1]
=> [2,1]
=> [1]
=> 1
([(0,1),(0,2),(0,3),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> [1]
=> 1
([(0,4),(0,5),(4,6),(5,6),(6,1),(6,2),(6,3)],7)
=> [4,2,1]
=> [2,1]
=> [1]
=> 1
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> [1]
=> 1
Description
The Grundy value of an integer partition.
Consider the two-player game on an integer partition.
In each move, a player removes either a box, or a 2x2-configuration of boxes such that the resulting diagram is still a partition.
The first player that cannot move lose. This happens exactly when the empty partition is reached.
The grundy value of an integer partition is defined as the grundy value of this two-player game as defined in [1].
This game was described to me during Norcom 2013, by Urban Larsson, and it seems to be quite difficult to give a good description of the partitions with Grundy value 0.
The following 168 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000460The hook length of the last cell along the main diagonal of an integer partition. St000618The number of self-evacuating tableaux of given shape. St000667The greatest common divisor of the parts of the partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000781The number of proper colouring schemes of a Ferrers diagram. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001249Sum of the odd parts of a partition. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001262The dimension of the maximal parabolic seaweed algebra corresponding to the partition. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001360The number of covering relations in Young's lattice below a partition. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001378The product of the cohook lengths of the integer partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001383The BG-rank of an integer partition. St001389The number of partitions of the same length below the given integer partition. St001432The order dimension of the partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001525The number of symmetric hooks on the diagonal of a partition. St001527The cyclic permutation representation number of an integer partition. St001529The number of monomials in the expansion of the nabla operator applied to the power-sum symmetric function indexed by the partition. St001561The value of the elementary symmetric function evaluated at 1. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St001571The Cartan determinant of the integer partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001600The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001602The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on endofunctions. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001607The number of coloured graphs such that the multiplicities of colours are given by a partition. St001608The number of coloured rooted trees such that the multiplicities of colours are given by a partition. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001610The number of coloured endofunctions such that the multiplicities of colours are given by a partition. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001627The number of coloured connected graphs such that the multiplicities of colours are given by a partition. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001763The Hurwitz number of an integer partition. St001780The order of promotion on the set of standard tableaux of given shape. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001924The number of cells in an integer partition whose arm and leg length coincide. St001933The largest multiplicity of a part in an integer partition. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St001938The number of transitive monotone factorizations of genus zero of a permutation of given cycle type. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St001943The sum of the squares of the hook lengths of an integer partition. St001967The coefficient of the monomial corresponding to the integer partition in a certain power series. St001968The coefficient of the monomial corresponding to the integer partition in a certain power series. St000145The Dyson rank of a partition. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000225Difference between largest and smallest parts in a partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St000944The 3-degree of an integer partition. St001175The size of a partition minus the hook length of the base cell. St001176The size of a partition minus its first part. St001177Twice the mean value of the major index among all standard Young tableaux of a partition. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001248Sum of the even parts of a partition. St001279The sum of the parts of an integer partition that are at least two. St001280The number of parts of an integer partition that are at least two. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001541The Gini index of an integer partition. St001586The number of odd parts smaller than the largest even part in an integer partition. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001961The sum of the greatest common divisors of all pairs of parts. St000474Dyson's crank of a partition. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001875The number of simple modules with projective dimension at most 1. St001570The minimal number of edges to add to make a graph Hamiltonian. St001060The distinguishing index of a graph. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001845The number of join irreducibles minus the rank of a lattice. St001140Number of indecomposable modules with projective and injective dimension at least two in the corresponding Nakayama algebra. St001624The breadth of a lattice. St001890The maximum magnitude of the Möbius function of a poset. St000283The size of the preimage of the map 'to graph' from Binary trees to Graphs. St000323The minimal crossing number of a graph. St000351The determinant of the adjacency matrix of a graph. St000368The Altshuler-Steinberg determinant of a graph. St000370The genus of a graph. St000379The number of Hamiltonian cycles in a graph. St000403The Szeged index minus the Wiener index of a graph. St000637The length of the longest cycle in a graph. St000671The maximin edge-connectivity for choosing a subgraph. St000699The toughness times the least common multiple of 1,. St000948The chromatic discriminant of a graph. St001069The coefficient of the monomial xy of the Tutte polynomial of the graph. St001119The length of a shortest maximal path in a graph. St001271The competition number of a graph. St001281The normalized isoperimetric number of a graph. St001305The number of induced cycles on four vertices in a graph. St001307The number of induced stars on four vertices in a graph. St001309The number of four-cliques in a graph. St001310The number of induced diamond graphs in a graph. St001311The cyclomatic number of a graph. St001317The minimal number of occurrences of the forest-pattern in a linear ordering of the vertices of the graph. St001320The minimal number of occurrences of the path-pattern in a linear ordering of the vertices of the graph. St001323The independence gap of a graph. St001324The minimal number of occurrences of the chordal-pattern in a linear ordering of the vertices of the graph. St001325The minimal number of occurrences of the comparability-pattern in a linear ordering of the vertices of the graph. St001326The minimal number of occurrences of the interval-pattern in a linear ordering of the vertices of the graph. St001328The minimal number of occurrences of the bipartite-pattern in a linear ordering of the vertices of the graph. St001329The minimal number of occurrences of the outerplanar pattern in a linear ordering of the vertices of the graph. St001331The size of the minimal feedback vertex set. St001334The minimal number of occurrences of the 3-colorable pattern in a linear ordering of the vertices of the graph. St001335The cardinality of a minimal cycle-isolating set of a graph. St001336The minimal number of vertices in a graph whose complement is triangle-free. St001357The maximal degree of a regular spanning subgraph of a graph. St001367The smallest number which does not occur as degree of a vertex in a graph. St001395The number of strictly unfriendly partitions of a graph. St001638The book thickness of a graph. St001689The number of celebrities in a graph. St001702The absolute value of the determinant of the adjacency matrix of a graph. St001736The total number of cycles in a graph. St001793The difference between the clique number and the chromatic number of a graph. St001794Half the number of sets of vertices in a graph which are dominating and non-blocking. St001795The binary logarithm of the evaluation of the Tutte polynomial of the graph at (x,y) equal to (-1,-1). St001796The absolute value of the quotient of the Tutte polynomial of the graph at (1,1) and (-1,-1). St001797The number of overfull subgraphs of a graph. St000266The number of spanning subgraphs of a graph with the same connected components. St000267The number of maximal spanning forests contained in a graph. St000773The multiplicity of the largest Laplacian eigenvalue in a graph. St000775The multiplicity of the largest eigenvalue in a graph. St000785The number of distinct colouring schemes of a graph. St001272The number of graphs with the same degree sequence. St001316The domatic number of a graph. St001475The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,0). St001476The evaluation of the Tutte polynomial of the graph at (x,y) equal to (1,-1). St001496The number of graphs with the same Laplacian spectrum as the given graph. St001546The number of monomials in the Tutte polynomial of a graph. St000636The hull number of a graph. St001029The size of the core of a graph. St001109The number of proper colourings of a graph with as few colours as possible. St001654The monophonic hull number of a graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!