Your data matches 55 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St000293: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> 10 => 1
([],2)
=> [1,1]
=> 110 => 2
([(0,1)],2)
=> [2]
=> 100 => 2
([],3)
=> [1,1,1]
=> 1110 => 3
([(1,2)],3)
=> [2,1]
=> 1010 => 3
([(0,1),(0,2)],3)
=> [2,1]
=> 1010 => 3
([(0,2),(2,1)],3)
=> [3]
=> 1000 => 3
([(0,2),(1,2)],3)
=> [2,1]
=> 1010 => 3
([],4)
=> [1,1,1,1]
=> 11110 => 4
([(2,3)],4)
=> [2,1,1]
=> 10110 => 4
([(1,2),(1,3)],4)
=> [2,1,1]
=> 10110 => 4
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> 10110 => 4
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> 10010 => 4
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 10010 => 4
([(1,2),(2,3)],4)
=> [3,1]
=> 10010 => 4
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> 10010 => 4
([(1,3),(2,3)],4)
=> [2,1,1]
=> 10110 => 4
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 10010 => 4
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> 10110 => 4
([(0,3),(1,2)],4)
=> [2,2]
=> 1100 => 4
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 1100 => 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 1100 => 4
([(0,3),(2,1),(3,2)],4)
=> [4]
=> 10000 => 4
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 10010 => 4
([],5)
=> [1,1,1,1,1]
=> 111110 => 5
([(3,4)],5)
=> [2,1,1,1]
=> 101110 => 5
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> 101110 => 5
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> 101110 => 5
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> 101110 => 5
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> 100110 => 5
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 5
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 5
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> 100110 => 5
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> 100110 => 5
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 5
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 100010 => 5
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> 10100 => 5
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> 10100 => 5
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> 10100 => 5
([(2,3),(3,4)],5)
=> [3,1,1]
=> 100110 => 5
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> 100110 => 5
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> 100110 => 5
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> 101110 => 5
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> 100110 => 5
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> 10100 => 5
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 101110 => 5
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> 100110 => 5
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 101110 => 5
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> 11010 => 5
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> 11010 => 5
Description
The number of inversions of a binary word.
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001034: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1,0]
=> 1
([],2)
=> [1,1]
=> [1,1,0,0]
=> 2
([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 2
([],3)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 3
([(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 3
([(0,1),(0,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 3
([(0,2),(2,1)],3)
=> [3]
=> [1,0,1,0,1,0]
=> 3
([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 3
([],4)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 4
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 4
([(1,2),(1,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 4
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 4
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 4
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 4
([(1,2),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 4
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 4
([(1,3),(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 4
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 4
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 4
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> 4
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> 4
([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 4
([],5)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 5
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 5
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 5
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 5
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 5
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 5
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 5
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 5
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 5
([(2,3),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 5
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 5
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 5
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 5
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 5
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 5
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 5
Description
The area of the parallelogram polyomino associated with the Dyck path. The (bivariate) generating function is given in [1].
Matching statistic: St000290
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00095: Integer partitions to binary wordBinary words
Mp00316: Binary words inverse Foata bijectionBinary words
St000290: Binary words ⟶ ℤResult quality: 93% values known / values provided: 100%distinct values known / distinct values provided: 93%
Values
([],1)
=> [1]
=> 10 => 10 => 1
([],2)
=> [1,1]
=> 110 => 110 => 2
([(0,1)],2)
=> [2]
=> 100 => 010 => 2
([],3)
=> [1,1,1]
=> 1110 => 1110 => 3
([(1,2)],3)
=> [2,1]
=> 1010 => 0110 => 3
([(0,1),(0,2)],3)
=> [2,1]
=> 1010 => 0110 => 3
([(0,2),(2,1)],3)
=> [3]
=> 1000 => 0010 => 3
([(0,2),(1,2)],3)
=> [2,1]
=> 1010 => 0110 => 3
([],4)
=> [1,1,1,1]
=> 11110 => 11110 => 4
([(2,3)],4)
=> [2,1,1]
=> 10110 => 01110 => 4
([(1,2),(1,3)],4)
=> [2,1,1]
=> 10110 => 01110 => 4
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> 10110 => 01110 => 4
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> 10010 => 00110 => 4
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 10010 => 00110 => 4
([(1,2),(2,3)],4)
=> [3,1]
=> 10010 => 00110 => 4
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> 10010 => 00110 => 4
([(1,3),(2,3)],4)
=> [2,1,1]
=> 10110 => 01110 => 4
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 10010 => 00110 => 4
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> 10110 => 01110 => 4
([(0,3),(1,2)],4)
=> [2,2]
=> 1100 => 1010 => 4
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 1100 => 1010 => 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 1100 => 1010 => 4
([(0,3),(2,1),(3,2)],4)
=> [4]
=> 10000 => 00010 => 4
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 10010 => 00110 => 4
([],5)
=> [1,1,1,1,1]
=> 111110 => 111110 => 5
([(3,4)],5)
=> [2,1,1,1]
=> 101110 => 011110 => 5
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> 101110 => 011110 => 5
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> 101110 => 011110 => 5
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> 101110 => 011110 => 5
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> 100110 => 001110 => 5
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 001110 => 5
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 001110 => 5
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> 100110 => 001110 => 5
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> 100110 => 001110 => 5
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 001110 => 5
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 100010 => 000110 => 5
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> 10100 => 10010 => 5
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> 10100 => 10010 => 5
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> 10100 => 10010 => 5
([(2,3),(3,4)],5)
=> [3,1,1]
=> 100110 => 001110 => 5
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> 100110 => 001110 => 5
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> 100110 => 001110 => 5
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> 101110 => 011110 => 5
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> 100110 => 001110 => 5
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> 10100 => 10010 => 5
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 101110 => 011110 => 5
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> 100110 => 001110 => 5
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 101110 => 011110 => 5
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> 11010 => 10110 => 5
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> 11010 => 10110 => 5
([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [5,4,3,2,1]
=> 1010101010 => ? => ? = 15
([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> [5,3,2,2,1]
=> 1001011010 => ? => ? = 13
([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> [5,3,2,2,1]
=> 1001011010 => ? => ? = 13
([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> [5,3,2,2,1]
=> 1001011010 => ? => ? = 13
([(0,2),(0,9),(3,4),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
=> [9,1]
=> 10000000010 => 00000000110 => ? = 10
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> [5,3,1,1,1]
=> 1001001110 => ? => ? = 11
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(4,9),(5,7),(6,9),(8,7),(9,8)],10)
=> [6,1,1,1,1]
=> 10000011110 => 00000111110 => ? = 10
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(1,9),(2,7),(3,7),(4,6),(5,6),(6,9),(7,8),(8,10),(9,10)],11)
=> [5,3,1,1,1]
=> 1001001110 => ? => ? = 11
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> [5,2,2,1,1]
=> 1000110110 => ? => ? = 11
Description
The major index of a binary word. This is the sum of the positions of descents, i.e., a one followed by a zero. For words of length $n$ with $a$ zeros, the generating function for the major index is the $q$-binomial coefficient $\binom{n}{a}_q$.
Matching statistic: St000018
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St000018: Permutations ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1,0,1,0]
=> [2,1] => 1
([],2)
=> [1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => 2
([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> [3,1,2] => 2
([],3)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 3
([(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 3
([(0,1),(0,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 3
([(0,2),(2,1)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 3
([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 3
([],4)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 4
([(1,2),(1,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 4
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 4
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 4
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 4
([(1,2),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 4
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 4
([(1,3),(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 4
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 4
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 4
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 4
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 4
([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => 4
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 4
([],5)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 5
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 5
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 5
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 5
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 5
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 5
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 5
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 5
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 5
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 5
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => 5
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 5
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 5
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 5
([(2,3),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 5
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 5
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 5
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 5
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 5
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 5
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 5
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 5
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 5
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 5
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 5
([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [7,5,3,1,2,4,6] => ? = 12
([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> [7,5]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [8,6,1,2,3,4,5,7] => ? = 12
([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> [6,4,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [7,5,2,1,3,4,6] => ? = 11
([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> [7,4]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [8,5,1,2,3,4,6,7] => ? = 11
([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> [7,4]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [8,5,1,2,3,4,6,7] => ? = 11
([(0,7),(0,8),(1,9),(2,10),(3,6),(3,9),(4,3),(5,1),(6,2),(6,11),(7,4),(8,5),(9,11),(11,10)],12)
=> [7,5]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [8,6,1,2,3,4,5,7] => ? = 12
([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> [6,4,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [7,5,2,1,3,4,6] => ? = 11
([(0,3),(0,4),(1,11),(2,10),(3,2),(3,9),(4,1),(4,9),(5,7),(5,8),(6,12),(7,12),(8,12),(9,5),(9,10),(9,11),(10,6),(10,7),(11,6),(11,8)],13)
=> [6,4,3]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [7,5,4,1,2,3,6] => ? = 13
([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [6,3,2]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [7,4,3,1,2,5,6] => ? = 11
([(0,3),(0,8),(1,10),(2,9),(3,11),(4,2),(5,4),(6,7),(7,1),(7,9),(8,5),(8,11),(9,10),(11,6)],12)
=> [7,5]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [8,6,1,2,3,4,5,7] => ? = 12
([(0,4),(0,5),(1,10),(2,7),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(6,10),(8,9),(9,7),(10,2),(10,9)],11)
=> [6,4,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [7,5,2,1,3,4,6] => ? = 11
([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [7,5,3,1,2,4,6] => ? = 12
([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [7,5,3,1,2,4,6] => ? = 12
([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [7,5,3,1,2,4,6] => ? = 12
([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [7,5,3,1,2,4,6] => ? = 12
([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [7,5,3,1,2,4,6] => ? = 12
([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> [7,5]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [8,6,1,2,3,4,5,7] => ? = 12
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(7,10),(8,10),(9,10),(10,1),(10,2)],11)
=> [6,3,2]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [7,4,3,1,2,5,6] => ? = 11
([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11)
=> [6,3,2]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [7,4,3,1,2,5,6] => ? = 11
([(0,4),(0,5),(1,9),(1,10),(2,8),(2,10),(3,7),(4,6),(5,1),(5,2),(5,6),(6,8),(6,9),(8,11),(9,11),(10,3),(10,11),(11,7)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [7,5,3,1,2,4,6] => ? = 12
([(0,3),(0,4),(1,6),(1,9),(2,6),(2,8),(3,7),(4,5),(4,7),(5,1),(5,2),(5,10),(6,11),(7,10),(8,11),(9,11),(10,8),(10,9)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [7,5,3,1,2,4,6] => ? = 12
([(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(3,7),(3,8),(4,6),(4,8),(5,1),(5,9),(6,11),(7,11),(8,5),(8,11),(9,10),(11,9)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [7,5,3,1,2,4,6] => ? = 12
([(0,3),(0,4),(0,5),(1,11),(2,10),(3,8),(3,9),(4,7),(4,8),(5,7),(5,9),(7,12),(8,2),(8,12),(9,1),(9,12),(10,6),(11,6),(12,10),(12,11)],13)
=> [6,4,3]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [7,5,4,1,2,3,6] => ? = 13
([(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(3,10),(4,6),(4,10),(5,6),(5,7),(6,11),(7,11),(8,9),(10,2),(10,11),(11,1),(11,8)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [7,5,3,1,2,4,6] => ? = 12
([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> [6,3,2]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [7,4,3,1,2,5,6] => ? = 11
([(0,4),(0,5),(1,8),(2,7),(2,9),(3,7),(3,10),(4,6),(5,2),(5,3),(5,6),(6,9),(6,10),(7,11),(9,11),(10,1),(10,11),(11,8)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [7,5,3,1,2,4,6] => ? = 12
([(0,4),(0,5),(2,7),(2,9),(3,7),(3,8),(4,6),(5,2),(5,3),(5,6),(6,8),(6,9),(7,10),(8,10),(9,10),(10,1)],11)
=> [6,3,2]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [7,4,3,1,2,5,6] => ? = 11
([(0,4),(0,5),(1,7),(1,9),(2,7),(2,8),(3,6),(4,10),(5,3),(5,10),(6,8),(6,9),(7,11),(8,11),(9,11),(10,1),(10,2),(10,6)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [7,5,3,1,2,4,6] => ? = 12
([(0,4),(0,5),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,9),(5,9),(6,10),(7,10),(8,10),(9,1),(9,2),(9,3)],11)
=> [6,3,2]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [7,4,3,1,2,5,6] => ? = 11
Description
The number of inversions of a permutation. This equals the minimal number of simple transpositions $(i,i+1)$ needed to write $\pi$. Thus, it is also the Coxeter length of $\pi$.
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St000246: Permutations ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1,0,1,0]
=> [1,2] => 1
([],2)
=> [1,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 2
([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> [2,1,3] => 2
([],3)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 3
([(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => 3
([(0,1),(0,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => 3
([(0,2),(2,1)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 3
([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => 3
([],4)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 4
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 4
([(1,2),(1,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 4
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 4
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 4
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 4
([(1,2),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 4
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 4
([(1,3),(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 4
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 4
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 4
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 4
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 4
([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 4
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 4
([],5)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => 5
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 5
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 5
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 5
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 5
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 5
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 5
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 5
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 5
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 5
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 5
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => 5
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 5
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 5
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 5
([(2,3),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 5
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 5
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 5
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 5
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 5
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 5
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 5
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 5
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 5
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 5
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 5
([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [4,3,5,2,6,1,7] => ? = 12
([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> [7,5]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [6,5,4,3,2,7,1,8] => ? = 12
([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> [6,4,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [4,5,3,2,6,1,7] => ? = 11
([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> [7,4]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [6,5,4,3,7,2,1,8] => ? = 11
([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> [7,4]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [6,5,4,3,7,2,1,8] => ? = 11
([(0,7),(0,8),(1,9),(2,10),(3,6),(3,9),(4,3),(5,1),(6,2),(6,11),(7,4),(8,5),(9,11),(11,10)],12)
=> [7,5]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [6,5,4,3,2,7,1,8] => ? = 12
([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> [6,4,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [4,5,3,2,6,1,7] => ? = 11
([(0,3),(0,4),(1,11),(2,10),(3,2),(3,9),(4,1),(4,9),(5,7),(5,8),(6,12),(7,12),(8,12),(9,5),(9,10),(9,11),(10,6),(10,7),(11,6),(11,8)],13)
=> [6,4,3]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [4,3,2,5,6,1,7] => ? = 13
([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [6,3,2]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [4,3,5,6,2,1,7] => ? = 11
([(0,3),(0,8),(1,10),(2,9),(3,11),(4,2),(5,4),(6,7),(7,1),(7,9),(8,5),(8,11),(9,10),(11,6)],12)
=> [7,5]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [6,5,4,3,2,7,1,8] => ? = 12
([(0,4),(0,5),(1,10),(2,7),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(6,10),(8,9),(9,7),(10,2),(10,9)],11)
=> [6,4,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [4,5,3,2,6,1,7] => ? = 11
([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [4,3,5,2,6,1,7] => ? = 12
([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [4,3,5,2,6,1,7] => ? = 12
([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [4,3,5,2,6,1,7] => ? = 12
([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [4,3,5,2,6,1,7] => ? = 12
([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [4,3,5,2,6,1,7] => ? = 12
([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> [7,5]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [6,5,4,3,2,7,1,8] => ? = 12
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(7,10),(8,10),(9,10),(10,1),(10,2)],11)
=> [6,3,2]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [4,3,5,6,2,1,7] => ? = 11
([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11)
=> [6,3,2]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [4,3,5,6,2,1,7] => ? = 11
([(0,4),(0,5),(1,9),(1,10),(2,8),(2,10),(3,7),(4,6),(5,1),(5,2),(5,6),(6,8),(6,9),(8,11),(9,11),(10,3),(10,11),(11,7)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [4,3,5,2,6,1,7] => ? = 12
([(0,3),(0,4),(1,6),(1,9),(2,6),(2,8),(3,7),(4,5),(4,7),(5,1),(5,2),(5,10),(6,11),(7,10),(8,11),(9,11),(10,8),(10,9)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [4,3,5,2,6,1,7] => ? = 12
([(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(3,7),(3,8),(4,6),(4,8),(5,1),(5,9),(6,11),(7,11),(8,5),(8,11),(9,10),(11,9)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [4,3,5,2,6,1,7] => ? = 12
([(0,3),(0,4),(0,5),(1,11),(2,10),(3,8),(3,9),(4,7),(4,8),(5,7),(5,9),(7,12),(8,2),(8,12),(9,1),(9,12),(10,6),(11,6),(12,10),(12,11)],13)
=> [6,4,3]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [4,3,2,5,6,1,7] => ? = 13
([(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(3,10),(4,6),(4,10),(5,6),(5,7),(6,11),(7,11),(8,9),(10,2),(10,11),(11,1),(11,8)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [4,3,5,2,6,1,7] => ? = 12
([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> [6,3,2]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [4,3,5,6,2,1,7] => ? = 11
([(0,4),(0,5),(1,8),(2,7),(2,9),(3,7),(3,10),(4,6),(5,2),(5,3),(5,6),(6,9),(6,10),(7,11),(9,11),(10,1),(10,11),(11,8)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [4,3,5,2,6,1,7] => ? = 12
([(0,4),(0,5),(2,7),(2,9),(3,7),(3,8),(4,6),(5,2),(5,3),(5,6),(6,8),(6,9),(7,10),(8,10),(9,10),(10,1)],11)
=> [6,3,2]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [4,3,5,6,2,1,7] => ? = 11
([(0,4),(0,5),(1,7),(1,9),(2,7),(2,8),(3,6),(4,10),(5,3),(5,10),(6,8),(6,9),(7,11),(8,11),(9,11),(10,1),(10,2),(10,6)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [4,3,5,2,6,1,7] => ? = 12
([(0,4),(0,5),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,9),(5,9),(6,10),(7,10),(8,10),(9,1),(9,2),(9,3)],11)
=> [6,3,2]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [4,3,5,6,2,1,7] => ? = 11
Description
The number of non-inversions of a permutation. For a permutation of $\{1,\ldots,n\}$, this is given by $\operatorname{noninv}(\pi) = \binom{n}{2}-\operatorname{inv}(\pi)$.
Mp00110: Posets Greene-Kleitman invariantInteger partitions
St000228: Integer partitions ⟶ ℤResult quality: 71% values known / values provided: 98%distinct values known / distinct values provided: 71%
Values
([],1)
=> [1]
=> 1
([],2)
=> [1,1]
=> 2
([(0,1)],2)
=> [2]
=> 2
([],3)
=> [1,1,1]
=> 3
([(1,2)],3)
=> [2,1]
=> 3
([(0,1),(0,2)],3)
=> [2,1]
=> 3
([(0,2),(2,1)],3)
=> [3]
=> 3
([(0,2),(1,2)],3)
=> [2,1]
=> 3
([],4)
=> [1,1,1,1]
=> 4
([(2,3)],4)
=> [2,1,1]
=> 4
([(1,2),(1,3)],4)
=> [2,1,1]
=> 4
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> 4
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> 4
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> 4
([(1,2),(2,3)],4)
=> [3,1]
=> 4
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> 4
([(1,3),(2,3)],4)
=> [2,1,1]
=> 4
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> 4
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> 4
([(0,3),(1,2)],4)
=> [2,2]
=> 4
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> 4
([(0,3),(2,1),(3,2)],4)
=> [4]
=> 4
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> 4
([],5)
=> [1,1,1,1,1]
=> 5
([(3,4)],5)
=> [2,1,1,1]
=> 5
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> 5
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> 5
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> 5
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> 5
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 5
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> 5
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> 5
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> 5
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 5
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> 5
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> 5
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> 5
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> 5
([(2,3),(3,4)],5)
=> [3,1,1]
=> 5
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> 5
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> 5
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> 5
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> 5
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> 5
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 5
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> 5
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> 5
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> 5
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> 5
([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> [5,3,3,1]
=> ? = 12
([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [5,4,3,2,1]
=> ? = 15
([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> [5,3,2,2]
=> ? = 12
([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> [5,3,2,2]
=> ? = 12
([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> [5,3,2,1]
=> ? = 11
([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> [5,3,2,2,1]
=> ? = 13
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> [5,3,2,1]
=> ? = 11
([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> [5,3,2,1]
=> ? = 11
([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> [5,3,2,2,1]
=> ? = 13
([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> [5,3,2,2,1]
=> ? = 13
([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> [6,4,2]
=> ? = 12
([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> [7,5]
=> ? = 12
([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> [6,4,1]
=> ? = 11
([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> [7,4]
=> ? = 11
([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> [7,4]
=> ? = 11
([(0,7),(0,8),(1,9),(2,10),(3,6),(3,9),(4,3),(5,1),(6,2),(6,11),(7,4),(8,5),(9,11),(11,10)],12)
=> [7,5]
=> ? = 12
([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> [6,4,1]
=> ? = 11
([(0,3),(0,4),(1,11),(2,10),(3,2),(3,9),(4,1),(4,9),(5,7),(5,8),(6,12),(7,12),(8,12),(9,5),(9,10),(9,11),(10,6),(10,7),(11,6),(11,8)],13)
=> [6,4,3]
=> ? = 13
([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [6,3,2]
=> ? = 11
([(0,3),(0,8),(1,10),(2,9),(3,11),(4,2),(5,4),(6,7),(7,1),(7,9),(8,5),(8,11),(9,10),(11,6)],12)
=> [7,5]
=> ? = 12
([(0,4),(0,5),(1,10),(2,7),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(6,10),(8,9),(9,7),(10,2),(10,9)],11)
=> [6,4,1]
=> ? = 11
([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> [6,4,2]
=> ? = 12
([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> [6,4,2]
=> ? = 12
([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> [6,4,2]
=> ? = 12
([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> [6,4,2]
=> ? = 12
([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> [6,4,2]
=> ? = 12
([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> [7,5]
=> ? = 12
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(7,10),(8,10),(9,10),(10,1),(10,2)],11)
=> [6,3,2]
=> ? = 11
([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> [5,3,3,1]
=> ? = 12
([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11)
=> [6,3,2]
=> ? = 11
([(0,4),(0,5),(1,9),(1,10),(2,8),(2,10),(3,7),(4,6),(5,1),(5,2),(5,6),(6,8),(6,9),(8,11),(9,11),(10,3),(10,11),(11,7)],12)
=> [6,4,2]
=> ? = 12
([(0,3),(0,4),(1,6),(1,9),(2,6),(2,8),(3,7),(4,5),(4,7),(5,1),(5,2),(5,10),(6,11),(7,10),(8,11),(9,11),(10,8),(10,9)],12)
=> [6,4,2]
=> ? = 12
([(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(3,7),(3,8),(4,6),(4,8),(5,1),(5,9),(6,11),(7,11),(8,5),(8,11),(9,10),(11,9)],12)
=> [6,4,2]
=> ? = 12
([(0,3),(0,4),(0,5),(1,11),(2,10),(3,8),(3,9),(4,7),(4,8),(5,7),(5,9),(7,12),(8,2),(8,12),(9,1),(9,12),(10,6),(11,6),(12,10),(12,11)],13)
=> [6,4,3]
=> ? = 13
([(0,3),(0,4),(0,5),(1,9),(2,8),(3,7),(3,10),(4,6),(4,10),(5,6),(5,7),(6,11),(7,11),(8,9),(10,2),(10,11),(11,1),(11,8)],12)
=> [6,4,2]
=> ? = 12
([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> [6,3,2]
=> ? = 11
([(0,4),(0,5),(1,8),(2,7),(2,9),(3,7),(3,10),(4,6),(5,2),(5,3),(5,6),(6,9),(6,10),(7,11),(9,11),(10,1),(10,11),(11,8)],12)
=> [6,4,2]
=> ? = 12
([(0,4),(0,5),(2,7),(2,9),(3,7),(3,8),(4,6),(5,2),(5,3),(5,6),(6,8),(6,9),(7,10),(8,10),(9,10),(10,1)],11)
=> [6,3,2]
=> ? = 11
([(0,4),(0,5),(1,7),(1,9),(2,7),(2,8),(3,6),(4,10),(5,3),(5,10),(6,8),(6,9),(7,11),(8,11),(9,11),(10,1),(10,2),(10,6)],12)
=> [6,4,2]
=> ? = 12
([(0,4),(0,5),(1,7),(1,8),(2,6),(2,8),(3,6),(3,7),(4,9),(5,9),(6,10),(7,10),(8,10),(9,1),(9,2),(9,3)],11)
=> [6,3,2]
=> ? = 11
([(0,4),(0,5),(1,8),(2,7),(3,2),(3,9),(4,3),(4,6),(5,1),(5,6),(6,8),(6,9),(8,10),(9,7),(9,10)],11)
=> [5,4,2]
=> ? = 11
([(0,3),(0,10),(1,4),(1,10),(2,7),(3,8),(4,2),(4,9),(6,5),(7,5),(8,6),(9,6),(9,7),(10,8),(10,9)],11)
=> [5,4,2]
=> ? = 11
([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> [5,3,2,1]
=> ? = 11
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,7),(6,9),(7,8),(7,9),(8,10),(9,10)],11)
=> [5,3,1,1,1]
=> ? = 11
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(1,9),(2,7),(3,7),(4,6),(5,6),(6,9),(7,8),(8,10),(9,10)],11)
=> [5,3,1,1,1]
=> ? = 11
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,8),(2,7),(3,6),(4,6),(5,7),(5,8),(6,10),(7,9),(8,9),(9,10)],11)
=> [5,2,2,1,1]
=> ? = 11
Description
The size of a partition. This statistic is the constant statistic of the level sets.
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
St000395: Dyck paths ⟶ ℤResult quality: 79% values known / values provided: 97%distinct values known / distinct values provided: 79%
Values
([],1)
=> [1]
=> [1,0]
=> [1,0]
=> 1
([],2)
=> [1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
([],3)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 3
([(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 3
([(0,1),(0,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 3
([(0,2),(2,1)],3)
=> [3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 3
([],4)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 4
([(1,2),(1,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 4
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 4
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 4
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 4
([(1,2),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 4
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 4
([(1,3),(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 4
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 4
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 4
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 4
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 4
([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 4
([],5)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 5
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 5
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 5
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 5
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 5
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 5
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 5
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 5
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 5
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 5
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 5
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 5
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 5
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 5
([(2,3),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 5
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 5
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 5
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 5
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 5
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 5
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 5
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 5
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 5
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 5
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 5
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> [8]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 8
([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> [5,1,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 9
([(0,7),(1,6),(2,6),(3,5),(4,5),(5,8),(6,8),(8,7)],9)
=> [4,2,1,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0,1,0]
=> ? = 9
([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> [4,2,1,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0,1,0]
=> ? = 9
([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> [9]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 9
([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> [5,3,3,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0,1,0]
=> ? = 12
([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> [5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0,1,0]
=> ? = 15
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> [4,1,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 8
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> [4,1,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 8
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> [5,1,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 8
([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> [7,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 8
([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> [5,2,1,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0,1,0]
=> ? = 9
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> [5,2,1,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0,1,0]
=> ? = 9
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> [5,2,1,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0,1,0]
=> ? = 9
([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> [5,3,2,2]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0]
=> ? = 12
([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> [5,3,2,2]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0]
=> ? = 12
([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> [5,3,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0,1,0]
=> ? = 11
([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> [5,3,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0,1,0]
=> ? = 13
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> [5,3,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0,1,0]
=> ? = 11
([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> [5,3,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0,1,0]
=> ? = 11
([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> [5,3,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0,1,0]
=> ? = 13
([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> [5,3,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0,1,0]
=> ? = 13
([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> [6,4,2]
=> [1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> ? = 12
([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> [7,5]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> ? = 12
([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [7,3]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> ? = 10
([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> [6,3,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> ? = 10
([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> [6,4,1]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> ? = 11
([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> [7,4]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> ? = 11
([(0,5),(1,8),(2,9),(3,7),(4,3),(4,9),(5,6),(6,2),(6,4),(7,8),(9,1),(9,7)],10)
=> [7,3]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> ? = 10
([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> [7,4]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> ? = 11
([(0,5),(1,6),(2,9),(3,6),(3,9),(4,7),(5,1),(5,2),(5,3),(6,8),(8,7),(9,4),(9,8)],10)
=> [6,3,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> ? = 10
([(0,7),(0,8),(1,9),(2,10),(3,6),(3,9),(4,3),(5,1),(6,2),(6,11),(7,4),(8,5),(9,11),(11,10)],12)
=> [7,5]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> ? = 12
([(0,3),(0,5),(1,7),(2,8),(3,10),(4,2),(4,6),(5,4),(5,10),(6,7),(6,8),(7,9),(8,9),(10,1),(10,6)],11)
=> [6,4,1]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> ? = 11
([(0,3),(0,4),(1,11),(2,10),(3,2),(3,9),(4,1),(4,9),(5,7),(5,8),(6,12),(7,12),(8,12),(9,5),(9,10),(9,11),(10,6),(10,7),(11,6),(11,8)],13)
=> [6,4,3]
=> [1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,1,0,0,0]
=> ? = 13
([(0,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,2),(4,3),(4,6),(5,1),(5,4),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [6,3,2]
=> [1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0]
=> ? = 11
([(0,3),(0,8),(1,10),(2,9),(3,11),(4,2),(5,4),(6,7),(7,1),(7,9),(8,5),(8,11),(9,10),(11,6)],12)
=> [7,5]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> ? = 12
([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> [6,3,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> ? = 10
([(0,4),(0,5),(1,10),(2,7),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(6,10),(8,9),(9,7),(10,2),(10,9)],11)
=> [6,4,1]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> ? = 11
([(0,3),(0,4),(1,2),(1,11),(2,8),(3,9),(3,10),(4,1),(4,9),(4,10),(6,7),(7,5),(8,5),(9,6),(10,6),(10,11),(11,7),(11,8)],12)
=> [6,4,2]
=> [1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> ? = 12
([(0,2),(0,3),(1,5),(1,6),(2,10),(2,11),(3,1),(3,10),(3,11),(5,8),(6,7),(7,4),(8,4),(9,7),(9,8),(10,6),(10,9),(11,5),(11,9)],12)
=> [6,4,2]
=> [1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> ? = 12
([(0,2),(0,3),(1,8),(2,10),(2,11),(3,1),(3,10),(3,11),(5,6),(6,4),(7,4),(8,7),(9,6),(9,7),(10,5),(10,9),(11,5),(11,8),(11,9)],12)
=> [6,4,2]
=> [1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> ? = 12
([(0,2),(0,3),(1,5),(1,9),(2,10),(2,11),(3,1),(3,10),(3,11),(5,7),(6,8),(7,4),(8,4),(9,7),(9,8),(10,5),(10,6),(11,6),(11,9)],12)
=> [6,4,2]
=> [1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> ? = 12
([(0,3),(0,4),(1,2),(1,10),(1,11),(2,8),(2,9),(3,6),(3,7),(4,1),(4,6),(4,7),(6,11),(7,10),(8,5),(9,5),(10,8),(11,9)],12)
=> [6,4,2]
=> [1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> ? = 12
([(0,1),(0,2),(1,10),(1,11),(2,10),(2,11),(4,3),(5,3),(6,8),(6,9),(7,8),(7,9),(8,4),(8,5),(9,4),(9,5),(10,6),(10,7),(11,6),(11,7)],12)
=> [7,5]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> ? = 12
([(0,9),(2,4),(3,2),(4,6),(5,3),(6,8),(7,5),(8,1),(9,7)],10)
=> [10]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> ? = 10
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,8),(3,9),(4,7),(4,9),(5,7),(5,8),(7,10),(8,10),(9,10),(10,1),(10,2)],11)
=> [6,3,2]
=> [1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0]
=> ? = 11
([(0,2),(0,3),(0,4),(1,5),(1,6),(2,7),(2,9),(3,7),(3,8),(4,1),(4,8),(4,9),(5,11),(6,11),(7,10),(8,5),(8,10),(9,6),(9,10),(10,11)],12)
=> [5,3,3,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0,1,0]
=> ? = 12
([(0,5),(1,8),(2,7),(2,9),(3,6),(3,9),(4,6),(4,7),(5,2),(5,3),(5,4),(6,10),(7,10),(9,1),(9,10),(10,8)],11)
=> [6,3,2]
=> [1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0]
=> ? = 11
([(0,5),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,2),(5,3),(5,4),(6,9),(7,9),(8,9),(9,1)],10)
=> [6,2,2]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> ? = 10
([(0,4),(0,5),(1,9),(1,10),(2,8),(2,10),(3,7),(4,6),(5,1),(5,2),(5,6),(6,8),(6,9),(8,11),(9,11),(10,3),(10,11),(11,7)],12)
=> [6,4,2]
=> [1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> ? = 12
Description
The sum of the heights of the peaks of a Dyck path.
Matching statistic: St001759
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St001759: Permutations ⟶ ℤResult quality: 96% values known / values provided: 96%distinct values known / distinct values provided: 100%
Values
([],1)
=> [1]
=> [1,0,1,0]
=> [2,1] => 1
([],2)
=> [1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => 2
([(0,1)],2)
=> [2]
=> [1,1,0,0,1,0]
=> [3,1,2] => 2
([],3)
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 3
([(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 3
([(0,1),(0,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 3
([(0,2),(2,1)],3)
=> [3]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 3
([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 3
([],4)
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 4
([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 4
([(1,2),(1,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 4
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 4
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 4
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 4
([(1,2),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 4
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 4
([(1,3),(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 4
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 4
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 4
([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 4
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 4
([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => 4
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 4
([],5)
=> [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 5
([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 5
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 5
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 5
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 5
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 5
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 5
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 5
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 5
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 5
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 5
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => 5
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 5
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 5
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 5
([(2,3),(3,4)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 5
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 5
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 5
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 5
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 5
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 5
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 5
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 5
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 5
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 5
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 5
([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,6] => ? = 6
([],7)
=> [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => ? = 7
([(0,6),(1,5),(2,6),(4,2),(5,4),(6,3)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 7
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 7
([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 7
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 7
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 7
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 7
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 7
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 7
([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 7
([(1,6),(3,5),(4,3),(5,2),(6,4)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 7
([(0,5),(3,4),(4,6),(5,3),(6,1),(6,2)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 7
([(0,5),(3,4),(4,1),(5,6),(6,2),(6,3)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 7
([(0,6),(3,5),(4,3),(5,1),(6,2),(6,4)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 7
([(0,5),(3,6),(4,1),(5,3),(6,2),(6,4)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 7
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [8,1,2,3,4,5,6,7] => ? = 7
([(0,6),(1,3),(3,6),(4,2),(5,4),(6,5)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 7
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 7
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 7
([(0,6),(1,4),(3,6),(4,3),(5,2),(6,5)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 7
([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 7
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 7
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)
=> [6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => ? = 7
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> [8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1,2,3,4,5,6,7,8] => ? = 8
([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> [9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [10,1,2,3,4,5,6,7,8,9] => ? = 9
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [7,3,1,2,4,5,6] => ? = 8
([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [7,3,1,2,4,5,6] => ? = 8
([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [7,3,1,2,4,5,6] => ? = 8
([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [7,3,1,2,4,5,6] => ? = 8
([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [7,3,1,2,4,5,6] => ? = 8
([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> [7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [8,2,1,3,4,5,6,7] => ? = 8
([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [7,3,1,2,4,5,6] => ? = 8
([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> [6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [7,4,1,2,3,5,6] => ? = 9
([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> [6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [7,4,1,2,3,5,6] => ? = 9
([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> [6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [7,4,1,2,3,5,6] => ? = 9
([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> [6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [7,4,1,2,3,5,6] => ? = 9
([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> [6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [7,4,1,2,3,5,6] => ? = 9
([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> [6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [7,4,1,2,3,5,6] => ? = 9
([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> [6,4]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [7,5,1,2,3,4,6] => ? = 10
([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> [6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [7,5,3,1,2,4,6] => ? = 12
([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> [7,5]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [8,6,1,2,3,4,5,7] => ? = 12
([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10)
=> [7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [8,4,1,2,3,5,6,7] => ? = 10
([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> [6,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [7,4,2,1,3,5,6] => ? = 10
([(0,5),(0,6),(1,8),(2,9),(3,8),(3,9),(4,1),(5,4),(6,7),(7,2),(7,3),(8,10),(9,10)],11)
=> [6,4,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [7,5,2,1,3,4,6] => ? = 11
([(0,6),(0,7),(1,9),(2,8),(3,5),(4,2),(5,1),(5,8),(6,3),(7,4),(8,9)],10)
=> [6,4]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [7,5,1,2,3,4,6] => ? = 10
([(0,6),(1,7),(2,8),(3,4),(3,7),(4,5),(4,10),(5,2),(5,9),(6,1),(6,3),(7,10),(9,8),(10,9)],11)
=> [7,4]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [8,5,1,2,3,4,6,7] => ? = 11
([(0,5),(1,8),(2,9),(3,7),(4,3),(4,9),(5,6),(6,2),(6,4),(7,8),(9,1),(9,7)],10)
=> [7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [8,4,1,2,3,5,6,7] => ? = 10
([(0,6),(1,7),(2,8),(3,9),(4,3),(4,7),(5,2),(5,10),(6,1),(6,4),(7,5),(7,9),(9,10),(10,8)],11)
=> [7,4]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [8,5,1,2,3,4,6,7] => ? = 11
([(0,5),(1,6),(2,9),(3,6),(3,9),(4,7),(5,1),(5,2),(5,3),(6,8),(8,7),(9,4),(9,8)],10)
=> [6,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [7,4,2,1,3,5,6] => ? = 10
Description
The Rajchgot index of a permutation. The '''Rajchgot index''' of a permutation $\sigma$ is the degree of the ''Grothendieck polynomial'' of $\sigma$. This statistic on permutations was defined by Pechenik, Speyer, and Weigandt [1]. It can be computed by taking the maximum major index [[St000004]] of the permutations smaller than or equal to $\sigma$ in the right ''weak Bruhat order''.
Mp00074: Posets to graphGraphs
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001020: Dyck paths ⟶ ℤResult quality: 50% values known / values provided: 93%distinct values known / distinct values provided: 50%
Values
([],1)
=> ([],1)
=> [1] => [1,0]
=> 1
([],2)
=> ([],2)
=> [2] => [1,1,0,0]
=> 2
([(0,1)],2)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 2
([],3)
=> ([],3)
=> [3] => [1,1,1,0,0,0]
=> 3
([(1,2)],3)
=> ([(1,2)],3)
=> [1,2] => [1,0,1,1,0,0]
=> 3
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> 3
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> 3
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> 3
([],4)
=> ([],4)
=> [4] => [1,1,1,1,0,0,0,0]
=> 4
([(2,3)],4)
=> ([(2,3)],4)
=> [1,3] => [1,0,1,1,1,0,0,0]
=> 4
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 4
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 4
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 4
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 4
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 4
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 4
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 4
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 4
([],5)
=> ([],5)
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> 5
([(3,4)],5)
=> ([(3,4)],5)
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 5
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 5
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 5
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 5
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 5
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 5
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 5
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 5
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 5
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 5
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 5
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 5
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 5
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 5
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 5
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 5
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 5
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 5
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 5
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 5
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 5
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 5
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 5
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 5
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 5
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(1,6),(2,3),(2,4),(3,5),(4,6),(5,7)],8)
=> [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 8
([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ?
=> ? => ?
=> ? = 9
([(0,7),(1,6),(2,6),(3,5),(4,5),(5,8),(6,8),(8,7)],9)
=> ?
=> ? => ?
=> ? = 9
([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ?
=> ? => ?
=> ? = 9
([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9
([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,8),(1,7),(2,6),(3,6),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9
([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(0,8),(1,7),(2,5),(2,6),(3,7),(3,9),(4,8),(4,9),(5,7),(5,9),(6,8),(6,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10
([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> [1,3,3,1,3,1] => ?
=> ? = 12
([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => ?
=> ? = 15
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8)
=> ([(0,7),(1,5),(1,7),(2,4),(2,7),(3,4),(3,5),(4,6),(5,6),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 8
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,6),(1,2),(1,3),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? => ?
=> ? = 8
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,7),(4,5),(4,7),(5,6)],8)
=> ? => ?
=> ? = 8
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,1),(0,7),(1,6),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? => ?
=> ? = 8
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1),(0,7),(1,6),(2,5),(2,7),(3,5),(3,7),(4,6),(4,7),(5,6)],8)
=> ? => ?
=> ? = 8
([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,7),(5,7),(6,7)],8)
=> ? => ?
=> ? = 8
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,7),(3,5),(3,7),(4,5),(4,6)],8)
=> ? => ?
=> ? = 8
([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ([(0,6),(1,2),(1,3),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? => ?
=> ? = 8
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> [1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 8
([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,4),(1,2),(1,5),(2,7),(3,5),(3,6),(4,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 8
([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,7),(1,2),(1,7),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 8
([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7)],8)
=> [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 8
([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(0,6),(0,7),(1,2),(1,3),(2,5),(3,4),(4,6),(5,7)],8)
=> [1,2,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 8
([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(1,4),(2,6),(2,7),(3,6),(3,7),(4,6),(5,7)],8)
=> [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 8
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6)],8)
=> [1,3,3,1] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 8
([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,4),(1,2),(1,5),(2,7),(3,5),(3,6),(4,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 8
([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ([(0,8),(1,2),(1,3),(1,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8)],9)
=> ? => ?
=> ? = 9
([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1),(0,8),(1,6),(2,5),(2,8),(3,4),(3,8),(4,6),(4,7),(5,6),(5,7),(7,8)],9)
=> ? => ?
=> ? = 9
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,7),(1,8),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8)],9)
=> ? => ?
=> ? = 9
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,4),(0,8),(1,4),(1,8),(2,5),(2,8),(3,5),(3,6),(4,6),(5,7),(6,7),(7,8)],9)
=> ? => ?
=> ? = 9
([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ([(0,1),(0,2),(1,8),(2,8),(3,4),(3,6),(4,7),(5,6),(5,8),(6,7),(7,8)],9)
=> ? => ?
=> ? = 9
([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ([(0,1),(0,2),(1,8),(2,8),(3,4),(3,6),(4,7),(5,6),(5,8),(6,7),(7,8)],9)
=> ? => ?
=> ? = 9
([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,8),(1,4),(1,8),(2,3),(2,6),(3,7),(4,5),(4,6),(5,7),(5,8),(6,7)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9
([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,7),(1,3),(1,8),(2,7),(2,8),(3,5),(4,5),(4,6),(5,8),(6,7),(6,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9
([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ? => ?
=> ? = 9
([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,8),(1,4),(1,8),(2,3),(2,6),(3,7),(4,5),(4,6),(5,7),(5,8),(6,7)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9
([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ([(0,7),(1,3),(1,8),(2,7),(2,8),(3,5),(4,5),(4,6),(5,8),(6,7),(6,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9
([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ([(0,8),(1,2),(1,3),(1,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8)],9)
=> ? => ?
=> ? = 9
([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> [1,1,1,3,1,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 8
([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 10
([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,5),(0,8),(1,2),(1,3),(1,9),(2,4),(2,7),(3,7),(3,8),(4,6),(4,9),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 10
([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,9),(0,11),(1,8),(1,10),(2,6),(2,7),(2,8),(2,10),(3,5),(3,7),(3,8),(3,10),(4,5),(4,6),(4,8),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(10,11)],12)
=> ? => ?
=> ? = 12
([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,9),(0,10),(1,4),(1,7),(1,10),(2,3),(2,6),(2,9),(3,8),(3,11),(4,8),(4,11),(5,6),(5,7),(5,9),(5,10),(6,8),(6,11),(7,8),(7,11),(9,11),(10,11)],12)
=> ? => ?
=> ? = 12
([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ? => ?
=> ? = 11
([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? => ?
=> ? = 13
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([(0,9),(0,10),(1,5),(1,6),(1,10),(2,3),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,9),(4,10),(5,8),(6,7),(7,9),(7,10),(8,9),(8,10)],11)
=> ? => ?
=> ? = 11
([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,6),(0,9),(1,3),(1,4),(1,5),(2,3),(2,4),(2,9),(3,8),(4,7),(5,7),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 10
([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,2),(1,3),(1,6),(2,5),(2,7),(3,7),(3,10),(4,7),(4,9),(4,10),(5,6),(5,8),(6,9),(6,10),(7,8),(8,9),(8,10)],11)
=> ? => ?
=> ? = 11
([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ? => ?
=> ? = 9
([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(0,11),(0,12),(1,6),(1,7),(1,8),(2,7),(2,8),(2,10),(3,9),(3,11),(3,12),(4,5),(4,7),(4,8),(4,10),(5,9),(5,11),(5,12),(6,9),(6,11),(6,12),(7,12),(8,9),(9,10),(10,11),(10,12)],13)
=> ? => ?
=> ? = 13
([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(0,10),(0,12),(1,9),(1,10),(1,12),(2,3),(2,8),(2,12),(3,6),(3,11),(4,5),(4,6),(4,11),(5,9),(5,10),(5,12),(6,8),(6,9),(7,8),(7,9),(7,10),(7,12),(8,11),(9,11),(10,11),(11,12)],13)
=> ? => ?
=> ? = 13
Description
Sum of the codominant dimensions of the non-projective indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path.
Mp00074: Posets to graphGraphs
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000998: Dyck paths ⟶ ℤResult quality: 50% values known / values provided: 93%distinct values known / distinct values provided: 50%
Values
([],1)
=> ([],1)
=> [1] => [1,0]
=> 2 = 1 + 1
([],2)
=> ([],2)
=> [2] => [1,1,0,0]
=> 3 = 2 + 1
([(0,1)],2)
=> ([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> 3 = 2 + 1
([],3)
=> ([],3)
=> [3] => [1,1,1,0,0,0]
=> 4 = 3 + 1
([(1,2)],3)
=> ([(1,2)],3)
=> [1,2] => [1,0,1,1,0,0]
=> 4 = 3 + 1
([(0,1),(0,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> 4 = 3 + 1
([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> 4 = 3 + 1
([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> 4 = 3 + 1
([],4)
=> ([],4)
=> [4] => [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
([(2,3)],4)
=> ([(2,3)],4)
=> [1,3] => [1,0,1,1,1,0,0,0]
=> 5 = 4 + 1
([(1,2),(1,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 5 = 4 + 1
([(0,1),(0,2),(0,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 5 = 4 + 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 5 = 4 + 1
([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 5 = 4 + 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 5 = 4 + 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 5 = 4 + 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 5 = 4 + 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 5 = 4 + 1
([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 5 = 4 + 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 5 = 4 + 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
([],5)
=> ([],5)
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> 6 = 5 + 1
([(3,4)],5)
=> ([(3,4)],5)
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 6 = 5 + 1
([(2,3),(2,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 6 = 5 + 1
([(1,2),(1,3),(1,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 6 = 5 + 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 6 = 5 + 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6 = 5 + 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6 = 5 + 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 6 = 5 + 1
([(1,3),(1,4),(4,2)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 6 = 5 + 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6 = 5 + 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 6 = 5 + 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6 = 5 + 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6 = 5 + 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6 = 5 + 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 6 = 5 + 1
([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 6 = 5 + 1
([(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 6 = 5 + 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 6 = 5 + 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 6 = 5 + 1
([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 6 = 5 + 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 6 = 5 + 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 6 = 5 + 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 6 = 5 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 6 = 5 + 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 6 = 5 + 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 6 = 5 + 1
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([(0,7),(1,6),(2,3),(2,4),(3,5),(4,6),(5,7)],8)
=> [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 8 + 1
([(0,5),(1,5),(2,7),(3,8),(4,6),(5,8),(7,6),(8,7)],9)
=> ?
=> ? => ?
=> ? = 9 + 1
([(0,7),(1,6),(2,6),(3,5),(4,5),(5,8),(6,8),(8,7)],9)
=> ?
=> ? => ?
=> ? = 9 + 1
([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ?
=> ? => ?
=> ? = 9 + 1
([(0,8),(2,3),(3,5),(4,2),(5,7),(6,4),(7,1),(8,6)],9)
=> ([(0,8),(1,7),(2,3),(2,4),(3,5),(4,6),(5,7),(6,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 + 1
([(0,7),(1,8),(2,7),(2,8),(4,5),(5,3),(6,5),(7,6),(8,4),(8,6)],9)
=> ([(0,8),(1,7),(2,6),(3,6),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 + 1
([(0,8),(1,7),(2,7),(2,9),(3,8),(3,9),(5,4),(6,4),(7,5),(8,6),(9,5),(9,6)],10)
=> ([(0,8),(1,7),(2,5),(2,6),(3,7),(3,9),(4,8),(4,9),(5,7),(5,9),(6,8),(6,9)],10)
=> [1,1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10 + 1
([(0,10),(1,9),(2,8),(3,8),(3,9),(3,10),(5,11),(6,11),(7,11),(8,5),(8,6),(9,5),(9,7),(10,6),(10,7),(11,4)],12)
=> ([(0,11),(1,10),(2,9),(3,8),(4,8),(4,9),(4,10),(5,8),(5,9),(5,11),(6,8),(6,10),(6,11),(7,9),(7,10),(7,11)],12)
=> [1,3,3,1,3,1] => ?
=> ? = 12 + 1
([(0,11),(1,10),(2,10),(2,13),(3,11),(3,14),(4,13),(4,14),(6,8),(7,9),(8,5),(9,5),(10,6),(11,7),(12,8),(12,9),(13,6),(13,12),(14,7),(14,12)],15)
=> ([(0,11),(1,10),(2,8),(2,9),(3,10),(3,13),(4,11),(4,14),(5,13),(5,14),(6,8),(6,10),(6,13),(7,9),(7,11),(7,14),(8,12),(9,12),(12,13),(12,14)],15)
=> [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] => ?
=> ? = 15 + 1
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8)
=> ([(0,7),(1,5),(1,7),(2,4),(2,7),(3,4),(3,5),(4,6),(5,6),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 8 + 1
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,6),(1,2),(1,3),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? => ?
=> ? = 8 + 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,7),(4,5),(4,7),(5,6)],8)
=> ? => ?
=> ? = 8 + 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,1),(0,7),(1,6),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? => ?
=> ? = 8 + 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1),(0,7),(1,6),(2,5),(2,7),(3,5),(3,7),(4,6),(4,7),(5,6)],8)
=> ? => ?
=> ? = 8 + 1
([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,7),(5,7),(6,7)],8)
=> ? => ?
=> ? = 8 + 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,7),(3,5),(3,7),(4,5),(4,6)],8)
=> ? => ?
=> ? = 8 + 1
([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ([(0,6),(1,2),(1,3),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? => ?
=> ? = 8 + 1
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> [1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 8 + 1
([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,4),(1,2),(1,5),(2,7),(3,5),(3,6),(4,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 8 + 1
([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ([(0,3),(0,7),(1,2),(1,7),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? => ?
=> ? = 8 + 1
([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7)],8)
=> [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 8 + 1
([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ([(0,6),(0,7),(1,2),(1,3),(2,5),(3,4),(4,6),(5,7)],8)
=> [1,2,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 8 + 1
([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ([(0,5),(1,4),(2,6),(2,7),(3,6),(3,7),(4,6),(5,7)],8)
=> [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 8 + 1
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,7),(5,7),(6,7)],8)
=> ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6)],8)
=> [1,3,3,1] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 8 + 1
([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,4),(1,2),(1,5),(2,7),(3,5),(3,6),(4,6),(5,7),(6,7)],8)
=> [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 8 + 1
([(0,4),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(4,1),(4,2),(4,3),(5,8),(6,8),(7,8)],9)
=> ([(0,8),(1,2),(1,3),(1,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8)],9)
=> ? => ?
=> ? = 9 + 1
([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1),(0,8),(1,6),(2,5),(2,8),(3,4),(3,8),(4,6),(4,7),(5,6),(5,7),(7,8)],9)
=> ? => ?
=> ? = 9 + 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,7),(1,8),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8)],9)
=> ? => ?
=> ? = 9 + 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,4),(0,8),(1,4),(1,8),(2,5),(2,8),(3,5),(3,6),(4,6),(5,7),(6,7),(7,8)],9)
=> ? => ?
=> ? = 9 + 1
([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ([(0,1),(0,2),(1,8),(2,8),(3,4),(3,6),(4,7),(5,6),(5,8),(6,7),(7,8)],9)
=> ? => ?
=> ? = 9 + 1
([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ([(0,1),(0,2),(1,8),(2,8),(3,4),(3,6),(4,7),(5,6),(5,8),(6,7),(7,8)],9)
=> ? => ?
=> ? = 9 + 1
([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9)
=> ([(0,8),(1,4),(1,8),(2,3),(2,6),(3,7),(4,5),(4,6),(5,7),(5,8),(6,7)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 + 1
([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9)
=> ([(0,7),(1,3),(1,8),(2,7),(2,8),(3,5),(4,5),(4,6),(5,8),(6,7),(6,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 + 1
([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ? => ?
=> ? = 9 + 1
([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> ([(0,8),(1,4),(1,8),(2,3),(2,6),(3,7),(4,5),(4,6),(5,7),(5,8),(6,7)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 + 1
([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9)
=> ([(0,7),(1,3),(1,8),(2,7),(2,8),(3,5),(4,5),(4,6),(5,8),(6,7),(6,8)],9)
=> [1,1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9 + 1
([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> ([(0,8),(1,2),(1,3),(1,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8)],9)
=> ? => ?
=> ? = 9 + 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> [1,1,1,3,1,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 8 + 1
([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(0,5),(0,9),(1,4),(1,8),(2,4),(2,7),(2,8),(3,5),(3,6),(3,9),(4,6),(5,7),(6,7),(6,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 10 + 1
([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,5),(0,8),(1,2),(1,3),(1,9),(2,4),(2,7),(3,7),(3,8),(4,6),(4,9),(5,6),(5,9),(6,7),(6,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 10 + 1
([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(0,9),(0,11),(1,8),(1,10),(2,6),(2,7),(2,8),(2,10),(3,5),(3,7),(3,8),(3,10),(4,5),(4,6),(4,8),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(10,11)],12)
=> ? => ?
=> ? = 12 + 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(0,9),(0,10),(1,4),(1,7),(1,10),(2,3),(2,6),(2,9),(3,8),(3,11),(4,8),(4,11),(5,6),(5,7),(5,9),(5,10),(6,8),(6,11),(7,8),(7,11),(9,11),(10,11)],12)
=> ? => ?
=> ? = 12 + 1
([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,8),(1,10),(2,4),(2,5),(2,7),(3,4),(3,5),(3,6),(4,8),(5,9),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10)],11)
=> ? => ?
=> ? = 11 + 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(0,11),(0,12),(1,4),(1,5),(1,11),(2,3),(2,9),(2,12),(3,8),(3,10),(4,7),(4,8),(4,10),(5,6),(5,8),(5,10),(6,9),(6,11),(6,12),(7,9),(7,11),(7,12),(8,9),(10,11),(10,12)],13)
=> ? => ?
=> ? = 13 + 1
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([(0,9),(0,10),(1,5),(1,6),(1,10),(2,3),(2,5),(2,6),(3,7),(3,8),(4,5),(4,6),(4,9),(4,10),(5,8),(6,7),(7,9),(7,10),(8,9),(8,10)],11)
=> ? => ?
=> ? = 11 + 1
([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(0,6),(0,9),(1,3),(1,4),(1,5),(2,3),(2,4),(2,9),(3,8),(4,7),(5,7),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ? => ?
=> ? = 10 + 1
([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(0,9),(0,10),(1,2),(1,3),(1,6),(2,5),(2,7),(3,7),(3,10),(4,7),(4,9),(4,10),(5,6),(5,8),(6,9),(6,10),(7,8),(8,9),(8,10)],11)
=> ? => ?
=> ? = 11 + 1
([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(0,5),(0,8),(1,4),(1,6),(2,6),(2,8),(3,4),(3,5),(3,8),(4,7),(5,7),(6,7),(7,8)],9)
=> ? => ?
=> ? = 9 + 1
([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(0,11),(0,12),(1,6),(1,7),(1,8),(2,7),(2,8),(2,10),(3,9),(3,11),(3,12),(4,5),(4,7),(4,8),(4,10),(5,9),(5,11),(5,12),(6,9),(6,11),(6,12),(7,12),(8,9),(9,10),(10,11),(10,12)],13)
=> ? => ?
=> ? = 13 + 1
([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(0,10),(0,12),(1,9),(1,10),(1,12),(2,3),(2,8),(2,12),(3,6),(3,11),(4,5),(4,6),(4,11),(5,9),(5,10),(5,12),(6,8),(6,9),(7,8),(7,9),(7,10),(7,12),(8,11),(9,11),(10,11),(11,12)],13)
=> ? => ?
=> ? = 13 + 1
Description
Number of indecomposable projective modules with injective dimension smaller than or equal to the dominant dimension in the Nakayama algebra corresponding to the Dyck path.
The following 45 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001641The number of ascent tops in the flattened set partition such that all smaller elements appear before. St001746The coalition number of a graph. St001645The pebbling number of a connected graph. St000719The number of alignments in a perfect matching. St000189The number of elements in the poset. St000987The number of positive eigenvalues of the Laplacian matrix of the graph. St000718The largest Laplacian eigenvalue of a graph if it is integral. St001342The number of vertices in the center of a graph. St000144The pyramid weight of the Dyck path. St000229Sum of the difference between the maximal and the minimal elements of the blocks plus the number of blocks of a set partition. St001018Sum of projective dimension of the indecomposable injective modules of the Nakayama algebra corresponding to the Dyck path. St001240The number of indecomposable modules e_i J^2 that have injective dimension at most one in the corresponding Nakayama algebra St001300The rank of the boundary operator in degree 1 of the chain complex of the order complex of the poset. St001650The order of Ringel's homological bijection associated to the linear Nakayama algebra corresponding to the Dyck path. St000967The value p(1) for the Coxeterpolynomial p of the corresponding LNakayama algebra. St001218Smallest index k greater than or equal to one such that the Coxeter matrix C of the corresponding Nakayama algebra has C^k=1. St001723The differential of a graph. St001724The 2-packing differential of a graph. St000171The degree of the graph. St001120The length of a longest path in a graph. St001707The length of a longest path in a graph such that the remaining vertices can be partitioned into two sets of the same size without edges between them. St001622The number of join-irreducible elements of a lattice. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001725The harmonious chromatic number of a graph. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St000147The largest part of an integer partition. St000380Half of the maximal perimeter of a rectangle fitting into the diagram of an integer partition. St000384The maximal part of the shifted composition of an integer partition. St000784The maximum of the length and the largest part of the integer partition. St001615The number of join prime elements of a lattice. St001617The dimension of the space of valuations of a lattice. St000093The cardinality of a maximal independent set of vertices of a graph. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000186The sum of the first row in a Gelfand-Tsetlin pattern. St000259The diameter of a connected graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St000273The domination number of a graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St000916The packing number of a graph. St001286The annihilation number of a graph. St001322The size of a minimal independent dominating set in a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001339The irredundance number of a graph. St001829The common independence number of a graph.