Your data matches 36 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00109: Permutations descent wordBinary words
St000326: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,2] => 0 => 2
[2]
=> [1,1,0,0,1,0]
=> [2,1,3] => 10 => 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => 01 => 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 100 => 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => 00 => 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 010 => 2
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => 1000 => 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 010 => 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 101 => 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 001 => 3
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => 0100 => 2
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1,2,3,4,6] => 10000 => 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => 0100 => 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 100 => 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 010 => 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 001 => 3
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => 0010 => 3
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => 01000 => 2
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5,7] => 100000 => 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,1,2,3,6] => 01000 => 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => 1010 => 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => 0100 => 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => 1001 => 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 000 => 4
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => 0101 => 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 1010 => 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => 0010 => 3
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,2,3,4] => 00100 => 3
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,2,3,4,5,6] => 010000 => 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,1,2,3,4,7] => 010000 => 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,5,2,3,6] => 10100 => 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,5,1,2,4,6] => 01000 => 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => 1000 => 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 0010 => 3
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => 0100 => 2
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 0101 => 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 1001 => 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 0001 => 4
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,6,3,4] => 01010 => 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => 0010 => 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,2,3,5] => 00100 => 3
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,2,3,4,5] => 001000 => 3
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,6,2,3,4,7] => 101000 => 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,1,2,3,5,7] => 010000 => 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,1,2,5,3,6] => 10010 => 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,1,2,6] => 00100 => 3
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,1,3,4,6] => 01000 => 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,1,2,3,6,5] => 10001 => 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 0100 => 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 1010 => 1
Description
The position of the first one in a binary word after appending a 1 at the end. Regarding the binary word as a subset of $\{1,\dots,n,n+1\}$ that contains $n+1$, this is the minimal element of the set.
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00071: Permutations descent compositionInteger compositions
St000382: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,2] => [2] => 2
[2]
=> [1,1,0,0,1,0]
=> [2,1,3] => [1,2] => 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => [2,1] => 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [1,3] => 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => [3] => 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [2,2] => 2
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [1,4] => 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,2] => 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,1] => 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,1] => 3
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [2,3] => 2
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1,2,3,4,6] => [1,5] => 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [2,3] => 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,3] => 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [2,2] => 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [3,1] => 3
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [3,2] => 3
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => [2,4] => 2
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5,7] => [1,6] => 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,1,2,3,6] => [2,4] => 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [1,2,2] => 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [2,3] => 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [1,3,1] => 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4] => 4
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [2,2,1] => 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [1,2,2] => 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [3,2] => 3
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,2,3,4] => [3,3] => 3
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,2,3,4,5,6] => [2,5] => 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,1,2,3,4,7] => [2,5] => 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,5,2,3,6] => [1,2,3] => 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,5,1,2,4,6] => [2,4] => 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [1,4] => 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [3,2] => 3
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [2,3] => 2
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,2,1] => 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,3,1] => 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [4,1] => 4
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,6,3,4] => [2,2,2] => 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [3,2] => 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,2,3,5] => [3,3] => 3
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,2,3,4,5] => [3,4] => 3
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,6,2,3,4,7] => [1,2,4] => 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,1,2,3,5,7] => [2,5] => 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,1,2,5,3,6] => [1,3,2] => 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,1,2,6] => [3,3] => 3
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,1,3,4,6] => [2,4] => 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,1,2,3,6,5] => [1,4,1] => 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,3] => 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,2] => 1
Description
The first part of an integer composition.
Matching statistic: St000745
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00059: Permutations Robinson-Schensted insertion tableauStandard tableaux
St000745: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [2,1] => [[1],[2]]
=> 2
[2]
=> [1,1,0,0,1,0]
=> [3,1,2] => [[1,2],[3]]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => [[1,3],[2]]
=> 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [[1,2,3],[4]]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => [[1],[2],[3]]
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [[1,3,4],[2]]
=> 2
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [[1,2,3,4],[5]]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [[1,3],[2],[4]]
=> 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [[1,2],[3,4]]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [[1,4],[2],[3]]
=> 3
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [[1,3,4,5],[2]]
=> 2
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => [[1,2,3,4,5],[6]]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [[1,3,4],[2],[5]]
=> 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [[1,2],[3],[4]]
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [[1,3],[2],[4]]
=> 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [[1,4],[2],[3]]
=> 3
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [[1,4,5],[2],[3]]
=> 3
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [[1,3,4,5,6],[2]]
=> 2
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,6] => [[1,2,3,4,5,6],[7]]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [6,2,1,3,4,5] => [[1,3,4,5],[2],[6]]
=> 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [[1,2,4],[3],[5]]
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [[1,3,4],[2],[5]]
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [[1,2,3],[4,5]]
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [[1],[2],[3],[4]]
=> 4
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [[1,3,5],[2],[4]]
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [[1,2,5],[3,4]]
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [[1,4,5],[2],[3]]
=> 3
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => [[1,4,5,6],[2],[3]]
=> 3
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => [[1,3,4,5,6,7],[2]]
=> 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => [[1,3,4,5,6],[2],[7]]
=> 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [6,3,1,2,4,5] => [[1,2,4,5],[3],[6]]
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [6,2,3,1,4,5] => [[1,3,4,5],[2],[6]]
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [[1,2,3],[4],[5]]
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [[1,4],[2],[3],[5]]
=> 3
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [[1,3,4],[2],[5]]
=> 2
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [[1,3],[2,5],[4]]
=> 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [[1,2],[3,5],[4]]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [[1,5],[2],[3],[4]]
=> 4
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => [[1,3,5,6],[2],[4]]
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [[1,4,5],[2],[3]]
=> 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,6,1] => [[1,4,5,6],[2],[3]]
=> 3
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => [[1,4,5,6,7],[2],[3]]
=> 3
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [7,3,1,2,4,5,6] => [[1,2,4,5,6],[3],[7]]
=> 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => [[1,3,4,5,6],[2],[7]]
=> 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [[1,2,3,5],[4],[6]]
=> 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [6,3,2,1,4,5] => [[1,4,5],[2],[3],[6]]
=> 3
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,1,5] => [[1,3,4,5],[2],[6]]
=> 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [5,6,1,2,3,4] => [[1,2,3,4],[5,6]]
=> 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [[1,3],[2],[4],[5]]
=> 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [[1,2],[3,4],[5]]
=> 1
Description
The index of the last row whose first entry is the row number in a standard Young tableau.
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00240: Permutations weak exceedance partitionSet partitions
St000971: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [2,1] => {{1,2}}
=> 2
[2]
=> [1,1,0,0,1,0]
=> [1,3,2] => {{1},{2,3}}
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [2,1,3] => {{1,2},{3}}
=> 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => {{1},{2},{3,4}}
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [2,3,1] => {{1,2,3}}
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => {{1,2},{3},{4}}
=> 2
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => {{1,3,4},{2}}
=> 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => {{1},{2,3},{4}}
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => {{1,2,4},{3}}
=> 3
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => {{1,2},{3},{4},{5}}
=> 2
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,2,3,4,6,5] => {{1},{2},{3},{4},{5,6}}
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => {{1,4,5},{2},{3}}
=> 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => {{1},{2,3,4}}
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => {{1,2},{3,4}}
=> 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => {{1,2,3},{4}}
=> 3
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => {{1,2,5},{3},{4}}
=> 3
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => {{1,2},{3},{4},{5},{6}}
=> 2
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,2,3,4,5,7,6] => {{1},{2},{3},{4},{5},{6,7}}
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [5,1,2,3,6,4] => {{1,5,6},{2},{3},{4}}
=> 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3] => {{1},{2,4,5},{3}}
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => {{1,3},{2},{4,5}}
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => {{1,2,3,4}}
=> 4
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => {{1,2},{3,5},{4}}
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => {{1,2,4},{3},{5}}
=> 3
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,6,1,3,4,5] => {{1,2,6},{3},{4},{5}}
=> 3
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => {{1,2},{3},{4},{5},{6},{7}}
=> 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,7,5] => {{1,6,7},{2},{3},{4},{5}}
=> 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,5,2,3,6,4] => {{1},{2,5,6},{3},{4}}
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [4,1,2,3,6,5] => {{1,4},{2},{3},{5,6}}
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => {{1},{2},{3,4,5}}
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => {{1,3},{2,4,5}}
=> 3
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => {{1,2},{3},{4,5}}
=> 2
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => {{1,3,4},{2},{5}}
=> 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => {{1},{2,3,5},{4}}
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => {{1,2,4},{3,5}}
=> 4
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [2,1,6,3,4,5] => {{1,2},{3,6},{4},{5}}
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => {{1,2,3},{4},{5}}
=> 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,5,1,3,4,6] => {{1,2,5},{3},{4},{6}}
=> 3
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,7,1,3,4,5,6] => {{1,2,7},{3},{4},{5},{6}}
=> 3
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,6,2,3,4,7,5] => {{1},{2,6,7},{3},{4},{5}}
=> 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [5,1,2,3,4,7,6] => {{1,5},{2},{3},{4},{6,7}}
=> 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,2,5,3,6,4] => {{1},{2},{3,5,6},{4}}
=> 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [4,5,1,2,6,3] => {{1,4},{2,5,6},{3}}
=> 3
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [3,1,2,4,6,5] => {{1,3},{2},{4},{5,6}}
=> 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,2,3,5,4,6] => {{1},{2},{3},{4,5},{6}}
=> 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => {{1,3,4,5},{2}}
=> 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => {{1},{2,3},{4,5}}
=> 1
Description
The smallest closer of a set partition. A closer (or right hand endpoint) of a set partition is a number that is maximal in its block. For this statistic, singletons are considered as closers. In other words, this is the smallest among the maximal elements of the blocks.
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
St000011: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 3
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 3
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 4
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> 3
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> 3
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 3
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[7,3,3,2,1]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 4
Description
The number of touch points (or returns) of a Dyck path. This is the number of points, excluding the origin, where the Dyck path has height 0.
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00132: Dyck paths switch returns and last double riseDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
St000439: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 3 = 2 + 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 3 = 2 + 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 4 = 3 + 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 4 = 3 + 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 4 = 3 + 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 4 = 3 + 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 4 = 3 + 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 5 = 4 + 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 4 = 3 + 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 4 = 3 + 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> 4 = 3 + 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[7,6,5,4,2,1]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 3 + 1
Description
The position of the first down step of a Dyck path.
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00028: Dyck paths reverseDyck paths
St000678: Dyck paths ⟶ ℤResult quality: 89% values known / values provided: 98%distinct values known / distinct values provided: 89%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 2
[2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 3
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 3
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 3
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 4
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 3
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> 3
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 3
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[5,4,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0,1,0]
=> ? = 2
[6,5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 7
[6,5,4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 7
[7,7,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 8
[8,8,7,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9
[8,7,6,5,4,3,2]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[9,8,7,6,5,4,3,2]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
Description
The number of up steps after the last double rise of a Dyck path.
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
St000025: Dyck paths ⟶ ℤResult quality: 78% values known / values provided: 96%distinct values known / distinct values provided: 78%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 2
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 3
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 3
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 3
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 4
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> 3
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> 3
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 3
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[7,3,3,2,1]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,1,0,0]
=> ? = 4
[5,4,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 2
[7,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 8
[6,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 7
[7,5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 6
[6,5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 7
[7,5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> ? = 6
[6,5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> ? = 7
[6,5,4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> ? = 7
[7,6,5,4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[7,6,5,4,3,2]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1
[7,6,5,4,3,1]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 2
[7,6,5,4,2,1]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 3
[7,6,5,4,3]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[7,6,5,4,2]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[7,6,5,4,1]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[7,7,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 8
[8,8,7,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 9
[8,7,6,5,4,3,2]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1
[9,8,7,6,5,4,3,2]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 1
Description
The number of initial rises of a Dyck path. In other words, this is the height of the first peak of $D$.
Matching statistic: St001050
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00028: Dyck paths reverseDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
St001050: Set partitions ⟶ ℤResult quality: 78% values known / values provided: 96%distinct values known / distinct values provided: 78%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> {{1},{2}}
=> 2
[2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 2
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> 3
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> 2
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2,3,4,5,6}}
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 3
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> {{1,2,4},{3},{5}}
=> 3
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> {{1,2,3,4,5},{6}}
=> 2
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> {{1},{2,3,4,5,6,7}}
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> {{1},{2,3,4,6},{5}}
=> 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 4
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> {{1,4},{2,3},{5}}
=> 3
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> {{1,2,3,5},{4},{6}}
=> 3
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> {{1,2,3,4,5,6},{7}}
=> 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> {{1},{2,3,4,5,7},{6}}
=> 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> {{1},{2,3,5,6},{4}}
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> {{1},{2,3,6},{4,5}}
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> 3
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 2
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> 4
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> {{1,2,4,5},{3},{6}}
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> {{1,2,5},{3,4},{6}}
=> 3
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> {{1,2,3,4,6},{5},{7}}
=> 3
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> {{1},{2,3,4,6,7},{5}}
=> 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> {{1},{2,3,4,7},{5,6}}
=> 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> {{1},{2,4,5,6},{3}}
=> 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> {{1},{2,3,6},{4},{5}}
=> 3
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> {{1},{2,6},{3,4,5}}
=> 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> {{1,2},{3,4,5,6}}
=> 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[7,3,3,2,1]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> {{1},{2,3,8},{4,5},{6},{7}}
=> ? = 4
[5,4,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0,1,0]
=> {{1,2,6,7},{3},{4},{5},{8}}
=> ? = 2
[7,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5},{6},{7},{8}}
=> ? = 8
[6,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5},{6},{7},{8}}
=> ? = 7
[7,5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> {{1},{2,3},{4},{5},{6},{7},{8}}
=> ? = 6
[6,5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> {{1,3},{2},{4},{5},{6},{7},{8}}
=> ? = 7
[7,5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> {{1},{2,4},{3},{5},{6},{7},{8}}
=> ? = 6
[6,5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> {{1,4},{2},{3},{5},{6},{7},{8}}
=> ? = 7
[6,5,4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> {{1,5},{2},{3},{4},{6},{7},{8}}
=> ? = 7
[7,6,5,4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3},{4},{5},{6,7},{8}}
=> ? = 2
[7,6,5,4,3,2]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4},{5},{6},{7,8}}
=> ? = 1
[7,6,5,4,3,1]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3},{4},{5},{6,8},{7}}
=> ? = 2
[7,6,5,4,2,1]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> {{1},{2},{3},{4},{5,8},{6},{7}}
=> ? = 3
[7,6,5,4,3]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3},{4},{5},{6,7,8}}
=> ? = 1
[7,6,5,4,2]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> {{1},{2},{3},{4},{5,7,8},{6}}
=> ? = 1
[7,6,5,4,1]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> {{1},{2},{3},{4},{5,6,8},{7}}
=> ? = 2
[7,7,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5},{6},{7},{8},{9}}
=> ? = 8
[8,8,7,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5},{6},{7},{8},{9},{10}}
=> ? = 9
[8,7,6,5,4,3,2]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4},{5},{6},{7},{8,9}}
=> ? = 1
[9,8,7,6,5,4,3,2]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4},{5},{6},{7},{8},{9,10}}
=> ? = 1
Description
The number of terminal closers of a set partition. A closer of a set partition is a number that is maximal in its block. In particular, a singleton is a closer. This statistic counts the number of terminal closers. In other words, this is the number of closers such that all larger elements are also closers.
Matching statistic: St000069
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00242: Dyck paths Hessenberg posetPosets
St000069: Posets ⟶ ℤResult quality: 87% values known / values provided: 87%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> ([],2)
=> 2
[2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ([],3)
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> 2
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> 3
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> 2
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> 3
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 3
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(3,5),(4,3),(5,1),(5,2)],6)
=> 2
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,5),(3,4)],6)
=> 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 4
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> 3
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4)],6)
=> 3
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ([(0,5),(3,4),(4,6),(5,3),(6,1),(6,2)],7)
=> 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(0,6),(1,3),(1,6),(2,4),(2,6),(3,4),(3,5),(6,5)],7)
=> 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> ([(0,5),(1,3),(1,5),(2,3),(2,5),(3,4),(5,4)],6)
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> ([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2),(5,3)],6)
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(2,4),(3,4)],5)
=> 3
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> 2
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(2,3),(2,4)],5)
=> 4
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> ([(0,5),(1,2),(1,5),(2,3),(2,4),(5,3),(5,4)],6)
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(2,5),(3,1),(3,4),(3,5)],6)
=> 3
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(6,3),(6,4)],7)
=> 3
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(0,6),(1,3),(1,6),(2,5),(2,6),(3,5),(5,4),(6,4)],7)
=> 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ([(0,5),(0,6),(1,5),(1,6),(2,4),(5,2),(5,3),(6,3),(6,4)],7)
=> 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> ([(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(1,5),(4,2),(5,3),(5,4)],6)
=> 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(1,4),(2,4),(3,4)],5)
=> 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 1
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,6),(1,5),(1,6),(2,5),(5,3),(5,4),(6,3),(6,4)],7)
=> ? = 2
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,1),(3,6)],7)
=> ? = 3
[2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(2,5),(2,6),(3,1),(3,5),(3,6),(4,2),(4,3)],7)
=> ? = 3
[5,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(1,4),(4,6),(5,2),(5,3),(6,5)],7)
=> ? = 2
[3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,5),(1,6),(2,4),(3,1),(3,4),(4,5),(4,6)],7)
=> ? = 2
[6,2,2,1]
=> [1,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(5,3),(6,2),(6,3)],7)
=> ? = 3
[4,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(0,6),(1,4),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
[4,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(1,2),(1,6),(2,4),(2,5),(4,3),(5,3),(6,4),(6,5)],7)
=> ? = 1
[3,3,3,1,1,1]
=> [1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,2),(4,1),(4,3)],7)
=> ? = 2
[6,3,3,1]
=> [1,1,1,0,1,0,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0,1,1,0,0]
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(3,6),(4,6),(5,2),(5,6)],7)
=> ? = 2
[5,5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> ([(0,3),(0,4),(3,6),(4,6),(5,1),(6,2),(6,5)],7)
=> ? = 2
[5,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> ([(0,5),(0,6),(1,4),(4,5),(4,6),(6,2),(6,3)],7)
=> ? = 3
[4,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> ([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 1
[6,3,3,2]
=> [1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,2)],7)
=> ? = 1
[5,5,2,2]
=> [1,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(1,5),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1)],7)
=> ? = 1
[5,3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(1,5),(1,6),(3,5),(3,6),(4,2),(5,4),(6,4)],7)
=> ? = 1
[5,3,3,1,1,1]
=> [1,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(1,6),(2,6),(3,4),(3,5),(6,4),(6,5)],7)
=> ? = 2
[5,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(1,2),(2,6),(6,3),(6,4),(6,5)],7)
=> ? = 3
[4,4,4,1,1]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> ([(0,4),(2,5),(2,6),(3,5),(3,6),(4,2),(4,3),(6,1)],7)
=> ? = 2
[4,4,3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,1)],7)
=> ? = 2
[4,4,2,2,2]
=> [1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(4,6),(5,6)],7)
=> ? = 1
[4,4,2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,1),(4,2)],7)
=> ? = 3
[4,3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[6,4,4,1]
=> [1,1,1,0,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(3,6),(4,2),(4,6),(5,2),(5,6)],7)
=> ? = 2
[6,3,3,2,1]
=> [1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(6,2)],7)
=> ? = 4
[6,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 1
[5,4,4,1,1]
=> [1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,1,0,0]
=> ([(0,5),(0,6),(1,3),(1,4),(3,5),(3,6),(4,5),(4,6),(6,2)],7)
=> ? = 2
[5,3,3,3,1]
=> [1,1,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> ([(0,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(5,3),(6,3)],7)
=> ? = 2
[5,3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ? = 1
[4,4,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,1)],7)
=> ? = 3
[4,3,3,3,1,1]
=> [1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
[7,3,3,2,1]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,1,0,0]
=> ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(6,3),(7,2),(7,3)],8)
=> ? = 4
[6,5,2,2,1]
=> [1,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0,1,1,1,0,0,0]
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(6,3)],7)
=> ? = 3
[6,4,4,2]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(3,2),(4,3),(5,3),(6,2)],7)
=> ? = 1
[6,3,3,2,1,1]
=> [1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(6,2),(6,3)],7)
=> ? = 4
[5,4,4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> ([(0,6),(1,2),(1,3),(2,6),(3,6),(6,4),(6,5)],7)
=> ? = 2
[5,4,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> ([(0,6),(0,7),(1,6),(1,7),(2,5),(3,4),(3,5),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[5,4,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(3,4),(3,5),(3,6)],7)
=> ? = 3
[5,3,3,3,2]
=> [1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,1,0,0]
=> ([(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 1
[5,3,3,3,1,1]
=> [1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,2),(1,5),(1,6),(2,5),(2,6),(5,3),(5,4),(6,3),(6,4)],7)
=> ? = 2
[6,4,4,2,1]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0,1,1,0,0]
=> ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(5,2),(6,2)],7)
=> ? = 3
[5,4,4,2,2]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> ([(0,5),(0,6),(1,2),(1,3),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> ? = 1
[5,4,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3
[5,4,4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
[6,4,4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(5,2),(5,3),(6,2),(6,3)],7)
=> ? = 3
[6,4,3,3,2]
=> [1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 1
[6,4,4,3,1]
=> [1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(3,6),(4,6),(5,6)],7)
=> ? = 2
[6,5,3,3,1]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(5,3),(6,3)],7)
=> ? = 2
[6,5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7)],8)
=> ? = 7
[7,5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> ([(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7)],8)
=> ? = 6
Description
The number of maximal elements of a poset.
The following 26 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000654The first descent of a permutation. St000759The smallest missing part in an integer partition. St000068The number of minimal elements in a poset. St000989The number of final rises of a permutation. St000740The last entry of a permutation. St000542The number of left-to-right-minima of a permutation. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000054The first entry of the permutation. St000007The number of saliances of the permutation. St000990The first ascent of a permutation. St000066The column of the unique '1' in the first row of the alternating sign matrix. St000297The number of leading ones in a binary word. St000738The first entry in the last row of a standard tableau. St000838The number of terminal right-hand endpoints when the vertices are written in order. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St000061The number of nodes on the left branch of a binary tree. St000314The number of left-to-right-maxima of a permutation. St000991The number of right-to-left minima of a permutation. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St000051The size of the left subtree of a binary tree. St000133The "bounce" of a permutation. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000338The number of pixed points of a permutation.