Your data matches 119 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00198: Posets incomparability graphGraphs
Mp00275: Graphs to edge-partition of connected componentsInteger partitions
St000897: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> ([],1)
=> []
=> 0
([],2)
=> ([(0,1)],2)
=> [1]
=> 1
([(0,1)],2)
=> ([],2)
=> []
=> 0
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [2]
=> 1
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> [1]
=> 1
([(0,2),(2,1)],3)
=> ([],3)
=> []
=> 0
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1]
=> 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [6]
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [5]
=> 1
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> [2]
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1]
=> 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [3]
=> 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> [1]
=> 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [1]
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [3]
=> 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [3]
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [1,1]
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> []
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [2]
=> 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [10]
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [9]
=> 1
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> 1
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4]
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [1]
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4]
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [3]
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 1
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [8]
=> 1
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> [1,1]
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [7]
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [3]
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [6]
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [7]
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [6]
=> 1
Description
The number of different multiplicities of parts of an integer partition.
Mp00198: Posets incomparability graphGraphs
Mp00117: Graphs Ore closureGraphs
Mp00203: Graphs coneGraphs
St001335: Graphs ⟶ ℤResult quality: 67% values known / values provided: 69%distinct values known / distinct values provided: 67%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([(0,1)],2)
=> 0
([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,1)],2)
=> ([],2)
=> ([],2)
=> ([(0,2),(1,2)],3)
=> 0
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(2,1)],3)
=> ([],3)
=> ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 0
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,1),(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,6),(6,1),(6,2)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(6,1)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,1)],7)
=> ([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,5),(4,6),(6,1)],7)
=> ([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,7),(2,5),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,5),(6,1),(6,5)],7)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,7),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,4),(0,5),(4,6),(5,6),(6,1),(6,2)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,1),(4,5),(4,6)],7)
=> ([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7)
=> ([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ([(0,7),(1,5),(1,7),(2,3),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,2),(0,3),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7)
=> ([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,7),(2,3),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,2),(0,3),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,2),(0,3),(0,4),(3,5),(3,6),(4,5),(4,6),(6,1)],7)
=> ([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,2),(0,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,2),(0,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> ([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7)
=> ([(0,7),(1,2),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,7),(3,4),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,4),(0,5),(4,6),(5,6),(6,1),(6,2),(6,3)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,4),(3,5),(3,6),(4,5),(4,6),(6,1),(6,2)],7)
=> ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6),(6,1)],7)
=> ([(3,6),(4,5)],7)
=> ([(3,6),(4,5)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,4),(3,5),(3,6),(4,5),(4,6),(5,2),(6,1)],7)
=> ([(1,2),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,2),(0,3),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1),(6,5)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,2),(1,7),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,2),(1,5),(1,6),(2,5),(2,6),(5,3),(5,4),(6,3),(6,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> ([(0,7),(1,6),(1,7),(2,5),(2,7),(3,4),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
([(0,4),(0,5),(4,6),(5,1),(5,6),(6,2),(6,3)],7)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,7),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,4),(0,5),(4,6),(5,1),(5,2),(5,6),(6,3)],7)
=> ([(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,2),(0,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(6,1)],7)
=> ([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(5,3),(6,3)],7)
=> ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,3),(0,4),(3,5),(3,6),(4,2),(4,5),(4,6),(6,1)],7)
=> ([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,4),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,2),(0,3),(2,4),(2,5),(3,1),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,5),(1,7),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,2),(0,3),(2,4),(2,5),(2,6),(3,1),(3,4),(3,5),(3,6)],7)
=> ([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,1),(0,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,4),(0,5),(1,6),(4,6),(5,1),(6,2),(6,3)],7)
=> ([(2,3),(4,6),(5,6)],7)
=> ([(2,3),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,6),(1,6),(6,2),(6,3),(6,4),(6,5)],7)
=> ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,6),(1,6),(2,6),(6,3),(6,4),(6,5)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7)
=> ([(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,7),(3,4),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,6),(1,6),(2,6),(3,6),(6,4),(6,5)],7)
=> ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,6),(1,6),(2,6),(4,5),(6,3),(6,4)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? = 1
([(0,6),(1,6),(2,6),(3,5),(6,4),(6,5)],7)
=> ([(0,6),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(0,7),(1,2),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(6,3)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(6,4),(6,5)],7)
=> ([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,7),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,1),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,6),(1,6),(2,6),(3,5),(4,5),(6,3),(6,4)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,6),(1,5),(2,5),(3,6),(4,6),(5,3),(5,4)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
([(0,5),(1,5),(2,6),(3,6),(4,6),(5,2),(5,3),(5,4)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
Description
The cardinality of a minimal cycle-isolating set of a graph. Let $\mathcal F$ be a set of graphs. A set of vertices $S$ is $\mathcal F$-isolating, if the subgraph induced by the vertices in the complement of the closed neighbourhood of $S$ does not contain any graph in $\mathcal F$. This statistic returns the cardinality of the smallest isolating set when $\mathcal F$ contains all cycles.
Mp00198: Posets incomparability graphGraphs
Mp00152: Graphs Laplacian multiplicitiesInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000260: Graphs ⟶ ℤResult quality: 57% values known / values provided: 57%distinct values known / distinct values provided: 67%
Values
([],1)
=> ([],1)
=> [1] => ([],1)
=> 0
([],2)
=> ([(0,1)],2)
=> [1,1] => ([(0,1)],2)
=> 1
([(0,1)],2)
=> ([],2)
=> [2] => ([],2)
=> ? = 0
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> [1,2] => ([(1,2)],3)
=> ? = 1
([(0,2),(2,1)],3)
=> ([],3)
=> [3] => ([],3)
=> ? = 0
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> [1,2] => ([(1,2)],3)
=> ? = 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> ? = 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> [1,3] => ([(2,3)],4)
=> ? = 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> [1,3] => ([(2,3)],4)
=> ? = 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> [1,3] => ([(2,3)],4)
=> ? = 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> ? = 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> [2,2] => ([(1,3),(2,3)],4)
=> ? = 1
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> [4] => ([],4)
=> ? = 0
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [2,3] => ([(2,4),(3,4)],5)
=> ? = 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> [1,4] => ([(3,4)],5)
=> ? = 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> [2,3] => ([(2,4),(3,4)],5)
=> ? = 1
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [2,3] => ([(2,4),(3,4)],5)
=> ? = 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> [2,3] => ([(2,4),(3,4)],5)
=> ? = 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> [2,3] => ([(2,4),(3,4)],5)
=> ? = 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> [1,4] => ([(3,4)],5)
=> ? = 1
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> [2,3] => ([(2,4),(3,4)],5)
=> ? = 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
([(1,4),(3,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> [1,4] => ([(3,4)],5)
=> ? = 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 1
([(0,3),(1,4),(4,2)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> [5] => ([],5)
=> ? = 0
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> [1,4] => ([(3,4)],5)
=> ? = 1
([(2,3),(2,4),(2,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(1,2),(1,3),(1,4),(1,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 1
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(1,2),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(2,3),(2,4),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(1,4),(1,5),(5,2),(5,3)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
([(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
Description
The radius of a connected graph. This is the minimum eccentricity of any vertex.
Mp00198: Posets incomparability graphGraphs
Mp00111: Graphs complementGraphs
Mp00274: Graphs block-cut treeGraphs
St000379: Graphs ⟶ ℤResult quality: 33% values known / values provided: 49%distinct values known / distinct values provided: 33%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 0 - 1
([],2)
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 0 = 1 - 1
([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> ([],1)
=> ? = 0 - 1
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ([],3)
=> 0 = 1 - 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([],2)
=> 0 = 1 - 1
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? = 0 - 1
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ([],4)
=> 0 = 1 - 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([],3)
=> 0 = 1 - 1
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 1 - 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> 0 = 1 - 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 1 - 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 1 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> 0 = 1 - 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ? = 1 - 1
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 0 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ([],5)
=> 0 = 1 - 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> ([],4)
=> 0 = 1 - 1
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0 = 1 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 0 = 1 - 1
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0 = 1 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0 = 1 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 0 = 1 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 1 - 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 0 = 1 - 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> 0 = 1 - 1
([(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> 0 = 1 - 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> 0 = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
([(0,4),(1,2),(1,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 0 = 1 - 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0 = 1 - 1
([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 1 - 1
([(0,3),(3,4),(4,1),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 0 - 1
([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 - 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
([(0,3),(0,4),(3,5),(4,5),(5,1),(5,2)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
([(0,2),(0,3),(2,4),(2,5),(3,4),(3,5),(5,1)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
([(0,3),(0,4),(3,5),(4,1),(4,5),(5,2)],6)
=> ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
([(0,2),(0,3),(2,4),(2,5),(3,1),(3,4),(3,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
([(0,5),(5,1),(5,2),(5,3),(5,4)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
([(0,4),(4,5),(5,1),(5,2),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
([(0,5),(1,5),(2,5),(3,5),(5,4)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ? = 1 - 1
Description
The number of Hamiltonian cycles in a graph. A Hamiltonian cycle in a graph $G$ is a subgraph (this is, a subset of the edges) that is a cycle which contains every vertex of $G$. Since it is unclear whether the graph on one vertex is Hamiltonian, the statistic is undefined for this graph.
Mp00198: Posets incomparability graphGraphs
Mp00274: Graphs block-cut treeGraphs
St000456: Graphs ⟶ ℤResult quality: 33% values known / values provided: 39%distinct values known / distinct values provided: 33%
Values
([],1)
=> ([],1)
=> ([],1)
=> ? = 0
([],2)
=> ([(0,1)],2)
=> ([],1)
=> ? = 1
([(0,1)],2)
=> ([],2)
=> ([],2)
=> ? = 0
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? = 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([],2)
=> ? = 1
([(0,2),(2,1)],3)
=> ([],3)
=> ([],3)
=> ? = 0
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([],2)
=> ? = 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 1
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? = 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([],3)
=> ? = 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([],3)
=> ? = 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([],3)
=> ? = 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? = 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ? = 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ? = 1
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],4)
=> ? = 0
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ? = 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([],4)
=> ? = 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ? = 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ? = 1
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ? = 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ? = 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ? = 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([],4)
=> ? = 1
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 1
([(0,4),(1,4),(2,3),(2,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 1
([(1,4),(2,3)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
([(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 1
([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ? = 1
([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
([(0,4),(1,2),(1,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 1
([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 1
([(0,4),(1,2),(1,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(1,4),(3,2),(4,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
([(1,2),(1,3),(1,4),(1,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
([(1,3),(1,4),(1,5),(5,2)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
([(1,2),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
([(1,2),(1,3),(1,4),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(1,4),(1,5),(5,2),(5,3)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
([(1,2),(1,3),(2,5),(3,5),(5,4)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
([(1,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
([(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(1,5),(5,2),(5,3),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(1,4),(4,5),(5,2),(5,3)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,5),(2,5),(5,3),(5,4)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(1,5),(2,5),(3,5),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
([(0,5),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(4,3)],6)
=> ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(5,3)],6)
=> ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
([(1,5),(2,5),(3,4),(5,3)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
([(0,5),(1,5),(2,4),(5,3),(5,4)],6)
=> ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
([(0,5),(1,5),(2,3),(2,5),(5,4)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,4),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
([(0,5),(1,2),(1,4),(3,5),(4,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
([(0,5),(1,5),(2,3),(2,4),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1
Description
The monochromatic index of a connected graph. This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path. For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Mp00198: Posets incomparability graphGraphs
Mp00243: Graphs weak duplicate orderPosets
St001890: Posets ⟶ ℤResult quality: 31% values known / values provided: 31%distinct values known / distinct values provided: 33%
Values
([],1)
=> ([],1)
=> ([],1)
=> ? = 0
([],2)
=> ([(0,1)],2)
=> ([],2)
=> 1
([(0,1)],2)
=> ([],2)
=> ([],1)
=> ? = 0
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([],2)
=> 1
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> ? = 0
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],3)
=> 1
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([],2)
=> 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],2)
=> 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2)],4)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([],4)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> ? = 0
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],4)
=> 1
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 1
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 1
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(2,3)],4)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(3,4)],5)
=> 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 1
([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> ? = 0
([(2,3),(2,4),(2,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ? = 1
([(1,2),(1,3),(1,4),(1,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(0,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ? = 1
([(0,3),(0,4),(0,5),(5,1),(5,2)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 1
([(1,2),(1,3),(1,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 1
([(0,2),(0,3),(0,4),(3,5),(4,1),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 1
([(0,1),(0,2),(0,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1
([(1,4),(1,5),(5,2),(5,3)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 1
([(0,4),(0,5),(5,1),(5,2),(5,3)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ? = 1
([(1,3),(1,4),(3,5),(4,2),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 1
([(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1
([(0,3),(0,4),(3,5),(4,1),(4,2),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 1
([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 1
([(0,2),(0,3),(2,4),(2,5),(3,1),(3,4),(3,5)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 1
([(0,1),(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1
([(1,5),(2,5),(5,3),(5,4)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1
([(0,5),(1,5),(5,2),(5,3),(5,4)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1
([(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ? = 1
([(0,5),(1,5),(2,5),(5,3),(5,4)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1
([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ? = 1
([(0,5),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4)],6)
=> ? = 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4)],6)
=> ? = 1
([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 1
([(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(4,5)],6)
=> ? = 1
([(0,5),(1,3),(1,5),(2,3),(2,5),(3,4),(5,4)],6)
=> ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ? = 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1
([(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 1
([(0,5),(1,5),(2,4),(5,3),(5,4)],6)
=> ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4)],6)
=> ? = 1
([(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4)],6)
=> ? = 1
([(0,5),(1,5),(2,3),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 1
([(0,5),(1,5),(2,3),(2,4)],6)
=> ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ? = 1
([(0,4),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,5),(2,3),(5,4)],6)
=> ? = 1
([(0,3),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? = 1
([(0,5),(1,5),(2,3),(2,4),(2,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ? = 1
([(0,5),(1,5),(2,3),(2,4),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 1
Description
The maximum magnitude of the Möbius function of a poset. The '''Möbius function''' of a poset is the multiplicative inverse of the zeta function in the incidence algebra. The Möbius value $\mu(x, y)$ is equal to the signed sum of chains from $x$ to $y$, where odd-length chains are counted with a minus sign, so this statistic is bounded above by the total number of chains in the poset.
Mp00205: Posets maximal antichainsLattices
Mp00193: Lattices to posetPosets
Mp00198: Posets incomparability graphGraphs
St000455: Graphs ⟶ ℤResult quality: 29% values known / values provided: 29%distinct values known / distinct values provided: 33%
Values
([],1)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 0 - 1
([],2)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 0 - 1
([],3)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 - 1
([(0,1),(0,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 - 1
([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0 - 1
([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 - 1
([],4)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 - 1
([(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 - 1
([(0,1),(0,2),(0,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 - 1
([(0,2),(0,3),(3,1)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
([(0,3),(3,1),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 - 1
([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 - 1
([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 - 1
([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0 - 1
([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
([],5)
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1 - 1
([(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 - 1
([(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 - 1
([(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 - 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 - 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 - 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 - 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
([(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
([(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 - 1
([(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 - 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 - 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 - 1
([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 - 1
([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
([(1,4),(2,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,4),(1,2),(1,3)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
([(0,3),(0,4),(1,2),(1,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
([(0,3),(1,2),(1,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,4),(0,5),(4,3),(5,1),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,3),(0,4),(3,2),(3,5),(4,1),(4,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,5),(1,5),(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
([(1,5),(2,5),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,5),(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,5),(1,5),(2,3),(2,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
([(0,4),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 0 = 1 - 1
([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
([(0,5),(1,5),(2,4),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
([(1,5),(2,3),(2,5),(3,4)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,5),(1,4),(1,5),(4,2),(4,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 0 = 1 - 1
([(0,4),(0,5),(1,4),(1,5),(4,3),(5,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(1,5),(2,3),(2,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
([(0,5),(1,3),(1,4),(1,5),(4,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(1,4),(2,5),(3,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,5),(1,2),(1,3),(1,4)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(1,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,3),(1,2),(1,4),(1,5),(3,4),(3,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(4,5)],6)
=> 0 = 1 - 1
([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(4,5)],6)
=> 0 = 1 - 1
([(0,5),(1,3),(1,4),(3,5),(4,2)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
([(1,4),(1,5),(2,3),(2,5)],6)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
([(0,4),(0,5),(1,2),(1,4),(1,5),(2,3)],6)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.
Matching statistic: St001737
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
St001737: Permutations ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 67%
Values
([],1)
=> [1]
=> [[1]]
=> [1] => 0
([],2)
=> [1,1]
=> [[1],[2]]
=> [2,1] => 1
([(0,1)],2)
=> [2]
=> [[1,2]]
=> [1,2] => 0
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 1
([(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> [3,1,2] => 1
([(0,1),(0,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> [3,1,2] => 1
([(0,2),(2,1)],3)
=> [3]
=> [[1,2,3]]
=> [1,2,3] => 0
([(0,2),(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> [3,1,2] => 1
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 1
([(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
([(1,2),(1,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
([(0,1),(0,2),(0,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
([(0,2),(0,3),(3,1)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 1
([(1,2),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 1
([(0,3),(3,1),(3,2)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 1
([(1,3),(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 1
([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 1
([(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 1
([(0,3),(2,1),(3,2)],4)
=> [4]
=> [[1,2,3,4]]
=> [1,2,3,4] => 0
([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => 1
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 1
([(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
([(2,3),(2,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
([(1,2),(1,3),(1,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(1,3),(1,4),(4,2)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 1
([(2,3),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(1,4),(4,2),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(2,4),(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
([(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 1
([(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
([(0,4),(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 1
([(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,1)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,1),(5,6)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
([(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,6),(6,1)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
([(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,1)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
([(0,1),(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
([(0,1),(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
([(0,1),(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
([(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,6)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(4,6)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
([(0,1),(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
([(0,2),(0,3),(0,4),(0,5),(4,6),(5,6),(6,1)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
([(0,2),(0,3),(0,4),(0,5),(4,6),(5,1),(5,6)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
([(0,1),(0,2),(0,3),(0,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
([(0,4),(0,5),(0,6),(6,1),(6,2),(6,3)],7)
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => ? = 1
([(1,2),(1,3),(1,4),(2,6),(3,6),(4,6),(6,5)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,6),(6,1),(6,2)],7)
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
([(1,2),(1,3),(1,4),(2,6),(3,5),(4,5),(4,6)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
([(1,2),(1,3),(1,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
([(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(6,1)],7)
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,1)],7)
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,5),(4,6),(6,1)],7)
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6),(6,1)],7)
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
([(1,3),(1,4),(1,5),(3,6),(4,6),(5,2),(5,6)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,6),(6,2)],7)
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,2)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,2),(5,6)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => ? = 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,6),(5,6)],7)
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
([(1,2),(1,3),(1,4),(2,6),(3,5),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => ? = 1
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(6,2)],7)
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,5),(6,1),(6,5)],7)
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
([(1,2),(1,3),(1,4),(3,6),(4,6),(6,5)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => ? = 1
([(0,3),(0,4),(0,5),(4,6),(5,6),(6,1),(6,2)],7)
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => ? = 1
Description
The number of descents of type 2 in a permutation. A position $i\in[1,n-1]$ is a descent of type 2 of a permutation $\pi$ of $n$ letters, if it is a descent and if $\pi(j) < \pi(i)$ for all $j < i$.
Mp00198: Posets incomparability graphGraphs
Mp00154: Graphs coreGraphs
St000259: Graphs ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 67%
Values
([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1)],2)
=> ([],2)
=> ([],1)
=> 0
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 0
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> 1
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,1),(5,6)],7)
=> ([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,1)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6)],7)
=> ([(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(4,6)],7)
=> ([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(4,6),(5,6),(6,1)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(4,6),(5,1),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,4),(0,5),(0,6),(6,1),(6,2),(6,3)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(1,2),(1,3),(1,4),(2,6),(3,6),(4,6),(6,5)],7)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,6),(6,1),(6,2)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(1,2),(1,3),(1,4),(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(1,2),(1,3),(1,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(6,1)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,1)],7)
=> ([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,5),(4,6),(6,1)],7)
=> ([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6),(6,1)],7)
=> ([(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(1,3),(1,4),(1,5),(3,6),(4,6),(5,2),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,6),(6,2)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,2),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(1,2),(1,3),(1,4),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,5),(6,1),(6,5)],7)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(1,2),(1,3),(1,4),(3,6),(4,6),(6,5)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(4,6),(5,6),(6,1),(6,2)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ?
=> ? = 1
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Mp00198: Posets incomparability graphGraphs
Mp00154: Graphs coreGraphs
St000535: Graphs ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 67%
Values
([],1)
=> ([],1)
=> ([],1)
=> 0
([],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
([(0,1)],2)
=> ([],2)
=> ([],1)
=> 0
([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> 1
([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> 0
([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> 1
([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,2),(1,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(0,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,2),(0,3),(3,1)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 1
([(1,2),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,3),(3,1),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 1
([(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,3),(1,2)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 1
([(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ([(0,1)],2)
=> 1
([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> 0
([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
([(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,2),(1,3),(1,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,1),(0,2),(0,3),(0,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,3),(1,4),(4,2)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,3),(0,4),(4,1),(4,2)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 1
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(0,1)],2)
=> 1
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> 1
([(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(1,4),(4,2),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,4),(4,1),(4,2),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(1,4),(2,4),(4,3)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(1,4),(2,3)],5)
=> ([(0,1)],2)
=> 1
([(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
([(0,4),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,1)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,1),(5,6)],7)
=> ([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)
=> ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,6),(6,1)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,1)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6)],7)
=> ([(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5)],7)
=> ([(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(4,6)],7)
=> ([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(4,6),(5,6),(6,1)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(0,5),(4,6),(5,1),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(0,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,4),(0,5),(0,6),(6,1),(6,2),(6,3)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(1,2),(1,3),(1,4),(2,6),(3,6),(4,6),(6,5)],7)
=> ([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,6),(6,1),(6,2)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(1,2),(1,3),(1,4),(2,6),(3,5),(4,5),(4,6)],7)
=> ([(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(1,2),(1,3),(1,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(6,1)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,5)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> ([(2,3),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,1)],7)
=> ([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(3,6),(4,5),(4,6),(6,1)],7)
=> ([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(4,6),(6,1)],7)
=> ([(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(1,3),(1,4),(1,5),(3,6),(4,6),(5,2),(5,6)],7)
=> ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,6),(6,2)],7)
=> ([(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,2)],7)
=> ([(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(5,2),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,1),(4,6),(5,6)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ?
=> ? = 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(1,2),(1,3),(1,4),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)
=> ([(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(3,6),(4,6),(5,1),(6,2)],7)
=> ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ?
=> ? = 1
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,5),(6,1),(6,5)],7)
=> ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(1,2),(1,3),(1,4),(3,6),(4,6),(6,5)],7)
=> ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ? = 1
([(0,3),(0,4),(0,5),(4,6),(5,6),(6,1),(6,2)],7)
=> ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ?
=> ? = 1
Description
The rank-width of a graph.
The following 109 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000985The number of positive eigenvalues of the adjacency matrix of the graph. St001271The competition number of a graph. St001333The cardinality of a minimal edge-isolating set of a graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St001349The number of different graphs obtained from the given graph by removing an edge. St001354The number of series nodes in the modular decomposition of a graph. St001393The induced matching number of a graph. St001512The minimum rank of a graph. St000258The burning number of a graph. St000299The number of nonisomorphic vertex-induced subtrees. St000452The number of distinct eigenvalues of a graph. St000453The number of distinct Laplacian eigenvalues of a graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000918The 2-limited packing number of a graph. St001093The detour number of a graph. St001261The Castelnuovo-Mumford regularity of a graph. St001315The dissociation number of a graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001674The number of vertices of the largest induced star graph in the graph. St000256The number of parts from which one can substract 2 and still get an integer partition. St000473The number of parts of a partition that are strictly bigger than the number of ones. St000480The number of lower covers of a partition in dominance order. St000741The Colin de Verdière graph invariant. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001280The number of parts of an integer partition that are at least two. St001777The number of weak descents in an integer composition. St001931The weak major index of an integer composition regarded as a word. St000378The diagonal inversion number of an integer partition. St000485The length of the longest cycle of a permutation. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001486The number of corners of the ribbon associated with an integer composition. St001642The Prague dimension of a graph. St001746The coalition number of a graph. St001859The number of factors of the Stanley symmetric function associated with a permutation. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St000264The girth of a graph, which is not a tree. St000284The Plancherel distribution on integer partitions. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000706The product of the factorials of the multiplicities of an integer partition. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000817The sum of the entries in the column specified by the composition of the change of basis matrix from dual immaculate quasisymmetric functions to monomial quasisymmetric functions. St000818The sum of the entries in the column specified by the composition of the change of basis matrix from quasisymmetric Schur functions to monomial quasisymmetric functions. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000993The multiplicity of the largest part of an integer partition. St001128The exponens consonantiae of a partition. St001568The smallest positive integer that does not appear twice in the partition. St000567The sum of the products of all pairs of parts. St000699The toughness times the least common multiple of 1,. St000929The constant term of the character polynomial of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St001097The coefficient of the monomial symmetric function indexed by the partition in the formal group law for linear orders. St001098The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for vertex labelled trees. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001281The normalized isoperimetric number of a graph. St001570The minimal number of edges to add to make a graph Hamiltonian. St001592The maximal number of simple paths between any two different vertices of a graph. St001060The distinguishing index of a graph. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000781The number of proper colouring schemes of a Ferrers diagram. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001624The breadth of a lattice. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St000298The order dimension or Dushnik-Miller dimension of a poset. St001720The minimal length of a chain of small intervals in a lattice. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001498The normalised height of a Nakayama algebra with magnitude 1. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001118The acyclic chromatic index of a graph. St001545The second Elser number of a connected graph. St000464The Schultz index of a connected graph. St000272The treewidth of a graph. St000536The pathwidth of a graph. St000537The cutwidth of a graph. St001270The bandwidth of a graph. St001277The degeneracy of a graph. St001331The size of the minimal feedback vertex set. St001358The largest degree of a regular subgraph of a graph. St001638The book thickness of a graph. St001644The dimension of a graph. St001743The discrepancy of a graph. St001792The arboricity of a graph. St001826The maximal number of leaves on a vertex of a graph. St001962The proper pathwidth of a graph. St000544The cop number of a graph. St001029The size of the core of a graph. St001494The Alon-Tarsi number of a graph. St001580The acyclic chromatic number of a graph. St001883The mutual visibility number of a graph. St001951The number of factors in the disjoint direct product decomposition of the automorphism group of a graph.