Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000886: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => 1
[2,1] => 1
[1,2,3] => 1
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 2
[3,1,2] => 2
[3,2,1] => 1
[1,2,3,4] => 1
[1,2,4,3] => 1
[1,3,2,4] => 1
[1,3,4,2] => 2
[1,4,2,3] => 2
[1,4,3,2] => 1
[2,1,3,4] => 1
[2,1,4,3] => 1
[2,3,1,4] => 2
[2,3,4,1] => 2
[2,4,1,3] => 2
[2,4,3,1] => 2
[3,1,2,4] => 2
[3,1,4,2] => 2
[3,2,1,4] => 1
[3,2,4,1] => 2
[3,4,1,2] => 1
[3,4,2,1] => 3
[4,1,2,3] => 2
[4,1,3,2] => 2
[4,2,1,3] => 2
[4,2,3,1] => 3
[4,3,1,2] => 3
[4,3,2,1] => 1
[1,2,3,4,5] => 1
[1,2,3,5,4] => 1
[1,2,4,3,5] => 1
[1,2,4,5,3] => 2
[1,2,5,3,4] => 2
[1,2,5,4,3] => 1
[1,3,2,4,5] => 1
[1,3,2,5,4] => 1
[1,3,4,2,5] => 2
[1,3,4,5,2] => 2
[1,3,5,2,4] => 2
[1,3,5,4,2] => 2
[1,4,2,3,5] => 2
[1,4,2,5,3] => 2
[1,4,3,2,5] => 1
[1,4,3,5,2] => 2
[1,4,5,2,3] => 1
[1,4,5,3,2] => 3
Description
The number of permutations with the same antidiagonal sums. The X-ray of a permutation $\pi$ is the vector of the sums of the antidiagonals of the permutation matrix of $\pi$, read from left to right. For example, the permutation matrix of $\pi=[3,1,2,5,4]$ is $$\left(\begin{array}{rrrrr} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right),$$ so its X-ray is $(0, 1, 1, 1, 0, 0, 0, 2, 0)$. This statistic records the number of permutations having the same X-ray as the given permutation. In [1] this is called the degeneracy of the X-ray of the permutation. By [prop.1, 1], the number of different X-rays of permutations of size $n$ equals the number of nondecreasing differences of permutations of size $n$, [2].