searching the database
Your data matches 4 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000772
Mp00114: Permutations —connectivity set⟶ Binary words
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000772: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => => [1] => ([],1)
=> 1
[1,2] => 1 => [1,1] => ([(0,1)],2)
=> 1
[1,2,3] => 11 => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[2,1,3] => 01 => [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,2,3,4] => 111 => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,3,2,4] => 101 => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,1,3,4] => 011 => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,3,1,4] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[3,1,2,4] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[3,2,1,4] => 001 => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,2,3,4,5] => 1111 => [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,2,4,3,5] => 1101 => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3,2,4,5] => 1011 => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,3,4,2,5] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,4,2,3,5] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,4,3,2,5] => 1001 => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,1,3,4,5] => 0111 => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,1,4,3,5] => 0101 => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,3,1,4,5] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,3,4,1,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,4,1,3,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,4,3,1,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[3,1,2,4,5] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,1,4,2,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[3,2,1,4,5] => 0011 => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,2,4,1,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[3,4,1,2,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[3,4,2,1,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[4,1,2,3,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[4,1,3,2,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[4,2,1,3,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[4,2,3,1,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[4,3,1,2,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[4,3,2,1,5] => 0001 => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,2,3,4,5,6] => 11111 => [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
[1,2,3,5,4,6] => 11101 => [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,2,4,3,5,6] => 11011 => [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,2,4,5,3,6] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,2,5,3,4,6] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,2,5,4,3,6] => 11001 => [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,3,2,4,5,6] => 10111 => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,3,2,5,4,6] => 10101 => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,3,4,2,5,6] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,3,4,5,2,6] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,3,5,2,4,6] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,3,5,4,2,6] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,4,2,3,5,6] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,4,2,5,3,6] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,4,3,2,5,6] => 10011 => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,4,3,5,2,6] => 10001 => [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $1$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$.
The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Matching statistic: St000383
Mp00114: Permutations —connectivity set⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00172: Integer compositions —rotate back to front⟶ Integer compositions
St000383: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00097: Binary words —delta morphism⟶ Integer compositions
Mp00172: Integer compositions —rotate back to front⟶ Integer compositions
St000383: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => => [] => ? => ? = 1
[1,2] => 1 => [1] => [1] => 1
[1,2,3] => 11 => [2] => [2] => 2
[2,1,3] => 01 => [1,1] => [1,1] => 1
[1,2,3,4] => 111 => [3] => [3] => 3
[1,3,2,4] => 101 => [1,1,1] => [1,1,1] => 1
[2,1,3,4] => 011 => [1,2] => [2,1] => 1
[2,3,1,4] => 001 => [2,1] => [1,2] => 2
[3,1,2,4] => 001 => [2,1] => [1,2] => 2
[3,2,1,4] => 001 => [2,1] => [1,2] => 2
[1,2,3,4,5] => 1111 => [4] => [4] => 4
[1,2,4,3,5] => 1101 => [2,1,1] => [1,2,1] => 1
[1,3,2,4,5] => 1011 => [1,1,2] => [2,1,1] => 1
[1,3,4,2,5] => 1001 => [1,2,1] => [1,1,2] => 2
[1,4,2,3,5] => 1001 => [1,2,1] => [1,1,2] => 2
[1,4,3,2,5] => 1001 => [1,2,1] => [1,1,2] => 2
[2,1,3,4,5] => 0111 => [1,3] => [3,1] => 1
[2,1,4,3,5] => 0101 => [1,1,1,1] => [1,1,1,1] => 1
[2,3,1,4,5] => 0011 => [2,2] => [2,2] => 2
[2,3,4,1,5] => 0001 => [3,1] => [1,3] => 3
[2,4,1,3,5] => 0001 => [3,1] => [1,3] => 3
[2,4,3,1,5] => 0001 => [3,1] => [1,3] => 3
[3,1,2,4,5] => 0011 => [2,2] => [2,2] => 2
[3,1,4,2,5] => 0001 => [3,1] => [1,3] => 3
[3,2,1,4,5] => 0011 => [2,2] => [2,2] => 2
[3,2,4,1,5] => 0001 => [3,1] => [1,3] => 3
[3,4,1,2,5] => 0001 => [3,1] => [1,3] => 3
[3,4,2,1,5] => 0001 => [3,1] => [1,3] => 3
[4,1,2,3,5] => 0001 => [3,1] => [1,3] => 3
[4,1,3,2,5] => 0001 => [3,1] => [1,3] => 3
[4,2,1,3,5] => 0001 => [3,1] => [1,3] => 3
[4,2,3,1,5] => 0001 => [3,1] => [1,3] => 3
[4,3,1,2,5] => 0001 => [3,1] => [1,3] => 3
[4,3,2,1,5] => 0001 => [3,1] => [1,3] => 3
[1,2,3,4,5,6] => 11111 => [5] => [5] => 5
[1,2,3,5,4,6] => 11101 => [3,1,1] => [1,3,1] => 1
[1,2,4,3,5,6] => 11011 => [2,1,2] => [2,2,1] => 1
[1,2,4,5,3,6] => 11001 => [2,2,1] => [1,2,2] => 2
[1,2,5,3,4,6] => 11001 => [2,2,1] => [1,2,2] => 2
[1,2,5,4,3,6] => 11001 => [2,2,1] => [1,2,2] => 2
[1,3,2,4,5,6] => 10111 => [1,1,3] => [3,1,1] => 1
[1,3,2,5,4,6] => 10101 => [1,1,1,1,1] => [1,1,1,1,1] => 1
[1,3,4,2,5,6] => 10011 => [1,2,2] => [2,1,2] => 2
[1,3,4,5,2,6] => 10001 => [1,3,1] => [1,1,3] => 3
[1,3,5,2,4,6] => 10001 => [1,3,1] => [1,1,3] => 3
[1,3,5,4,2,6] => 10001 => [1,3,1] => [1,1,3] => 3
[1,4,2,3,5,6] => 10011 => [1,2,2] => [2,1,2] => 2
[1,4,2,5,3,6] => 10001 => [1,3,1] => [1,1,3] => 3
[1,4,3,2,5,6] => 10011 => [1,2,2] => [2,1,2] => 2
[1,4,3,5,2,6] => 10001 => [1,3,1] => [1,1,3] => 3
[1,4,5,2,3,6] => 10001 => [1,3,1] => [1,1,3] => 3
[] => => [] => ? => ? = 1
Description
The last part of an integer composition.
Matching statistic: St001879
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00009: Binary trees —left rotate⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 83%
Mp00009: Binary trees —left rotate⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 83%
Values
[1] => [.,.]
=> [.,.]
=> ([],1)
=> ? = 1 + 1
[1,2] => [.,[.,.]]
=> [[.,.],.]
=> ([(0,1)],2)
=> ? = 1 + 1
[1,2,3] => [.,[.,[.,.]]]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 2 + 1
[2,1,3] => [[.,.],[.,.]]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2 = 1 + 1
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 + 1
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[2,3,1,4] => [[.,.],[.,[.,.]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 + 1
[3,1,2,4] => [[.,[.,.]],[.,.]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 2 + 1
[3,2,1,4] => [[[.,.],.],[.,.]]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 2 + 1
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 + 1
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 1
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 1
[1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 1
[2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 1
[2,3,1,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 1
[2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 3 + 1
[2,4,1,3,5] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 3 + 1
[2,4,3,1,5] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 3 + 1
[3,1,2,4,5] => [[.,[.,.]],[.,[.,.]]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[3,1,4,2,5] => [[.,[.,.]],[.,[.,.]]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3 + 1
[3,2,1,4,5] => [[[.,.],.],[.,[.,.]]]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[3,2,4,1,5] => [[[.,.],.],[.,[.,.]]]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3 + 1
[3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3 + 1
[3,4,2,1,5] => [[[.,.],.],[.,[.,.]]]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3 + 1
[4,1,2,3,5] => [[.,[.,[.,.]]],[.,.]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 3 + 1
[4,1,3,2,5] => [[.,[[.,.],.]],[.,.]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 3 + 1
[4,2,1,3,5] => [[[.,.],[.,.]],[.,.]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 3 + 1
[4,2,3,1,5] => [[[.,.],[.,.]],[.,.]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 3 + 1
[4,3,1,2,5] => [[[.,[.,.]],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 3 + 1
[4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 3 + 1
[1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 5 + 1
[1,2,3,5,4,6] => [.,[.,[.,[[.,.],[.,.]]]]]
=> [[.,.],[.,[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? = 1 + 1
[1,2,4,3,5,6] => [.,[.,[[.,.],[.,[.,.]]]]]
=> [[.,.],[[.,.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 1 + 1
[1,2,4,5,3,6] => [.,[.,[[.,.],[.,[.,.]]]]]
=> [[.,.],[[.,.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 2 + 1
[1,2,5,3,4,6] => [.,[.,[[.,[.,.]],[.,.]]]]
=> [[.,.],[[.,[.,.]],[.,.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 2 + 1
[1,2,5,4,3,6] => [.,[.,[[[.,.],.],[.,.]]]]
=> [[.,.],[[[.,.],.],[.,.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 2 + 1
[1,3,2,4,5,6] => [.,[[.,.],[.,[.,[.,.]]]]]
=> [[.,[.,.]],[.,[.,[.,.]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 1 + 1
[1,3,2,5,4,6] => [.,[[.,.],[[.,.],[.,.]]]]
=> [[.,[.,.]],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 1 + 1
[1,3,4,2,5,6] => [.,[[.,.],[.,[.,[.,.]]]]]
=> [[.,[.,.]],[.,[.,[.,.]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 2 + 1
[1,3,4,5,2,6] => [.,[[.,.],[.,[.,[.,.]]]]]
=> [[.,[.,.]],[.,[.,[.,.]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 3 + 1
[1,3,5,2,4,6] => [.,[[.,.],[[.,.],[.,.]]]]
=> [[.,[.,.]],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,3,5,4,2,6] => [.,[[.,.],[[.,.],[.,.]]]]
=> [[.,[.,.]],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,4,2,3,5,6] => [.,[[.,[.,.]],[.,[.,.]]]]
=> [[.,[.,[.,.]]],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 2 + 1
[1,4,2,5,3,6] => [.,[[.,[.,.]],[.,[.,.]]]]
=> [[.,[.,[.,.]]],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 3 + 1
[1,4,3,2,5,6] => [.,[[[.,.],.],[.,[.,.]]]]
=> [[.,[[.,.],.]],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 2 + 1
[1,4,3,5,2,6] => [.,[[[.,.],.],[.,[.,.]]]]
=> [[.,[[.,.],.]],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 3 + 1
[1,4,5,2,3,6] => [.,[[.,[.,.]],[.,[.,.]]]]
=> [[.,[.,[.,.]]],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 3 + 1
[1,4,5,3,2,6] => [.,[[[.,.],.],[.,[.,.]]]]
=> [[.,[[.,.],.]],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 3 + 1
[1,5,2,3,4,6] => [.,[[.,[.,[.,.]]],[.,.]]]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 1
[1,5,2,4,3,6] => [.,[[.,[[.,.],.]],[.,.]]]
=> [[.,[.,[[.,.],.]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 1
[1,5,3,2,4,6] => [.,[[[.,.],[.,.]],[.,.]]]
=> [[.,[[.,.],[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? = 3 + 1
[1,5,3,4,2,6] => [.,[[[.,.],[.,.]],[.,.]]]
=> [[.,[[.,.],[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? = 3 + 1
[1,5,4,2,3,6] => [.,[[[.,[.,.]],.],[.,.]]]
=> [[.,[[.,[.,.]],.]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 1
[5,1,2,3,4,6] => [[.,[.,[.,[.,.]]]],[.,.]]
=> [[[.,[.,[.,[.,.]]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[5,1,2,4,3,6] => [[.,[.,[[.,.],.]]],[.,.]]
=> [[[.,[.,[[.,.],.]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[5,1,4,2,3,6] => [[.,[[.,[.,.]],.]],[.,.]]
=> [[[.,[[.,[.,.]],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[5,1,4,3,2,6] => [[.,[[[.,.],.],.]],[.,.]]
=> [[[.,[[[.,.],.],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[5,4,1,2,3,6] => [[[.,[.,[.,.]]],.],[.,.]]
=> [[[[.,[.,[.,.]]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[5,4,1,3,2,6] => [[[.,[[.,.],.]],.],[.,.]]
=> [[[[.,[[.,.],.]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[5,4,3,1,2,6] => [[[[.,[.,.]],.],.],[.,.]]
=> [[[[[.,[.,.]],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[5,4,3,2,1,6] => [[[[[.,.],.],.],.],[.,.]]
=> [[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[6,1,2,3,4,5,7] => [[.,[.,[.,[.,[.,.]]]]],[.,.]]
=> [[[.,[.,[.,[.,[.,.]]]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[6,1,2,3,5,4,7] => [[.,[.,[.,[[.,.],.]]]],[.,.]]
=> [[[.,[.,[.,[[.,.],.]]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[6,1,2,5,3,4,7] => [[.,[.,[[.,[.,.]],.]]],[.,.]]
=> [[[.,[.,[[.,[.,.]],.]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[6,1,2,5,4,3,7] => [[.,[.,[[[.,.],.],.]]],[.,.]]
=> [[[.,[.,[[[.,.],.],.]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[6,1,5,2,3,4,7] => [[.,[[.,[.,[.,.]]],.]],[.,.]]
=> [[[.,[[.,[.,[.,.]]],.]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[6,1,5,2,4,3,7] => [[.,[[.,[[.,.],.]],.]],[.,.]]
=> [[[.,[[.,[[.,.],.]],.]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[6,1,5,4,2,3,7] => [[.,[[[.,[.,.]],.],.]],[.,.]]
=> [[[.,[[[.,[.,.]],.],.]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[6,1,5,4,3,2,7] => [[.,[[[[.,.],.],.],.]],[.,.]]
=> [[[.,[[[[.,.],.],.],.]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[6,5,1,2,3,4,7] => [[[.,[.,[.,[.,.]]]],.],[.,.]]
=> [[[[.,[.,[.,[.,.]]]],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[6,5,1,2,4,3,7] => [[[.,[.,[[.,.],.]]],.],[.,.]]
=> [[[[.,[.,[[.,.],.]]],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[6,5,1,4,2,3,7] => [[[.,[[.,[.,.]],.]],.],[.,.]]
=> [[[[.,[[.,[.,.]],.]],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[6,5,1,4,3,2,7] => [[[.,[[[.,.],.],.]],.],[.,.]]
=> [[[[.,[[[.,.],.],.]],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[6,5,4,1,2,3,7] => [[[[.,[.,[.,.]]],.],.],[.,.]]
=> [[[[[.,[.,[.,.]]],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[6,5,4,1,3,2,7] => [[[[.,[[.,.],.]],.],.],[.,.]]
=> [[[[[.,[[.,.],.]],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[6,5,4,3,1,2,7] => [[[[[.,[.,.]],.],.],.],[.,.]]
=> [[[[[[.,[.,.]],.],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[6,5,4,3,2,1,7] => [[[[[[.,.],.],.],.],.],[.,.]]
=> [[[[[[[.,.],.],.],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St001880
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00009: Binary trees —left rotate⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 83%
Mp00009: Binary trees —left rotate⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 83%
Values
[1] => [.,.]
=> [.,.]
=> ([],1)
=> ? = 1 + 2
[1,2] => [.,[.,.]]
=> [[.,.],.]
=> ([(0,1)],2)
=> ? = 1 + 2
[1,2,3] => [.,[.,[.,.]]]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[2,1,3] => [[.,.],[.,.]]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 + 2
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[2,3,1,4] => [[.,.],[.,[.,.]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 + 2
[3,1,2,4] => [[.,[.,.]],[.,.]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
[3,2,1,4] => [[[.,.],.],[.,.]]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 4 + 2
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 2
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 2
[1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 2
[1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 2
[2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 2
[2,3,1,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 2
[2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 3 + 2
[2,4,1,3,5] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 3 + 2
[2,4,3,1,5] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 3 + 2
[3,1,2,4,5] => [[.,[.,.]],[.,[.,.]]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[3,1,4,2,5] => [[.,[.,.]],[.,[.,.]]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3 + 2
[3,2,1,4,5] => [[[.,.],.],[.,[.,.]]]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[3,2,4,1,5] => [[[.,.],.],[.,[.,.]]]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3 + 2
[3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3 + 2
[3,4,2,1,5] => [[[.,.],.],[.,[.,.]]]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 3 + 2
[4,1,2,3,5] => [[.,[.,[.,.]]],[.,.]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[4,1,3,2,5] => [[.,[[.,.],.]],[.,.]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[4,2,1,3,5] => [[[.,.],[.,.]],[.,.]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 3 + 2
[4,2,3,1,5] => [[[.,.],[.,.]],[.,.]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 3 + 2
[4,3,1,2,5] => [[[.,[.,.]],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 5 + 2
[1,2,3,5,4,6] => [.,[.,[.,[[.,.],[.,.]]]]]
=> [[.,.],[.,[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? = 1 + 2
[1,2,4,3,5,6] => [.,[.,[[.,.],[.,[.,.]]]]]
=> [[.,.],[[.,.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 1 + 2
[1,2,4,5,3,6] => [.,[.,[[.,.],[.,[.,.]]]]]
=> [[.,.],[[.,.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 2 + 2
[1,2,5,3,4,6] => [.,[.,[[.,[.,.]],[.,.]]]]
=> [[.,.],[[.,[.,.]],[.,.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 2 + 2
[1,2,5,4,3,6] => [.,[.,[[[.,.],.],[.,.]]]]
=> [[.,.],[[[.,.],.],[.,.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ? = 2 + 2
[1,3,2,4,5,6] => [.,[[.,.],[.,[.,[.,.]]]]]
=> [[.,[.,.]],[.,[.,[.,.]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 1 + 2
[1,3,2,5,4,6] => [.,[[.,.],[[.,.],[.,.]]]]
=> [[.,[.,.]],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 1 + 2
[1,3,4,2,5,6] => [.,[[.,.],[.,[.,[.,.]]]]]
=> [[.,[.,.]],[.,[.,[.,.]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 2 + 2
[1,3,4,5,2,6] => [.,[[.,.],[.,[.,[.,.]]]]]
=> [[.,[.,.]],[.,[.,[.,.]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 3 + 2
[1,3,5,2,4,6] => [.,[[.,.],[[.,.],[.,.]]]]
=> [[.,[.,.]],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 3 + 2
[1,3,5,4,2,6] => [.,[[.,.],[[.,.],[.,.]]]]
=> [[.,[.,.]],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 3 + 2
[1,4,2,3,5,6] => [.,[[.,[.,.]],[.,[.,.]]]]
=> [[.,[.,[.,.]]],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 2 + 2
[1,4,2,5,3,6] => [.,[[.,[.,.]],[.,[.,.]]]]
=> [[.,[.,[.,.]]],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 3 + 2
[1,4,3,2,5,6] => [.,[[[.,.],.],[.,[.,.]]]]
=> [[.,[[.,.],.]],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 2 + 2
[1,4,3,5,2,6] => [.,[[[.,.],.],[.,[.,.]]]]
=> [[.,[[.,.],.]],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 3 + 2
[1,4,5,2,3,6] => [.,[[.,[.,.]],[.,[.,.]]]]
=> [[.,[.,[.,.]]],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 3 + 2
[1,4,5,3,2,6] => [.,[[[.,.],.],[.,[.,.]]]]
=> [[.,[[.,.],.]],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ? = 3 + 2
[1,5,2,3,4,6] => [.,[[.,[.,[.,.]]],[.,.]]]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 2
[1,5,2,4,3,6] => [.,[[.,[[.,.],.]],[.,.]]]
=> [[.,[.,[[.,.],.]]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 2
[1,5,3,2,4,6] => [.,[[[.,.],[.,.]],[.,.]]]
=> [[.,[[.,.],[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? = 3 + 2
[1,5,3,4,2,6] => [.,[[[.,.],[.,.]],[.,.]]]
=> [[.,[[.,.],[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ? = 3 + 2
[1,5,4,2,3,6] => [.,[[[.,[.,.]],.],[.,.]]]
=> [[.,[[.,[.,.]],.]],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ? = 3 + 2
[5,1,2,3,4,6] => [[.,[.,[.,[.,.]]]],[.,.]]
=> [[[.,[.,[.,[.,.]]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[5,1,2,4,3,6] => [[.,[.,[[.,.],.]]],[.,.]]
=> [[[.,[.,[[.,.],.]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[5,1,4,2,3,6] => [[.,[[.,[.,.]],.]],[.,.]]
=> [[[.,[[.,[.,.]],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[5,1,4,3,2,6] => [[.,[[[.,.],.],.]],[.,.]]
=> [[[.,[[[.,.],.],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[5,4,1,2,3,6] => [[[.,[.,[.,.]]],.],[.,.]]
=> [[[[.,[.,[.,.]]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[5,4,1,3,2,6] => [[[.,[[.,.],.]],.],[.,.]]
=> [[[[.,[[.,.],.]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[5,4,3,1,2,6] => [[[[.,[.,.]],.],.],[.,.]]
=> [[[[[.,[.,.]],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[5,4,3,2,1,6] => [[[[[.,.],.],.],.],[.,.]]
=> [[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[6,1,2,3,4,5,7] => [[.,[.,[.,[.,[.,.]]]]],[.,.]]
=> [[[.,[.,[.,[.,[.,.]]]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[6,1,2,3,5,4,7] => [[.,[.,[.,[[.,.],.]]]],[.,.]]
=> [[[.,[.,[.,[[.,.],.]]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[6,1,2,5,3,4,7] => [[.,[.,[[.,[.,.]],.]]],[.,.]]
=> [[[.,[.,[[.,[.,.]],.]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[6,1,2,5,4,3,7] => [[.,[.,[[[.,.],.],.]]],[.,.]]
=> [[[.,[.,[[[.,.],.],.]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[6,1,5,2,3,4,7] => [[.,[[.,[.,[.,.]]],.]],[.,.]]
=> [[[.,[[.,[.,[.,.]]],.]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[6,1,5,2,4,3,7] => [[.,[[.,[[.,.],.]],.]],[.,.]]
=> [[[.,[[.,[[.,.],.]],.]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[6,1,5,4,2,3,7] => [[.,[[[.,[.,.]],.],.]],[.,.]]
=> [[[.,[[[.,[.,.]],.],.]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[6,1,5,4,3,2,7] => [[.,[[[[.,.],.],.],.]],[.,.]]
=> [[[.,[[[[.,.],.],.],.]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[6,5,1,2,3,4,7] => [[[.,[.,[.,[.,.]]]],.],[.,.]]
=> [[[[.,[.,[.,[.,.]]]],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[6,5,1,2,4,3,7] => [[[.,[.,[[.,.],.]]],.],[.,.]]
=> [[[[.,[.,[[.,.],.]]],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[6,5,1,4,2,3,7] => [[[.,[[.,[.,.]],.]],.],[.,.]]
=> [[[[.,[[.,[.,.]],.]],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[6,5,1,4,3,2,7] => [[[.,[[[.,.],.],.]],.],[.,.]]
=> [[[[.,[[[.,.],.],.]],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[6,5,4,1,2,3,7] => [[[[.,[.,[.,.]]],.],.],[.,.]]
=> [[[[[.,[.,[.,.]]],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[6,5,4,1,3,2,7] => [[[[.,[[.,.],.]],.],.],[.,.]]
=> [[[[[.,[[.,.],.]],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[6,5,4,3,1,2,7] => [[[[[.,[.,.]],.],.],.],[.,.]]
=> [[[[[[.,[.,.]],.],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[6,5,4,3,2,1,7] => [[[[[[.,.],.],.],.],.],[.,.]]
=> [[[[[[[.,.],.],.],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!