Your data matches 4 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000772
Mp00151: Permutations to cycle typeSet partitions
Mp00080: Set partitions to permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000772: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => {{1}}
=> [1] => ([],1)
=> 1
[2,1] => {{1,2}}
=> [2,1] => ([(0,1)],2)
=> 1
[2,3,1] => {{1,2,3}}
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[3,1,2] => {{1,2,3}}
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[3,2,1] => {{1,3},{2}}
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 2
[2,3,4,1] => {{1,2,3,4}}
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[2,4,1,3] => {{1,2,3,4}}
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[2,4,3,1] => {{1,2,4},{3}}
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,1,4,2] => {{1,2,3,4}}
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[3,2,4,1] => {{1,3,4},{2}}
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,4,1,2] => {{1,3},{2,4}}
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[3,4,2,1] => {{1,2,3,4}}
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,1,2,3] => {{1,2,3,4}}
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,1,3,2] => {{1,2,4},{3}}
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,2,1,3] => {{1,3,4},{2}}
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,2,3,1] => {{1,4},{2},{3}}
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,3,1,2] => {{1,2,3,4}}
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,3,2,1] => {{1,4},{2,3}}
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,3,4,5,1] => {{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,3,5,1,4] => {{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,3,5,4,1] => {{1,2,3,5},{4}}
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,4,1,5,3] => {{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,4,3,5,1] => {{1,2,4,5},{3}}
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,4,5,1,3] => {{1,2,4},{3,5}}
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
[2,4,5,3,1] => {{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,5,1,3,4] => {{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,5,1,4,3] => {{1,2,3,5},{4}}
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,5,3,1,4] => {{1,2,4,5},{3}}
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,5,3,4,1] => {{1,2,5},{3},{4}}
=> [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,5,4,1,3] => {{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,5,4,3,1] => {{1,2,5},{3,4}}
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,1,4,5,2] => {{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[3,1,5,2,4] => {{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[3,1,5,4,2] => {{1,2,3,5},{4}}
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,2,4,5,1] => {{1,3,4,5},{2}}
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,2,5,1,4] => {{1,3,4,5},{2}}
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,2,5,4,1] => {{1,3,5},{2},{4}}
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[3,4,1,5,2] => {{1,3},{2,4,5}}
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
[3,4,2,5,1] => {{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[3,4,5,1,2] => {{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[3,4,5,2,1] => {{1,3,5},{2,4}}
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,5,1,2,4] => {{1,3},{2,4,5}}
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
[3,5,1,4,2] => {{1,3},{2,5},{4}}
=> [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[3,5,2,1,4] => {{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[3,5,2,4,1] => {{1,2,3,5},{4}}
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[3,5,4,1,2] => {{1,3,4},{2,5}}
=> [3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 1
[3,5,4,2,1] => {{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[4,1,2,5,3] => {{1,2,3,4,5}}
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[4,1,3,5,2] => {{1,2,4,5},{3}}
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[4,1,5,2,3] => {{1,2,4},{3,5}}
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $1$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$. The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Matching statistic: St001879
Mp00087: Permutations inverse first fundamental transformationPermutations
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00013: Binary trees to posetPosets
St001879: Posets ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 83%
Values
[1] => [1] => [.,.]
=> ([],1)
=> ? = 1 + 1
[2,1] => [2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ? = 1 + 1
[2,3,1] => [3,1,2] => [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 2 = 1 + 1
[3,1,2] => [3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 2 = 1 + 1
[3,2,1] => [2,3,1] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 2 + 1
[2,3,4,1] => [4,1,2,3] => [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 2 + 1
[2,4,1,3] => [4,3,1,2] => [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 2 + 1
[2,4,3,1] => [3,4,1,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[3,1,4,2] => [4,2,1,3] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 2 + 1
[3,2,4,1] => [2,4,1,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[3,4,1,2] => [3,1,4,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 + 1
[3,4,2,1] => [4,1,3,2] => [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 2 + 1
[4,1,2,3] => [4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 2 + 1
[4,1,3,2] => [3,4,2,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[4,2,1,3] => [2,4,3,1] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[4,2,3,1] => [2,3,4,1] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 1
[4,3,1,2] => [4,2,3,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 2 + 1
[4,3,2,1] => [3,2,4,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 + 1
[2,3,4,5,1] => [5,1,2,3,4] => [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 3 + 1
[2,3,5,1,4] => [5,4,1,2,3] => [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 3 + 1
[2,3,5,4,1] => [4,5,1,2,3] => [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[2,4,1,5,3] => [5,3,1,2,4] => [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 + 1
[2,4,3,5,1] => [3,5,1,2,4] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 1
[2,4,5,1,3] => [4,1,2,5,3] => [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 1
[2,4,5,3,1] => [5,1,2,4,3] => [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 3 + 1
[2,5,1,3,4] => [5,4,3,1,2] => [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 3 + 1
[2,5,1,4,3] => [4,5,3,1,2] => [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[2,5,3,1,4] => [3,5,4,1,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 1
[2,5,3,4,1] => [3,4,5,1,2] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 1
[2,5,4,1,3] => [5,3,4,1,2] => [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 + 1
[2,5,4,3,1] => [4,3,5,1,2] => [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 1
[3,1,4,5,2] => [5,2,1,3,4] => [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 + 1
[3,1,5,2,4] => [5,4,2,1,3] => [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 3 + 1
[3,1,5,4,2] => [4,5,2,1,3] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2 + 1
[3,2,4,5,1] => [2,5,1,3,4] => [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[3,2,5,1,4] => [2,5,4,1,3] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[3,2,5,4,1] => [2,4,5,1,3] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 1
[3,4,1,5,2] => [3,1,5,2,4] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 1
[3,4,2,5,1] => [5,1,3,2,4] => [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 3 + 1
[3,4,5,1,2] => [5,2,4,1,3] => [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 + 1
[3,4,5,2,1] => [4,2,5,1,3] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2 + 1
[3,5,1,2,4] => [3,1,5,4,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 1
[3,5,1,4,2] => [3,1,4,5,2] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 1
[3,5,2,1,4] => [5,4,1,3,2] => [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 3 + 1
[3,5,2,4,1] => [4,5,1,3,2] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[3,5,4,1,2] => [4,1,3,5,2] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 1
[3,5,4,2,1] => [5,1,3,4,2] => [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 3 + 1
[4,1,2,5,3] => [5,3,2,1,4] => [[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 + 1
[4,1,3,5,2] => [3,5,2,1,4] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 1
[4,1,5,2,3] => [4,2,1,5,3] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 1
[4,1,5,3,2] => [5,2,1,4,3] => [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 + 1
[4,2,1,5,3] => [2,5,3,1,4] => [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[4,2,3,5,1] => [2,3,5,1,4] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 1
[4,2,5,1,3] => [2,4,1,5,3] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 1
[4,2,5,3,1] => [2,5,1,4,3] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 1
[4,3,1,5,2] => [5,2,3,1,4] => [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 + 1
[4,3,2,5,1] => [3,2,5,1,4] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 1
[4,3,5,1,2] => [4,1,5,2,3] => [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 1
[4,3,5,2,1] => [5,1,4,2,3] => [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 3 + 1
[4,5,1,2,3] => [5,3,1,4,2] => [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 + 1
[4,5,1,3,2] => [4,3,1,5,2] => [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 1
[4,5,2,1,3] => [4,1,5,3,2] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 1
[4,5,2,3,1] => [5,1,4,3,2] => [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 3 + 1
[5,1,2,3,4] => [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 3 + 1
[2,3,4,5,6,1] => [6,1,2,3,4,5] => [[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[2,3,4,6,1,5] => [6,5,1,2,3,4] => [[[.,[.,[.,[.,.]]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[2,3,5,6,4,1] => [6,1,2,3,5,4] => [[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[2,3,6,1,4,5] => [6,5,4,1,2,3] => [[[[.,[.,[.,.]]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[2,4,6,3,1,5] => [6,5,1,2,4,3] => [[[.,[.,[[.,.],.]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[2,5,4,6,3,1] => [6,1,2,5,3,4] => [[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[2,5,6,3,4,1] => [6,1,2,5,4,3] => [[.,[.,[[[.,.],.],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[2,6,1,3,4,5] => [6,5,4,3,1,2] => [[[[[.,[.,.]],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[3,6,2,1,4,5] => [6,5,4,1,3,2] => [[[[.,[[.,.],.]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[4,3,6,2,1,5] => [6,5,1,4,2,3] => [[[.,[[.,[.,.]],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[4,6,2,3,1,5] => [6,5,1,4,3,2] => [[[.,[[[.,.],.],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[5,3,4,6,2,1] => [6,1,5,2,3,4] => [[.,[[.,[.,[.,.]]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[5,3,6,2,4,1] => [6,1,5,4,2,3] => [[.,[[[.,[.,.]],.],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[5,4,6,3,2,1] => [6,1,5,2,4,3] => [[.,[[.,[[.,.],.]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[5,6,2,3,4,1] => [6,1,5,4,3,2] => [[.,[[[[.,.],.],.],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[6,1,2,3,4,5] => [6,5,4,3,2,1] => [[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[2,3,4,5,6,7,1] => [7,1,2,3,4,5,6] => [[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[2,3,4,5,7,1,6] => [7,6,1,2,3,4,5] => [[[.,[.,[.,[.,[.,.]]]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[2,3,4,6,7,5,1] => [7,1,2,3,4,6,5] => [[.,[.,[.,[.,[[.,.],.]]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[2,3,4,7,1,5,6] => [7,6,5,1,2,3,4] => [[[[.,[.,[.,[.,.]]]],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[2,3,5,7,4,1,6] => [7,6,1,2,3,5,4] => [[[.,[.,[.,[[.,.],.]]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[2,3,6,5,7,4,1] => [7,1,2,3,6,4,5] => [[.,[.,[.,[[.,[.,.]],.]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[2,3,6,7,4,5,1] => [7,1,2,3,6,5,4] => [[.,[.,[.,[[[.,.],.],.]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[2,3,7,1,4,5,6] => [7,6,5,4,1,2,3] => [[[[[.,[.,[.,.]]],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[2,4,7,3,1,5,6] => [7,6,5,1,2,4,3] => [[[[.,[.,[[.,.],.]]],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[2,5,4,7,3,1,6] => [7,6,1,2,5,3,4] => [[[.,[.,[[.,[.,.]],.]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[2,5,7,3,4,1,6] => [7,6,1,2,5,4,3] => [[[.,[.,[[[.,.],.],.]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[2,6,4,5,7,3,1] => [7,1,2,6,3,4,5] => [[.,[.,[[.,[.,[.,.]]],.]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[2,6,4,7,3,5,1] => [7,1,2,6,5,3,4] => [[.,[.,[[[.,[.,.]],.],.]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[2,6,5,7,4,3,1] => [7,1,2,6,3,5,4] => [[.,[.,[[.,[[.,.],.]],.]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[2,6,7,3,4,5,1] => [7,1,2,6,5,4,3] => [[.,[.,[[[[.,.],.],.],.]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[2,7,1,3,4,5,6] => [7,6,5,4,3,1,2] => [[[[[[.,[.,.]],.],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[3,7,2,1,4,5,6] => [7,6,5,4,1,3,2] => [[[[[.,[[.,.],.]],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[4,3,7,2,1,5,6] => [7,6,5,1,4,2,3] => [[[[.,[[.,[.,.]],.]],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[4,7,2,3,1,5,6] => [7,6,5,1,4,3,2] => [[[[.,[[[.,.],.],.]],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[5,3,4,7,2,1,6] => [7,6,1,5,2,3,4] => [[[.,[[.,[.,[.,.]]],.]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St001880
Mp00087: Permutations inverse first fundamental transformationPermutations
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00013: Binary trees to posetPosets
St001880: Posets ⟶ ℤResult quality: 2% values known / values provided: 2%distinct values known / distinct values provided: 83%
Values
[1] => [1] => [.,.]
=> ([],1)
=> ? = 1 + 2
[2,1] => [2,1] => [[.,.],.]
=> ([(0,1)],2)
=> ? = 1 + 2
[2,3,1] => [3,1,2] => [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[3,1,2] => [3,2,1] => [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[3,2,1] => [2,3,1] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 2 + 2
[2,3,4,1] => [4,1,2,3] => [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
[2,4,1,3] => [4,3,1,2] => [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
[2,4,3,1] => [3,4,1,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[3,1,4,2] => [4,2,1,3] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 2 + 2
[3,2,4,1] => [2,4,1,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[3,4,1,2] => [3,1,4,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 + 2
[3,4,2,1] => [4,1,3,2] => [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
[4,1,2,3] => [4,3,2,1] => [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
[4,1,3,2] => [3,4,2,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[4,2,1,3] => [2,4,3,1] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[4,2,3,1] => [2,3,4,1] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[4,3,1,2] => [4,2,3,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ? = 2 + 2
[4,3,2,1] => [3,2,4,1] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 + 2
[2,3,4,5,1] => [5,1,2,3,4] => [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[2,3,5,1,4] => [5,4,1,2,3] => [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[2,3,5,4,1] => [4,5,1,2,3] => [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[2,4,1,5,3] => [5,3,1,2,4] => [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 + 2
[2,4,3,5,1] => [3,5,1,2,4] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 2
[2,4,5,1,3] => [4,1,2,5,3] => [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 2
[2,4,5,3,1] => [5,1,2,4,3] => [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[2,5,1,3,4] => [5,4,3,1,2] => [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[2,5,1,4,3] => [4,5,3,1,2] => [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[2,5,3,1,4] => [3,5,4,1,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 2
[2,5,3,4,1] => [3,4,5,1,2] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 2
[2,5,4,1,3] => [5,3,4,1,2] => [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 + 2
[2,5,4,3,1] => [4,3,5,1,2] => [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 2
[3,1,4,5,2] => [5,2,1,3,4] => [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 + 2
[3,1,5,2,4] => [5,4,2,1,3] => [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 3 + 2
[3,1,5,4,2] => [4,5,2,1,3] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2 + 2
[3,2,4,5,1] => [2,5,1,3,4] => [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[3,2,5,1,4] => [2,5,4,1,3] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[3,2,5,4,1] => [2,4,5,1,3] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 2
[3,4,1,5,2] => [3,1,5,2,4] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 2
[3,4,2,5,1] => [5,1,3,2,4] => [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 3 + 2
[3,4,5,1,2] => [5,2,4,1,3] => [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 + 2
[3,4,5,2,1] => [4,2,5,1,3] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 2 + 2
[3,5,1,2,4] => [3,1,5,4,2] => [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 2
[3,5,1,4,2] => [3,1,4,5,2] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 2
[3,5,2,1,4] => [5,4,1,3,2] => [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[3,5,2,4,1] => [4,5,1,3,2] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[3,5,4,1,2] => [4,1,3,5,2] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 2
[3,5,4,2,1] => [5,1,3,4,2] => [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ? = 3 + 2
[4,1,2,5,3] => [5,3,2,1,4] => [[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 + 2
[4,1,3,5,2] => [3,5,2,1,4] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 2 + 2
[4,1,5,2,3] => [4,2,1,5,3] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 2
[4,1,5,3,2] => [5,2,1,4,3] => [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 + 2
[4,2,1,5,3] => [2,5,3,1,4] => [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[4,2,3,5,1] => [2,3,5,1,4] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 2
[4,2,5,1,3] => [2,4,1,5,3] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ? = 1 + 2
[4,2,5,3,1] => [2,5,1,4,3] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 2 + 2
[4,3,1,5,2] => [5,2,3,1,4] => [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 + 2
[4,3,2,5,1] => [3,2,5,1,4] => [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ? = 1 + 2
[4,3,5,1,2] => [4,1,5,2,3] => [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 2
[4,3,5,2,1] => [5,1,4,2,3] => [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[4,5,1,2,3] => [5,3,1,4,2] => [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ? = 3 + 2
[4,5,1,3,2] => [4,3,1,5,2] => [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 2
[4,5,2,1,3] => [4,1,5,3,2] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ? = 1 + 2
[4,5,2,3,1] => [5,1,4,3,2] => [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[5,1,2,3,4] => [5,4,3,2,1] => [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[2,3,4,5,6,1] => [6,1,2,3,4,5] => [[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[2,3,4,6,1,5] => [6,5,1,2,3,4] => [[[.,[.,[.,[.,.]]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[2,3,5,6,4,1] => [6,1,2,3,5,4] => [[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[2,3,6,1,4,5] => [6,5,4,1,2,3] => [[[[.,[.,[.,.]]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[2,4,6,3,1,5] => [6,5,1,2,4,3] => [[[.,[.,[[.,.],.]]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[2,5,4,6,3,1] => [6,1,2,5,3,4] => [[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[2,5,6,3,4,1] => [6,1,2,5,4,3] => [[.,[.,[[[.,.],.],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[2,6,1,3,4,5] => [6,5,4,3,1,2] => [[[[[.,[.,.]],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[3,6,2,1,4,5] => [6,5,4,1,3,2] => [[[[.,[[.,.],.]],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[4,3,6,2,1,5] => [6,5,1,4,2,3] => [[[.,[[.,[.,.]],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[4,6,2,3,1,5] => [6,5,1,4,3,2] => [[[.,[[[.,.],.],.]],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[5,3,4,6,2,1] => [6,1,5,2,3,4] => [[.,[[.,[.,[.,.]]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[5,3,6,2,4,1] => [6,1,5,4,2,3] => [[.,[[[.,[.,.]],.],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[5,4,6,3,2,1] => [6,1,5,2,4,3] => [[.,[[.,[[.,.],.]],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[5,6,2,3,4,1] => [6,1,5,4,3,2] => [[.,[[[[.,.],.],.],.]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[6,1,2,3,4,5] => [6,5,4,3,2,1] => [[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[2,3,4,5,6,7,1] => [7,1,2,3,4,5,6] => [[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[2,3,4,5,7,1,6] => [7,6,1,2,3,4,5] => [[[.,[.,[.,[.,[.,.]]]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[2,3,4,6,7,5,1] => [7,1,2,3,4,6,5] => [[.,[.,[.,[.,[[.,.],.]]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[2,3,4,7,1,5,6] => [7,6,5,1,2,3,4] => [[[[.,[.,[.,[.,.]]]],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[2,3,5,7,4,1,6] => [7,6,1,2,3,5,4] => [[[.,[.,[.,[[.,.],.]]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[2,3,6,5,7,4,1] => [7,1,2,3,6,4,5] => [[.,[.,[.,[[.,[.,.]],.]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[2,3,6,7,4,5,1] => [7,1,2,3,6,5,4] => [[.,[.,[.,[[[.,.],.],.]]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[2,3,7,1,4,5,6] => [7,6,5,4,1,2,3] => [[[[[.,[.,[.,.]]],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[2,4,7,3,1,5,6] => [7,6,5,1,2,4,3] => [[[[.,[.,[[.,.],.]]],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[2,5,4,7,3,1,6] => [7,6,1,2,5,3,4] => [[[.,[.,[[.,[.,.]],.]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[2,5,7,3,4,1,6] => [7,6,1,2,5,4,3] => [[[.,[.,[[[.,.],.],.]]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[2,6,4,5,7,3,1] => [7,1,2,6,3,4,5] => [[.,[.,[[.,[.,[.,.]]],.]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[2,6,4,7,3,5,1] => [7,1,2,6,5,3,4] => [[.,[.,[[[.,[.,.]],.],.]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[2,6,5,7,4,3,1] => [7,1,2,6,3,5,4] => [[.,[.,[[.,[[.,.],.]],.]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[2,6,7,3,4,5,1] => [7,1,2,6,5,4,3] => [[.,[.,[[[[.,.],.],.],.]]],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[2,7,1,3,4,5,6] => [7,6,5,4,3,1,2] => [[[[[[.,[.,.]],.],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[3,7,2,1,4,5,6] => [7,6,5,4,1,3,2] => [[[[[.,[[.,.],.]],.],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[4,3,7,2,1,5,6] => [7,6,5,1,4,2,3] => [[[[.,[[.,[.,.]],.]],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[4,7,2,3,1,5,6] => [7,6,5,1,4,3,2] => [[[[.,[[[.,.],.],.]],.],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[5,3,4,7,2,1,6] => [7,6,1,5,2,3,4] => [[[.,[[.,[.,[.,.]]],.]],.],.]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St001545
Mp00160: Permutations graph of inversionsGraphs
Mp00264: Graphs delete endpointsGraphs
Mp00111: Graphs complementGraphs
St001545: Graphs ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 17%
Values
[1] => ([],1)
=> ([],1)
=> ([],1)
=> ? = 1 + 1
[2,1] => ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? = 1 + 1
[2,3,1] => ([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ? = 1 + 1
[3,1,2] => ([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ? = 1 + 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 + 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 2 + 1
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 2 + 1
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 1 + 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 2 + 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 1 + 1
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ? = 2 + 1
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 2 + 1
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 2 + 1
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 1 + 1
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 1 + 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 1 + 1
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 2 + 1
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 3 + 1
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 3 + 1
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 3 + 1
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 + 1
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ? = 3 + 1
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 + 1
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 1
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 3 + 1
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 3 + 1
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 + 1
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 + 1
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 1 + 1
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 3 + 1
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 1 + 1
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 3 + 1
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ? = 3 + 1
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 + 1
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 + 1
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 + 1
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ? = 1 + 1
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 1
[3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 3 + 1
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 1
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 3 + 1
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 2 + 1
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? = 1 + 1
[3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 3 + 1
[4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 3 + 1
[4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 + 1
[4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> ? = 1 + 1
[4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ? = 3 + 1
[4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[2,4,6,1,5,3] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[2,5,3,6,1,4] => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[3,5,1,4,6,2] => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[3,6,1,4,2,5] => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[4,1,6,2,5,3] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[4,2,5,1,6,3] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[4,2,6,1,3,5] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[5,1,3,6,2,4] => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[2,3,5,7,1,6,4] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[2,3,6,4,7,1,5] => ([(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[2,4,6,1,5,7,3] => ([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[2,4,7,1,5,3,6] => ([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[2,5,1,7,3,6,4] => ([(0,3),(1,4),(1,5),(2,4),(2,6),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[2,5,3,6,1,7,4] => ([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[2,5,3,7,1,4,6] => ([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[2,6,1,4,7,3,5] => ([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[3,1,5,7,2,6,4] => ([(0,3),(1,4),(1,5),(2,4),(2,6),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[3,1,6,4,7,2,5] => ([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[3,5,1,4,6,7,2] => ([(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[3,5,1,4,7,2,6] => ([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[3,6,1,4,2,7,5] => ([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[3,7,1,4,2,5,6] => ([(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[4,1,6,2,5,7,3] => ([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[4,1,7,2,5,3,6] => ([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[4,2,5,1,6,7,3] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[4,2,5,1,7,3,6] => ([(0,3),(1,4),(1,5),(2,4),(2,6),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[4,2,6,1,3,7,5] => ([(0,3),(1,4),(1,5),(2,4),(2,6),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[4,2,7,1,3,5,6] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[5,1,2,7,3,6,4] => ([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[5,1,3,6,2,7,4] => ([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[5,1,3,7,2,4,6] => ([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[6,1,2,4,7,3,5] => ([(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
Description
The second Elser number of a connected graph. For a connected graph $G$ the $k$-th Elser number is $$ els_k(G) = (-1)^{|V(G)|+1} \sum_N (-1)^{|E(N)|} |V(N)|^k $$ where the sum is over all nuclei of $G$, that is, the connected subgraphs of $G$ whose vertex set is a vertex cover of $G$. It is clear that this number is even. It was shown in [1] that it is non-negative.