searching the database
Your data matches 41 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000771
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
[1] => ([],1)
=> ([],1)
=> 1
[2,1] => ([(0,1)],2)
=> ([],1)
=> 1
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> 1
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 1
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 1
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 1
[3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 1
[3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
[4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
[4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St000774
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[1] => ([],1)
=> ([],1)
=> 1
[2,1] => ([(0,1)],2)
=> ([],1)
=> 1
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> 1
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 1
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 1
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 2
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 1
[3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 1
[3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1
[4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1
[4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
[4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1
Description
The maximal multiplicity of a Laplacian eigenvalue in a graph.
Matching statistic: St000776
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[1] => ([],1)
=> ([],1)
=> ([],1)
=> 1
[2,1] => ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 1
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> 1
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 1
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 1
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 1
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 1
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
[3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> 1
[3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> 1
[3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 1
[4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> 1
[4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
Description
The maximal multiplicity of an eigenvalue in a graph.
Matching statistic: St000454
Values
[1] => ([],1)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[2,1] => ([(0,1)],2)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 2 - 1
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 2 - 1
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 2 - 1
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 - 1
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 2 - 1
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 - 1
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 2 - 1
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
[4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
[4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
[4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[4,2,5,3,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[4,5,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 2 - 1
[5,1,3,2,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 2 - 1
[5,1,3,4,2] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 2 - 1
[5,2,1,4,3] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[5,2,4,1,3] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 1 - 1
[5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[5,4,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[2,3,4,6,5,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,4,3,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,2,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[3,4,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[3,4,6,1,5,2] => ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[3,4,6,2,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[3,4,6,5,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[3,4,6,5,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
[3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ([],1)
=> ([],1)
=> 0 = 1 - 1
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001060
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Values
[1] => ([],1)
=> ([],1)
=> ? = 1 + 1
[2,1] => ([(0,1)],2)
=> ([],1)
=> ? = 1 + 1
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? = 1 + 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ? = 1 + 1
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 1 + 1
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 1 + 1
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 1 + 1
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 1 + 1
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 3 + 1
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ? = 1 + 1
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 1 + 1
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ? = 1 + 1
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 1 + 1
[3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 + 1
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 + 1
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 + 1
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 1 + 1
[3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 + 1
[4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 2 = 1 + 1
[4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 1 + 1
[4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 + 1
[4,2,5,3,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 + 1
[4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 1 + 1
[4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 + 1
[4,5,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 1 + 1
[4,5,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 1 + 1
[4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ? = 1 + 1
[4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 + 1
[4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 + 1
[4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 + 1
[5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 3 + 1
[5,1,2,4,3] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[5,1,3,2,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[5,1,3,4,2] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[5,1,4,3,2] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[5,2,1,4,3] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 + 1
[5,2,4,1,3] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 + 1
[5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 + 1
[5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 + 1
[5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 + 1
[5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 + 1
[5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 + 1
[5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 + 1
[5,4,1,3,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 + 1
[5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 + 1
[5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 + 1
[5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 + 1
[5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 1 + 1
[2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 2 + 1
[2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ? = 2 + 1
[2,4,1,6,5,3] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ? = 1 + 1
[2,5,1,4,6,3] => ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ? = 1 + 1
[2,5,3,1,6,4] => ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ? = 1 + 1
[2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 2 + 1
[3,1,4,5,6,2] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ? = 2 + 1
[3,1,6,2,5,4] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ? = 1 + 1
[3,1,6,4,2,5] => ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ? = 1 + 1
[3,2,5,1,6,4] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ? = 1 + 1
[3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ? = 1 + 1
Description
The distinguishing index of a graph.
This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism.
If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Matching statistic: St000307
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St000307: Posets ⟶ ℤResult quality: 20% ●values known / values provided: 29%●distinct values known / distinct values provided: 20%
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St000307: Posets ⟶ ℤResult quality: 20% ●values known / values provided: 29%●distinct values known / distinct values provided: 20%
Values
[1] => [1] => [1] => ([],1)
=> 1
[2,1] => [2,1] => [2,1] => ([(0,1)],2)
=> 1
[2,3,1] => [3,2,1] => [3,2,1] => ([(0,2),(2,1)],3)
=> 1
[3,1,2] => [3,2,1] => [3,2,1] => ([(0,2),(2,1)],3)
=> 1
[3,2,1] => [3,2,1] => [3,2,1] => ([(0,2),(2,1)],3)
=> 1
[2,3,4,1] => [4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 2
[2,4,1,3] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ? = 1
[2,4,3,1] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[3,1,4,2] => [4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1
[3,2,4,1] => [4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1
[3,4,1,2] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[3,4,2,1] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,1,2,3] => [4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 2
[4,1,3,2] => [4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1
[4,2,1,3] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,2,3,1] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,3,1,2] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[2,3,4,5,1] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 3
[2,3,5,1,4] => [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 1
[2,3,5,4,1] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 2
[2,4,1,5,3] => [3,5,1,4,2] => [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 1
[2,4,3,5,1] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 2
[2,4,5,1,3] => [4,5,3,1,2] => [4,1,5,3,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1
[2,4,5,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[2,5,1,3,4] => [3,5,1,4,2] => [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 1
[2,5,1,4,3] => [3,5,1,4,2] => [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 1
[2,5,3,1,4] => [4,5,3,1,2] => [4,1,5,3,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1
[2,5,3,4,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[2,5,4,1,3] => [4,5,3,1,2] => [4,1,5,3,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1
[2,5,4,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,1,4,5,2] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1
[3,1,5,2,4] => [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 1
[3,1,5,4,2] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1
[3,2,4,5,1] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2
[3,2,5,1,4] => [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 1
[3,2,5,4,1] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1
[3,4,1,5,2] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1
[3,4,2,5,1] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1
[3,4,5,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,4,5,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,5,1,2,4] => [4,5,3,1,2] => [4,1,5,3,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1
[3,5,1,4,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,5,2,1,4] => [4,5,3,1,2] => [4,1,5,3,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1
[3,5,2,4,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,5,4,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,5,4,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,1,2,5,3] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1
[4,1,3,5,2] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1
[4,1,5,2,3] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1
[4,1,5,3,2] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1
[4,2,1,5,3] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1
[4,2,3,5,1] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1
[4,2,5,1,3] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,2,5,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,3,1,5,2] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1
[4,3,2,5,1] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1
[4,3,5,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,3,5,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,1,2,3] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,1,3,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,2,1,3] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,2,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,3,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,3,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,1,2,3,4] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 3
[5,1,2,4,3] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2
[5,1,3,2,4] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 2
[5,1,3,4,2] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1
[5,1,4,2,3] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1
[5,1,4,3,2] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1
[5,2,1,3,4] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 2
[5,2,1,4,3] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1
[5,2,3,1,4] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,2,3,4,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,2,4,1,3] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,2,4,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,3,1,2,4] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,3,1,4,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,3,2,1,4] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,3,2,4,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,3,4,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,3,4,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,1,2,3] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,1,3,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,2,1,3] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,2,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,3,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,3,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[2,3,4,5,6,1] => [6,2,3,4,5,1] => [2,3,4,6,5,1] => ([(0,3),(0,4),(0,5),(1,14),(2,1),(2,6),(2,7),(3,9),(3,11),(4,9),(4,10),(5,2),(5,10),(5,11),(6,13),(6,14),(7,13),(7,14),(9,12),(10,6),(10,12),(11,7),(11,12),(12,13),(13,8),(14,8)],15)
=> ? = 4
[2,3,4,6,1,5] => [5,2,3,6,1,4] => [2,3,5,1,6,4] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(1,15),(1,18),(1,20),(2,9),(2,14),(2,16),(3,11),(3,12),(3,16),(4,10),(4,11),(4,14),(5,12),(5,13),(5,14),(5,16),(6,1),(6,9),(6,10),(6,13),(6,16),(8,17),(8,21),(9,15),(9,20),(10,18),(10,19),(10,20),(11,19),(12,18),(12,19),(13,8),(13,15),(13,18),(13,20),(14,19),(14,20),(15,17),(15,21),(16,15),(16,18),(16,19),(17,7),(18,17),(18,21),(19,21),(20,17),(20,21),(21,7)],22)
=> ? = 2
[2,3,4,6,5,1] => [6,2,3,5,4,1] => [6,2,3,5,4,1] => ([(0,2),(0,3),(0,4),(0,5),(1,17),(2,8),(2,9),(2,12),(3,7),(3,9),(3,11),(4,7),(4,8),(4,10),(5,1),(5,10),(5,11),(5,12),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(10,17),(11,15),(11,16),(11,17),(12,14),(12,15),(12,17),(13,19),(14,18),(14,19),(15,18),(15,19),(16,18),(16,19),(17,18),(18,6),(19,6)],20)
=> ? = 3
[2,3,5,4,6,1] => [6,2,4,3,5,1] => [4,2,3,6,5,1] => ([(0,2),(0,3),(0,4),(0,5),(1,6),(1,15),(1,18),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,9),(4,10),(4,13),(5,1),(5,8),(5,11),(5,13),(6,19),(6,20),(8,14),(8,18),(9,14),(9,16),(10,16),(10,17),(11,15),(11,17),(11,18),(12,15),(12,16),(12,18),(13,6),(13,14),(13,17),(14,19),(15,20),(16,19),(16,20),(17,19),(17,20),(18,19),(18,20),(19,7),(20,7)],21)
=> ? = 3
[2,3,5,6,1,4] => [5,2,6,4,1,3] => [5,6,2,1,4,3] => ([(0,2),(0,3),(0,4),(1,7),(1,8),(2,1),(2,11),(2,12),(3,9),(3,10),(3,12),(4,9),(4,10),(4,11),(5,15),(5,16),(7,15),(7,16),(8,15),(8,16),(9,5),(9,13),(10,5),(10,14),(11,7),(11,13),(11,14),(12,8),(12,13),(12,14),(13,16),(14,15),(14,16),(15,6),(16,6)],17)
=> ? = 2
[2,3,5,6,4,1] => [6,2,5,4,3,1] => [6,5,2,4,3,1] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 2
[2,3,6,1,4,5] => [4,2,6,1,5,3] => [2,4,6,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(1,9),(1,18),(1,22),(2,11),(2,14),(2,16),(2,18),(3,9),(3,14),(3,15),(3,22),(4,12),(4,13),(4,16),(4,22),(5,10),(5,13),(5,15),(5,18),(5,22),(6,8),(6,10),(6,11),(6,12),(6,22),(8,20),(8,25),(9,19),(9,25),(10,20),(10,21),(10,25),(10,26),(11,17),(11,25),(11,26),(12,17),(12,20),(12,26),(13,21),(13,26),(14,19),(14,26),(15,19),(15,21),(15,25),(16,17),(16,26),(17,24),(18,19),(18,25),(18,26),(19,23),(20,23),(20,24),(21,23),(21,24),(22,20),(22,21),(22,25),(22,26),(23,7),(24,7),(25,23),(25,24),(26,23),(26,24)],27)
=> ? = 2
[2,3,6,1,5,4] => [4,2,6,1,5,3] => [2,4,6,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(1,9),(1,18),(1,22),(2,11),(2,14),(2,16),(2,18),(3,9),(3,14),(3,15),(3,22),(4,12),(4,13),(4,16),(4,22),(5,10),(5,13),(5,15),(5,18),(5,22),(6,8),(6,10),(6,11),(6,12),(6,22),(8,20),(8,25),(9,19),(9,25),(10,20),(10,21),(10,25),(10,26),(11,17),(11,25),(11,26),(12,17),(12,20),(12,26),(13,21),(13,26),(14,19),(14,26),(15,19),(15,21),(15,25),(16,17),(16,26),(17,24),(18,19),(18,25),(18,26),(19,23),(20,23),(20,24),(21,23),(21,24),(22,20),(22,21),(22,25),(22,26),(23,7),(24,7),(25,23),(25,24),(26,23),(26,24)],27)
=> ? = 1
[2,4,6,5,3,1] => [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[2,5,6,3,4,1] => [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[2,5,6,4,3,1] => [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
Description
The number of rowmotion orbits of a poset.
Rowmotion is an operation on order ideals in a poset $P$. It sends an order ideal $I$ to the order ideal generated by the minimal antichain of $P \setminus I$.
Matching statistic: St001633
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St001633: Posets ⟶ ℤResult quality: 20% ●values known / values provided: 29%●distinct values known / distinct values provided: 20%
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St001633: Posets ⟶ ℤResult quality: 20% ●values known / values provided: 29%●distinct values known / distinct values provided: 20%
Values
[1] => [1] => [1] => ([],1)
=> 0 = 1 - 1
[2,1] => [2,1] => [2,1] => ([(0,1)],2)
=> 0 = 1 - 1
[2,3,1] => [3,2,1] => [3,2,1] => ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[3,1,2] => [3,2,1] => [3,2,1] => ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[3,2,1] => [3,2,1] => [3,2,1] => ([(0,2),(2,1)],3)
=> 0 = 1 - 1
[2,3,4,1] => [4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 2 - 1
[2,4,1,3] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ? = 1 - 1
[2,4,3,1] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[3,1,4,2] => [4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1 - 1
[3,2,4,1] => [4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1 - 1
[3,4,1,2] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[3,4,2,1] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[4,1,2,3] => [4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 2 - 1
[4,1,3,2] => [4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1 - 1
[4,2,1,3] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[4,2,3,1] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[4,3,1,2] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 0 = 1 - 1
[2,3,4,5,1] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 3 - 1
[2,3,5,1,4] => [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 1 - 1
[2,3,5,4,1] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 2 - 1
[2,4,1,5,3] => [3,5,1,4,2] => [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 1 - 1
[2,4,3,5,1] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 2 - 1
[2,4,5,1,3] => [4,5,3,1,2] => [4,1,5,3,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1 - 1
[2,4,5,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[2,5,1,3,4] => [3,5,1,4,2] => [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 1 - 1
[2,5,1,4,3] => [3,5,1,4,2] => [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 1 - 1
[2,5,3,1,4] => [4,5,3,1,2] => [4,1,5,3,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1 - 1
[2,5,3,4,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[2,5,4,1,3] => [4,5,3,1,2] => [4,1,5,3,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1 - 1
[2,5,4,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[3,1,4,5,2] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1 - 1
[3,1,5,2,4] => [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 1 - 1
[3,1,5,4,2] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1 - 1
[3,2,4,5,1] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2 - 1
[3,2,5,1,4] => [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 1 - 1
[3,2,5,4,1] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1 - 1
[3,4,1,5,2] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1 - 1
[3,4,2,5,1] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1 - 1
[3,4,5,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[3,4,5,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[3,5,1,2,4] => [4,5,3,1,2] => [4,1,5,3,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1 - 1
[3,5,1,4,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[3,5,2,1,4] => [4,5,3,1,2] => [4,1,5,3,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1 - 1
[3,5,2,4,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[3,5,4,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[3,5,4,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[4,1,2,5,3] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1 - 1
[4,1,3,5,2] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1 - 1
[4,1,5,2,3] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1 - 1
[4,1,5,3,2] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1 - 1
[4,2,1,5,3] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1 - 1
[4,2,3,5,1] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1 - 1
[4,2,5,1,3] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[4,2,5,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[4,3,1,5,2] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1 - 1
[4,3,2,5,1] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1 - 1
[4,3,5,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[4,3,5,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[4,5,1,2,3] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[4,5,1,3,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[4,5,2,1,3] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[4,5,2,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[4,5,3,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[4,5,3,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[5,1,2,3,4] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 3 - 1
[5,1,2,4,3] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2 - 1
[5,1,3,2,4] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 2 - 1
[5,1,3,4,2] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1 - 1
[5,1,4,2,3] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1 - 1
[5,1,4,3,2] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1 - 1
[5,2,1,3,4] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 2 - 1
[5,2,1,4,3] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1 - 1
[5,2,3,1,4] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[5,2,3,4,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[5,2,4,1,3] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[5,2,4,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[5,3,1,2,4] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[5,3,1,4,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[5,3,2,1,4] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[5,3,2,4,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[5,3,4,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[5,3,4,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[5,4,1,2,3] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[5,4,1,3,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[5,4,2,1,3] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[5,4,2,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[5,4,3,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[5,4,3,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0 = 1 - 1
[2,3,4,5,6,1] => [6,2,3,4,5,1] => [2,3,4,6,5,1] => ([(0,3),(0,4),(0,5),(1,14),(2,1),(2,6),(2,7),(3,9),(3,11),(4,9),(4,10),(5,2),(5,10),(5,11),(6,13),(6,14),(7,13),(7,14),(9,12),(10,6),(10,12),(11,7),(11,12),(12,13),(13,8),(14,8)],15)
=> ? = 4 - 1
[2,3,4,6,1,5] => [5,2,3,6,1,4] => [2,3,5,1,6,4] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(1,15),(1,18),(1,20),(2,9),(2,14),(2,16),(3,11),(3,12),(3,16),(4,10),(4,11),(4,14),(5,12),(5,13),(5,14),(5,16),(6,1),(6,9),(6,10),(6,13),(6,16),(8,17),(8,21),(9,15),(9,20),(10,18),(10,19),(10,20),(11,19),(12,18),(12,19),(13,8),(13,15),(13,18),(13,20),(14,19),(14,20),(15,17),(15,21),(16,15),(16,18),(16,19),(17,7),(18,17),(18,21),(19,21),(20,17),(20,21),(21,7)],22)
=> ? = 2 - 1
[2,3,4,6,5,1] => [6,2,3,5,4,1] => [6,2,3,5,4,1] => ([(0,2),(0,3),(0,4),(0,5),(1,17),(2,8),(2,9),(2,12),(3,7),(3,9),(3,11),(4,7),(4,8),(4,10),(5,1),(5,10),(5,11),(5,12),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(10,17),(11,15),(11,16),(11,17),(12,14),(12,15),(12,17),(13,19),(14,18),(14,19),(15,18),(15,19),(16,18),(16,19),(17,18),(18,6),(19,6)],20)
=> ? = 3 - 1
[2,3,5,4,6,1] => [6,2,4,3,5,1] => [4,2,3,6,5,1] => ([(0,2),(0,3),(0,4),(0,5),(1,6),(1,15),(1,18),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,9),(4,10),(4,13),(5,1),(5,8),(5,11),(5,13),(6,19),(6,20),(8,14),(8,18),(9,14),(9,16),(10,16),(10,17),(11,15),(11,17),(11,18),(12,15),(12,16),(12,18),(13,6),(13,14),(13,17),(14,19),(15,20),(16,19),(16,20),(17,19),(17,20),(18,19),(18,20),(19,7),(20,7)],21)
=> ? = 3 - 1
[2,3,5,6,1,4] => [5,2,6,4,1,3] => [5,6,2,1,4,3] => ([(0,2),(0,3),(0,4),(1,7),(1,8),(2,1),(2,11),(2,12),(3,9),(3,10),(3,12),(4,9),(4,10),(4,11),(5,15),(5,16),(7,15),(7,16),(8,15),(8,16),(9,5),(9,13),(10,5),(10,14),(11,7),(11,13),(11,14),(12,8),(12,13),(12,14),(13,16),(14,15),(14,16),(15,6),(16,6)],17)
=> ? = 2 - 1
[2,3,5,6,4,1] => [6,2,5,4,3,1] => [6,5,2,4,3,1] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 2 - 1
[2,3,6,1,4,5] => [4,2,6,1,5,3] => [2,4,6,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(1,9),(1,18),(1,22),(2,11),(2,14),(2,16),(2,18),(3,9),(3,14),(3,15),(3,22),(4,12),(4,13),(4,16),(4,22),(5,10),(5,13),(5,15),(5,18),(5,22),(6,8),(6,10),(6,11),(6,12),(6,22),(8,20),(8,25),(9,19),(9,25),(10,20),(10,21),(10,25),(10,26),(11,17),(11,25),(11,26),(12,17),(12,20),(12,26),(13,21),(13,26),(14,19),(14,26),(15,19),(15,21),(15,25),(16,17),(16,26),(17,24),(18,19),(18,25),(18,26),(19,23),(20,23),(20,24),(21,23),(21,24),(22,20),(22,21),(22,25),(22,26),(23,7),(24,7),(25,23),(25,24),(26,23),(26,24)],27)
=> ? = 2 - 1
[2,3,6,1,5,4] => [4,2,6,1,5,3] => [2,4,6,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(1,9),(1,18),(1,22),(2,11),(2,14),(2,16),(2,18),(3,9),(3,14),(3,15),(3,22),(4,12),(4,13),(4,16),(4,22),(5,10),(5,13),(5,15),(5,18),(5,22),(6,8),(6,10),(6,11),(6,12),(6,22),(8,20),(8,25),(9,19),(9,25),(10,20),(10,21),(10,25),(10,26),(11,17),(11,25),(11,26),(12,17),(12,20),(12,26),(13,21),(13,26),(14,19),(14,26),(15,19),(15,21),(15,25),(16,17),(16,26),(17,24),(18,19),(18,25),(18,26),(19,23),(20,23),(20,24),(21,23),(21,24),(22,20),(22,21),(22,25),(22,26),(23,7),(24,7),(25,23),(25,24),(26,23),(26,24)],27)
=> ? = 1 - 1
[2,4,6,5,3,1] => [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[2,5,6,3,4,1] => [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
[2,5,6,4,3,1] => [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0 = 1 - 1
Description
The number of simple modules with projective dimension two in the incidence algebra of the poset.
Matching statistic: St000100
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St000100: Posets ⟶ ℤResult quality: 20% ●values known / values provided: 29%●distinct values known / distinct values provided: 20%
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St000100: Posets ⟶ ℤResult quality: 20% ●values known / values provided: 29%●distinct values known / distinct values provided: 20%
Values
[1] => [1] => [1] => ([],1)
=> ? = 1
[2,1] => [2,1] => [2,1] => ([(0,1)],2)
=> 1
[2,3,1] => [3,2,1] => [3,2,1] => ([(0,2),(2,1)],3)
=> 1
[3,1,2] => [3,2,1] => [3,2,1] => ([(0,2),(2,1)],3)
=> 1
[3,2,1] => [3,2,1] => [3,2,1] => ([(0,2),(2,1)],3)
=> 1
[2,3,4,1] => [4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 2
[2,4,1,3] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ? = 1
[2,4,3,1] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[3,1,4,2] => [4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1
[3,2,4,1] => [4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1
[3,4,1,2] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[3,4,2,1] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,1,2,3] => [4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 2
[4,1,3,2] => [4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1
[4,2,1,3] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,2,3,1] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,3,1,2] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[2,3,4,5,1] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 3
[2,3,5,1,4] => [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 1
[2,3,5,4,1] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 2
[2,4,1,5,3] => [3,5,1,4,2] => [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 1
[2,4,3,5,1] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 2
[2,4,5,1,3] => [4,5,3,1,2] => [4,1,5,3,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1
[2,4,5,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[2,5,1,3,4] => [3,5,1,4,2] => [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 1
[2,5,1,4,3] => [3,5,1,4,2] => [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 1
[2,5,3,1,4] => [4,5,3,1,2] => [4,1,5,3,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1
[2,5,3,4,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[2,5,4,1,3] => [4,5,3,1,2] => [4,1,5,3,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1
[2,5,4,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,1,4,5,2] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1
[3,1,5,2,4] => [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 1
[3,1,5,4,2] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1
[3,2,4,5,1] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2
[3,2,5,1,4] => [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 1
[3,2,5,4,1] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1
[3,4,1,5,2] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1
[3,4,2,5,1] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1
[3,4,5,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,4,5,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,5,1,2,4] => [4,5,3,1,2] => [4,1,5,3,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1
[3,5,1,4,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,5,2,1,4] => [4,5,3,1,2] => [4,1,5,3,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1
[3,5,2,4,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,5,4,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,5,4,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,1,2,5,3] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1
[4,1,3,5,2] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1
[4,1,5,2,3] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1
[4,1,5,3,2] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1
[4,2,1,5,3] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1
[4,2,3,5,1] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1
[4,2,5,1,3] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,2,5,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,3,1,5,2] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1
[4,3,2,5,1] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1
[4,3,5,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,3,5,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,1,2,3] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,1,3,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,2,1,3] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,2,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,3,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,3,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,1,2,3,4] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 3
[5,1,2,4,3] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2
[5,1,3,2,4] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 2
[5,1,3,4,2] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1
[5,1,4,2,3] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1
[5,1,4,3,2] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1
[5,2,1,3,4] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 2
[5,2,1,4,3] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1
[5,2,3,1,4] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,2,3,4,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,2,4,1,3] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,2,4,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,3,1,2,4] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,3,1,4,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,3,2,1,4] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,3,2,4,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,3,4,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,3,4,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,1,2,3] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,1,3,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,2,1,3] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,2,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,3,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,3,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[2,3,4,5,6,1] => [6,2,3,4,5,1] => [2,3,4,6,5,1] => ([(0,3),(0,4),(0,5),(1,14),(2,1),(2,6),(2,7),(3,9),(3,11),(4,9),(4,10),(5,2),(5,10),(5,11),(6,13),(6,14),(7,13),(7,14),(9,12),(10,6),(10,12),(11,7),(11,12),(12,13),(13,8),(14,8)],15)
=> ? = 4
[2,3,4,6,1,5] => [5,2,3,6,1,4] => [2,3,5,1,6,4] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(1,15),(1,18),(1,20),(2,9),(2,14),(2,16),(3,11),(3,12),(3,16),(4,10),(4,11),(4,14),(5,12),(5,13),(5,14),(5,16),(6,1),(6,9),(6,10),(6,13),(6,16),(8,17),(8,21),(9,15),(9,20),(10,18),(10,19),(10,20),(11,19),(12,18),(12,19),(13,8),(13,15),(13,18),(13,20),(14,19),(14,20),(15,17),(15,21),(16,15),(16,18),(16,19),(17,7),(18,17),(18,21),(19,21),(20,17),(20,21),(21,7)],22)
=> ? = 2
[2,3,4,6,5,1] => [6,2,3,5,4,1] => [6,2,3,5,4,1] => ([(0,2),(0,3),(0,4),(0,5),(1,17),(2,8),(2,9),(2,12),(3,7),(3,9),(3,11),(4,7),(4,8),(4,10),(5,1),(5,10),(5,11),(5,12),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(10,17),(11,15),(11,16),(11,17),(12,14),(12,15),(12,17),(13,19),(14,18),(14,19),(15,18),(15,19),(16,18),(16,19),(17,18),(18,6),(19,6)],20)
=> ? = 3
[2,3,5,4,6,1] => [6,2,4,3,5,1] => [4,2,3,6,5,1] => ([(0,2),(0,3),(0,4),(0,5),(1,6),(1,15),(1,18),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,9),(4,10),(4,13),(5,1),(5,8),(5,11),(5,13),(6,19),(6,20),(8,14),(8,18),(9,14),(9,16),(10,16),(10,17),(11,15),(11,17),(11,18),(12,15),(12,16),(12,18),(13,6),(13,14),(13,17),(14,19),(15,20),(16,19),(16,20),(17,19),(17,20),(18,19),(18,20),(19,7),(20,7)],21)
=> ? = 3
[2,3,5,6,1,4] => [5,2,6,4,1,3] => [5,6,2,1,4,3] => ([(0,2),(0,3),(0,4),(1,7),(1,8),(2,1),(2,11),(2,12),(3,9),(3,10),(3,12),(4,9),(4,10),(4,11),(5,15),(5,16),(7,15),(7,16),(8,15),(8,16),(9,5),(9,13),(10,5),(10,14),(11,7),(11,13),(11,14),(12,8),(12,13),(12,14),(13,16),(14,15),(14,16),(15,6),(16,6)],17)
=> ? = 2
[2,3,5,6,4,1] => [6,2,5,4,3,1] => [6,5,2,4,3,1] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 2
[2,3,6,1,4,5] => [4,2,6,1,5,3] => [2,4,6,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(1,9),(1,18),(1,22),(2,11),(2,14),(2,16),(2,18),(3,9),(3,14),(3,15),(3,22),(4,12),(4,13),(4,16),(4,22),(5,10),(5,13),(5,15),(5,18),(5,22),(6,8),(6,10),(6,11),(6,12),(6,22),(8,20),(8,25),(9,19),(9,25),(10,20),(10,21),(10,25),(10,26),(11,17),(11,25),(11,26),(12,17),(12,20),(12,26),(13,21),(13,26),(14,19),(14,26),(15,19),(15,21),(15,25),(16,17),(16,26),(17,24),(18,19),(18,25),(18,26),(19,23),(20,23),(20,24),(21,23),(21,24),(22,20),(22,21),(22,25),(22,26),(23,7),(24,7),(25,23),(25,24),(26,23),(26,24)],27)
=> ? = 2
[2,4,6,5,3,1] => [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[2,5,6,3,4,1] => [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[2,5,6,4,3,1] => [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[2,6,4,3,5,1] => [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
Description
The number of linear extensions of a poset.
Matching statistic: St001632
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St001632: Posets ⟶ ℤResult quality: 20% ●values known / values provided: 29%●distinct values known / distinct values provided: 20%
Mp00175: Permutations —inverse Foata bijection⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St001632: Posets ⟶ ℤResult quality: 20% ●values known / values provided: 29%●distinct values known / distinct values provided: 20%
Values
[1] => [1] => [1] => ([],1)
=> ? = 1
[2,1] => [2,1] => [2,1] => ([(0,1)],2)
=> 1
[2,3,1] => [3,2,1] => [3,2,1] => ([(0,2),(2,1)],3)
=> 1
[3,1,2] => [3,2,1] => [3,2,1] => ([(0,2),(2,1)],3)
=> 1
[3,2,1] => [3,2,1] => [3,2,1] => ([(0,2),(2,1)],3)
=> 1
[2,3,4,1] => [4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 2
[2,4,1,3] => [3,4,1,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ? = 1
[2,4,3,1] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[3,1,4,2] => [4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1
[3,2,4,1] => [4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1
[3,4,1,2] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[3,4,2,1] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,1,2,3] => [4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 2
[4,1,3,2] => [4,2,3,1] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ? = 1
[4,2,1,3] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,2,3,1] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,3,1,2] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1
[2,3,4,5,1] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 3
[2,3,5,1,4] => [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 1
[2,3,5,4,1] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 2
[2,4,1,5,3] => [3,5,1,4,2] => [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 1
[2,4,3,5,1] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 2
[2,4,5,1,3] => [4,5,3,1,2] => [4,1,5,3,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1
[2,4,5,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[2,5,1,3,4] => [3,5,1,4,2] => [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 1
[2,5,1,4,3] => [3,5,1,4,2] => [3,5,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 1
[2,5,3,1,4] => [4,5,3,1,2] => [4,1,5,3,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1
[2,5,3,4,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[2,5,4,1,3] => [4,5,3,1,2] => [4,1,5,3,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1
[2,5,4,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,1,4,5,2] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1
[3,1,5,2,4] => [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 1
[3,1,5,4,2] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1
[3,2,4,5,1] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2
[3,2,5,1,4] => [4,2,5,1,3] => [2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 1
[3,2,5,4,1] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1
[3,4,1,5,2] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1
[3,4,2,5,1] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1
[3,4,5,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,4,5,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,5,1,2,4] => [4,5,3,1,2] => [4,1,5,3,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1
[3,5,1,4,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,5,2,1,4] => [4,5,3,1,2] => [4,1,5,3,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 1
[3,5,2,4,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,5,4,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[3,5,4,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,1,2,5,3] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1
[4,1,3,5,2] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 1
[4,1,5,2,3] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1
[4,1,5,3,2] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1
[4,2,1,5,3] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1
[4,2,3,5,1] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1
[4,2,5,1,3] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,2,5,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,3,1,5,2] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1
[4,3,2,5,1] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1
[4,3,5,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,3,5,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,1,2,3] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,1,3,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,2,1,3] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,2,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,3,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[4,5,3,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,1,2,3,4] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 3
[5,1,2,4,3] => [5,2,3,4,1] => [2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2
[5,1,3,2,4] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 2
[5,1,3,4,2] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1
[5,1,4,2,3] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1
[5,1,4,3,2] => [5,2,4,3,1] => [5,2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 1
[5,2,1,3,4] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 2
[5,2,1,4,3] => [5,3,2,4,1] => [3,2,5,4,1] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 1
[5,2,3,1,4] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,2,3,4,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,2,4,1,3] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,2,4,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,3,1,2,4] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,3,1,4,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,3,2,1,4] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,3,2,4,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,3,4,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,3,4,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,1,2,3] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,1,3,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,2,1,3] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,2,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,3,1,2] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[5,4,3,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[2,3,4,5,6,1] => [6,2,3,4,5,1] => [2,3,4,6,5,1] => ([(0,3),(0,4),(0,5),(1,14),(2,1),(2,6),(2,7),(3,9),(3,11),(4,9),(4,10),(5,2),(5,10),(5,11),(6,13),(6,14),(7,13),(7,14),(9,12),(10,6),(10,12),(11,7),(11,12),(12,13),(13,8),(14,8)],15)
=> ? = 4
[2,3,4,6,1,5] => [5,2,3,6,1,4] => [2,3,5,1,6,4] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(1,15),(1,18),(1,20),(2,9),(2,14),(2,16),(3,11),(3,12),(3,16),(4,10),(4,11),(4,14),(5,12),(5,13),(5,14),(5,16),(6,1),(6,9),(6,10),(6,13),(6,16),(8,17),(8,21),(9,15),(9,20),(10,18),(10,19),(10,20),(11,19),(12,18),(12,19),(13,8),(13,15),(13,18),(13,20),(14,19),(14,20),(15,17),(15,21),(16,15),(16,18),(16,19),(17,7),(18,17),(18,21),(19,21),(20,17),(20,21),(21,7)],22)
=> ? = 2
[2,3,4,6,5,1] => [6,2,3,5,4,1] => [6,2,3,5,4,1] => ([(0,2),(0,3),(0,4),(0,5),(1,17),(2,8),(2,9),(2,12),(3,7),(3,9),(3,11),(4,7),(4,8),(4,10),(5,1),(5,10),(5,11),(5,12),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(10,17),(11,15),(11,16),(11,17),(12,14),(12,15),(12,17),(13,19),(14,18),(14,19),(15,18),(15,19),(16,18),(16,19),(17,18),(18,6),(19,6)],20)
=> ? = 3
[2,3,5,4,6,1] => [6,2,4,3,5,1] => [4,2,3,6,5,1] => ([(0,2),(0,3),(0,4),(0,5),(1,6),(1,15),(1,18),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,9),(4,10),(4,13),(5,1),(5,8),(5,11),(5,13),(6,19),(6,20),(8,14),(8,18),(9,14),(9,16),(10,16),(10,17),(11,15),(11,17),(11,18),(12,15),(12,16),(12,18),(13,6),(13,14),(13,17),(14,19),(15,20),(16,19),(16,20),(17,19),(17,20),(18,19),(18,20),(19,7),(20,7)],21)
=> ? = 3
[2,3,5,6,1,4] => [5,2,6,4,1,3] => [5,6,2,1,4,3] => ([(0,2),(0,3),(0,4),(1,7),(1,8),(2,1),(2,11),(2,12),(3,9),(3,10),(3,12),(4,9),(4,10),(4,11),(5,15),(5,16),(7,15),(7,16),(8,15),(8,16),(9,5),(9,13),(10,5),(10,14),(11,7),(11,13),(11,14),(12,8),(12,13),(12,14),(13,16),(14,15),(14,16),(15,6),(16,6)],17)
=> ? = 2
[2,3,5,6,4,1] => [6,2,5,4,3,1] => [6,5,2,4,3,1] => ([(0,1),(0,3),(0,4),(0,5),(1,14),(2,7),(2,8),(2,16),(3,9),(3,11),(3,14),(4,9),(4,10),(4,14),(5,2),(5,10),(5,11),(5,14),(7,13),(7,15),(8,13),(8,15),(9,12),(9,16),(10,7),(10,12),(10,16),(11,8),(11,12),(11,16),(12,13),(12,15),(13,6),(14,16),(15,6),(16,15)],17)
=> ? = 2
[2,3,6,1,4,5] => [4,2,6,1,5,3] => [2,4,6,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,8),(1,9),(1,18),(1,22),(2,11),(2,14),(2,16),(2,18),(3,9),(3,14),(3,15),(3,22),(4,12),(4,13),(4,16),(4,22),(5,10),(5,13),(5,15),(5,18),(5,22),(6,8),(6,10),(6,11),(6,12),(6,22),(8,20),(8,25),(9,19),(9,25),(10,20),(10,21),(10,25),(10,26),(11,17),(11,25),(11,26),(12,17),(12,20),(12,26),(13,21),(13,26),(14,19),(14,26),(15,19),(15,21),(15,25),(16,17),(16,26),(17,24),(18,19),(18,25),(18,26),(19,23),(20,23),(20,24),(21,23),(21,24),(22,20),(22,21),(22,25),(22,26),(23,7),(24,7),(25,23),(25,24),(26,23),(26,24)],27)
=> ? = 2
[2,4,6,5,3,1] => [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[2,5,6,3,4,1] => [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[2,5,6,4,3,1] => [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
[2,6,4,3,5,1] => [6,5,4,3,2,1] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1
Description
The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset.
Matching statistic: St001545
Values
[1] => ([],1)
=> ([],1)
=> ([],1)
=> ? = 1 + 23
[2,1] => ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? = 1 + 23
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 23
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 23
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ? = 1 + 23
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2 + 23
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 23
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 23
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ? = 1 + 23
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 1 + 23
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2 + 23
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 23
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 23
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 1 + 23
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 1 + 23
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 1 + 23
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 23
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 23
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2 + 23
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 23
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2 + 23
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 23
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 23
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 23
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 23
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 23
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 23
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 23
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 23
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? = 2 + 23
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 23
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 23
[3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 23
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 + 23
[3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 + 23
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 23
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 + 23
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 23
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 + 23
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 + 23
[3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 + 23
[4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 1 + 23
[4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 23
[4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 23
[4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 23
[4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 + 23
[4,2,5,3,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 + 23
[4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 23
[4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ? = 1 + 23
[4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ? = 1 + 23
[2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[2,4,6,1,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[2,4,6,3,1,5] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[2,5,1,6,3,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[2,5,1,6,4,3] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[2,5,4,1,6,3] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[2,6,1,4,5,3] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[2,6,1,5,3,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[2,6,1,5,4,3] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[2,6,3,1,5,4] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[2,6,3,4,1,5] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[2,6,4,1,3,5] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[2,6,4,3,1,5] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[3,1,5,6,2,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[3,1,5,6,4,2] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[3,1,6,4,5,2] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[3,1,6,5,2,4] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[3,1,6,5,4,2] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[3,2,6,1,5,4] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[3,2,6,4,1,5] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[3,4,1,6,2,5] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[3,4,2,6,1,5] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[3,5,1,2,6,4] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[3,5,2,1,6,4] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[4,1,3,6,5,2] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[4,1,5,2,6,3] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[4,1,5,3,6,2] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[4,1,6,2,3,5] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[4,1,6,3,2,5] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[4,2,1,6,5,3] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[4,2,3,6,1,5] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[4,3,1,6,2,5] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[4,3,2,6,1,5] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[5,1,3,4,6,2] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[5,1,4,2,6,3] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[5,1,4,3,6,2] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[5,2,1,4,6,3] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[5,2,3,1,6,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[5,3,1,2,6,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[5,3,2,1,6,4] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[2,4,5,1,7,6,3] => ([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
[2,4,5,6,1,7,3] => ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24 = 1 + 23
Description
The second Elser number of a connected graph.
For a connected graph $G$ the $k$-th Elser number is
$$
els_k(G) = (-1)^{|V(G)|+1} \sum_N (-1)^{|E(N)|} |V(N)|^k
$$
where the sum is over all nuclei of $G$, that is, the connected subgraphs of $G$ whose vertex set is a vertex cover of $G$.
It is clear that this number is even. It was shown in [1] that it is non-negative.
The following 31 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000908The length of the shortest maximal antichain in a poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St001472The permanent of the Coxeter matrix of the poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001964The interval resolution global dimension of a poset. St000914The sum of the values of the Möbius function of a poset. St001095The number of non-isomorphic posets with precisely one further covering relation. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001371The length of the longest Yamanouchi prefix of a binary word. St001730The number of times the path corresponding to a binary word crosses the base line. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001570The minimal number of edges to add to make a graph Hamiltonian. St000264The girth of a graph, which is not a tree. St000181The number of connected components of the Hasse diagram for the poset. St000635The number of strictly order preserving maps of a poset into itself. St001890The maximum magnitude of the Möbius function of a poset. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001720The minimal length of a chain of small intervals in a lattice. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000068The number of minimal elements in a poset. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001875The number of simple modules with projective dimension at most 1. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!