Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000771
Mp00253: Decorated permutations permutationPermutations
Mp00248: Permutations DEX compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000771: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[+] => [1] => [1] => ([],1)
=> 1
[-] => [1] => [1] => ([],1)
=> 1
[3,+,1] => [3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[3,-,1] => [3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[+,4,+,2] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[-,4,+,2] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[+,4,-,2] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[-,4,-,2] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,4,+,1] => [2,4,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[2,4,-,1] => [2,4,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[3,4,2,1] => [3,4,2,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,1,+,2] => [4,1,3,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,1,-,2] => [4,1,3,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,+,+,1] => [4,2,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,-,+,1] => [4,2,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,+,-,1] => [4,2,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,-,-,1] => [4,2,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,3,2,1] => [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[+,+,5,+,3] => [1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[-,+,5,+,3] => [1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[+,-,5,+,3] => [1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[+,+,5,-,3] => [1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[-,-,5,+,3] => [1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[-,+,5,-,3] => [1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[+,-,5,-,3] => [1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[-,-,5,-,3] => [1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[+,3,5,+,2] => [1,3,5,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[-,3,5,+,2] => [1,3,5,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[+,3,5,-,2] => [1,3,5,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[-,3,5,-,2] => [1,3,5,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[+,4,5,3,2] => [1,4,5,3,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[-,4,5,3,2] => [1,4,5,3,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[+,5,2,+,3] => [1,5,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[-,5,2,+,3] => [1,5,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[+,5,2,-,3] => [1,5,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[-,5,2,-,3] => [1,5,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[+,5,+,+,2] => [1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[-,5,+,+,2] => [1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[+,5,-,+,2] => [1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[+,5,+,-,2] => [1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[-,5,-,+,2] => [1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[-,5,+,-,2] => [1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[+,5,-,-,2] => [1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[-,5,-,-,2] => [1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[+,5,4,3,2] => [1,5,4,3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[-,5,4,3,2] => [1,5,4,3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,1,5,+,3] => [2,1,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,1,5,-,3] => [2,1,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,3,5,+,1] => [2,3,5,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,3,5,-,1] => [2,3,5,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $2$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Matching statistic: St000774
Mp00253: Decorated permutations permutationPermutations
Mp00248: Permutations DEX compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000774: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[+] => [1] => [1] => ([],1)
=> 1
[-] => [1] => [1] => ([],1)
=> 1
[3,+,1] => [3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[3,-,1] => [3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[+,4,+,2] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[-,4,+,2] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[+,4,-,2] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[-,4,-,2] => [1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,4,+,1] => [2,4,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[2,4,-,1] => [2,4,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[3,4,2,1] => [3,4,2,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,1,+,2] => [4,1,3,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,1,-,2] => [4,1,3,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,+,+,1] => [4,2,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,-,+,1] => [4,2,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,+,-,1] => [4,2,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,-,-,1] => [4,2,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[4,3,2,1] => [4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[+,+,5,+,3] => [1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[-,+,5,+,3] => [1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[+,-,5,+,3] => [1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[+,+,5,-,3] => [1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[-,-,5,+,3] => [1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[-,+,5,-,3] => [1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[+,-,5,-,3] => [1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[-,-,5,-,3] => [1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[+,3,5,+,2] => [1,3,5,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[-,3,5,+,2] => [1,3,5,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[+,3,5,-,2] => [1,3,5,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[-,3,5,-,2] => [1,3,5,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[+,4,5,3,2] => [1,4,5,3,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[-,4,5,3,2] => [1,4,5,3,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[+,5,2,+,3] => [1,5,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[-,5,2,+,3] => [1,5,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[+,5,2,-,3] => [1,5,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[-,5,2,-,3] => [1,5,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[+,5,+,+,2] => [1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[-,5,+,+,2] => [1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[+,5,-,+,2] => [1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[+,5,+,-,2] => [1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[-,5,-,+,2] => [1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[-,5,+,-,2] => [1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[+,5,-,-,2] => [1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[-,5,-,-,2] => [1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[+,5,4,3,2] => [1,5,4,3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[-,5,4,3,2] => [1,5,4,3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[2,1,5,+,3] => [2,1,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,1,5,-,3] => [2,1,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,3,5,+,1] => [2,3,5,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[2,3,5,-,1] => [2,3,5,4,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
Description
The maximal multiplicity of a Laplacian eigenvalue in a graph.