Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000714
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000714: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 3
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 3
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 3
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 3
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 3
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 0
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 3
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 0
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 0
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 1
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 0
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 1
[[3],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[[3],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 0
[[3],[2],[2],[1]]
=> [3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[3],[1],[1]]
=> [3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 1
Description
The number of semistandard Young tableau of given shape, with entries at most 2. This is also the dimension of the corresponding irreducible representation of $GL_2$.
Matching statistic: St001232
Mp00311: Plane partitions to partitionInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00222: Dyck paths peaks-to-valleysDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 8% values known / values provided: 8%distinct values known / distinct values provided: 40%
Values
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ? = 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ? = 1
[[2],[2],[2]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ? = 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 1
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 0
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? = 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 0
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? = 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 1
[[3],[2],[2]]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> ? = 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 0
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ? = 1
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 0
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ? = 1
[[3],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[3],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> ? = 0
[[3],[2],[2],[1]]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 2
[[3],[3],[1],[1]]
=> [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 1
[[3],[3],[2]]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ? = 3
[[2,1],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[[2,1],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> ? = 0
[[2,1],[2],[2],[1]]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 2
[[2,1],[1,1],[1],[1],[1]]
=> [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> ? = 0
[[2,1],[1,1],[1,1],[1]]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 2
[[4],[2],[2]]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3
[[3,1],[2],[2]]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3
[[3,1],[1,1],[1,1]]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3
[[2,2],[2],[2]]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3
[[2,2],[1,1],[1,1]]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3
[[2,1,1],[2],[2]]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3
[[2,1,1],[1,1],[1,1]]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3
[[1,1,1,1],[1,1],[1,1]]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 3
[[3],[3],[3]]
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[[2,1],[2,1],[2,1]]
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[[1,1,1],[1,1,1],[1,1,1]]
=> [3,3,3]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[[5],[2],[2]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3
[[4,1],[2],[2]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3
[[4,1],[1,1],[1,1]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3
[[3,2],[2],[2]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3
[[3,2],[1,1],[1,1]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3
[[3,1,1],[2],[2]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3
[[3,1,1],[1,1],[1,1]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3
[[2,2,1],[2],[2]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3
[[2,2,1],[1,1],[1,1]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3
[[2,1,1,1],[2],[2]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3
[[2,1,1,1],[1,1],[1,1]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3
[[1,1,1,1,1],[1,1],[1,1]]
=> [5,2,2]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> 3
[[4],[3],[3]]
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4
[[3,1],[3],[3]]
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4
[[3,1],[2,1],[2,1]]
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4
[[2,2],[2,1],[2,1]]
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4
[[2,1,1],[2,1],[2,1]]
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4
[[2,1,1],[1,1,1],[1,1,1]]
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4
[[1,1,1,1],[1,1,1],[1,1,1]]
=> [4,3,3]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 4
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.