Your data matches 29 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000678
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St000678: Dyck paths ⟶ ℤResult quality: 100% ā—values known / values provided: 100%ā—distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 2
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> 2
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> 2
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
Description
The number of up steps after the last double rise of a Dyck path.
Matching statistic: St000011
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00142: Dyck paths —promotion⟶ Dyck paths
St000011: Dyck paths ⟶ ℤResult quality: 89% ā—values known / values provided: 89%ā—distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 2
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> 2
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 2
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 2
[3,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 2
[3,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 2
[3,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 2
[3,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 2
[3,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 2
[3,3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 2
[3,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 2
[6,6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2
[4,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 2
[3,3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 2
[3,3,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 2
[6,6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2
[5,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 2
[4,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 2
[3,3,3,3,1,1,1]
=> [1,0,1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 2
[3,3,3,2,2,1,1]
=> [1,0,1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 2
[6,6,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2
[6,6,2,1,1]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2
[6,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> ? = 2
[6,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2
[5,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 2
[4,4,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 2
[4,3,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 2
[3,3,3,3,3,1]
=> [1,1,0,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 2
[3,3,3,3,2,1,1]
=> [1,0,1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 2
[6,6,2,2,1]
=> [1,1,1,0,1,0,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2
[6,6,2,1,1,1]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2
[6,4,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> ? = 2
[6,3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> ? = 2
[6,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2
[5,5,5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 2
[5,4,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 2
[5,3,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 2
[4,4,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 2
[4,3,3,3,2,2]
=> [1,1,0,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 2
[3,3,3,3,3,1,1]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 2
[6,6,5,4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 2
[6,5,5,4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> ? = 2
[6,4,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> ? = 2
[5,5,5,4,3,2]
=> [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 2
[6,5,4,4,3,2]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0,1,0]
=> ? = 2
[6,5,4,3,3,2]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0,1,0]
=> ? = 2
[5,4,3,3,3,2]
=> [1,1,0,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0,1,1,0,0]
=> ? = 2
[4,3,3,3,3,2]
=> [1,1,0,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,1,1,0,0,0]
=> ? = 2
[6,5,4,3,2,2]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0,1,0]
=> ? = 2
[4,4,4,3,2,2]
=> [1,1,0,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 2
[6,5,4,2,2,2]
=> [1,1,0,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0,1,0]
=> ? = 2
[5,4,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 2
Description
The number of touch points (or returns) of a Dyck path. This is the number of points, excluding the origin, where the Dyck path has height 0.
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
St000701: Binary trees ⟶ ℤResult quality: 81% ā—values known / values provided: 81%ā—distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> [[.,.],.]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [[.,.],[.,.]]
=> 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [[.,[.,[.,.]]],.]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [[[.,.],.],.]
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [[.,.],[.,[.,.]]]
=> 2
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [[[.,.],[.,.]],.]
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[.,[.,.]],[.,.]]
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [[[.,.],.],[.,.]]
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[.,.],[.,[.,[.,.]]]]
=> 2
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,.]]]]],.]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[[.,.],[.,[.,.]]],.]
=> 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [[[.,[.,.]],.],.]
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [[[.,.],[.,.]],.]
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [[[.,.],.],[.,.]]
=> 2
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[[.,.],.],[.,[.,.]]]
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> 2
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[.,.]]]],.]
=> 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[[.,[.,.]],[.,.]],.]
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[[.,.],[.,[.,.]]],.]
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[.,[.,[.,.]]],[.,.]]
=> 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [[[[.,.],.],.],.]
=> 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[[.,.],[.,.]],[.,.]]
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[.,[.,.]],[.,[.,.]]]
=> 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[[.,.],.],[.,[.,.]]]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [[[.,.],.],[.,[.,[.,.]]]]
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[.,.],[.,[.,[.,[.,[.,.]]]]]]
=> 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[.,[.,.]]]]],.]
=> 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [[[.,[.,.]],[.,[.,.]]],.]
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[.,.]]]],.]
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[[.,[.,[.,.]]],.],.]
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[[.,[.,.]],[.,.]],.]
=> 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[[.,.],[.,[.,.]]],.]
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[[.,.],[.,.]],[.,.]]
=> 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[[.,[.,.]],.],[.,.]]
=> 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[[.,.],[.,.]],[.,.]]
=> 2
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [[[.,.],[.,.]],[.,[.,.]]]
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[[.,.],.],[.,[.,.]]]
=> 2
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [[[.,.],.],[.,[.,[.,.]]]]
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [[[.,.],.],[.,[.,[.,[.,.]]]]]
=> 2
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [[[.,[.,.]],[.,[.,[.,.]]]],.]
=> 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[.,[.,.]]]]],.]
=> 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [[[.,[.,[.,.]]],[.,.]],.]
=> 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [[[.,[.,.]],[.,[.,.]]],.]
=> 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[[.,.],[.,[.,[.,.]]]],.]
=> 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [[.,[.,[.,[.,.]]]],[.,.]]
=> 2
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[[[.,.],[.,.]],.],.]
=> 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[[.,[.,.]],[.,.]],.]
=> 1
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[.,[.,.]],[.,[.,[.,[.,.]]]]],.]
=> ? = 1
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,[.,[.,[.,.]]]]]
=> ? = 2
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[.,[.,.]],[.,[.,[.,[.,.]]]]],.]
=> ? = 1
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,[.,[.,[.,.]]]]]
=> ? = 2
[7,2,2]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[.,[.,.]],[.,[.,[.,[.,.]]]]],.]
=> ? = 1
[7,2,1,1]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[.,[.,.]],[.,[.,[.,[.,.]]]]],.]
=> ? = 1
[3,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,[.,[.,[.,.]]]]]
=> ? = 2
[3,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,[.,[.,[.,.]]]]]
=> ? = 2
[7,2,2,1]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[.,[.,.]],[.,[.,[.,[.,.]]]]],.]
=> ? = 1
[7,2,1,1,1]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[.,[.,.]],[.,[.,[.,[.,.]]]]],.]
=> ? = 1
[3,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,[.,[.,[.,.]]]]]
=> ? = 2
[3,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,[.,[.,[.,.]]]]]
=> ? = 2
[7,2,2,2]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[.,[.,.]],[.,[.,[.,[.,.]]]]],.]
=> ? = 1
[7,2,2,1,1]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[.,[.,.]],[.,[.,[.,[.,.]]]]],.]
=> ? = 1
[7,2,1,1,1,1]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[.,[.,.]],[.,[.,[.,[.,.]]]]],.]
=> ? = 1
[3,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,[.,[.,[.,.]]]]]
=> ? = 2
[3,3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,[.,[.,[.,.]]]]]
=> ? = 2
[3,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [[[.,[.,.]],.],[.,[.,[.,[.,.]]]]]
=> ? = 2
[3,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,[.,[.,[.,.]]]]]
=> ? = 2
[7,3,1,1,1,1]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [[[[.,.],[.,.]],[.,[.,[.,.]]]],.]
=> ? = 1
[7,2,2,2,1]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[.,[.,.]],[.,[.,[.,[.,.]]]]],.]
=> ? = 1
[7,2,2,1,1,1]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[.,[.,.]],[.,[.,[.,[.,.]]]]],.]
=> ? = 1
[6,6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [[[.,[.,.]],[.,[.,[.,.]]]],[.,.]]
=> ? = 2
[4,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [[[.,[.,.]],[.,.]],[.,[.,[.,.]]]]
=> ? = 2
[3,3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,[.,[.,[.,.]]]]]
=> ? = 2
[3,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [[[.,[.,.]],.],[.,[.,[.,[.,.]]]]]
=> ? = 2
[3,3,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,[.,[.,[.,.]]]]]
=> ? = 2
[7,6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [[[[.,[.,.]],[.,[.,[.,.]]]],.],.]
=> ? = 1
[7,3,2,1,1,1]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [[[[.,.],[.,.]],[.,[.,[.,.]]]],.]
=> ? = 1
[7,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [[[[.,.],[.,.]],[.,[.,[.,.]]]],.]
=> ? = 1
[7,2,2,2,2]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[.,[.,.]],[.,[.,[.,[.,.]]]]],.]
=> ? = 1
[7,2,2,2,1,1]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[.,[.,.]],[.,[.,[.,[.,.]]]]],.]
=> ? = 1
[6,6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [[[.,[.,.]],[.,[.,[.,.]]]],[.,.]]
=> ? = 2
[5,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [[[.,[.,.]],[.,[.,.]]],[.,[.,.]]]
=> ? = 2
[4,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [[[.,[.,.]],[.,.]],[.,[.,[.,.]]]]
=> ? = 2
[3,3,3,3,1,1,1]
=> [1,0,1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,[.,[.,[.,.]]]]]
=> ? = 2
[3,3,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [[[.,[.,.]],.],[.,[.,[.,[.,.]]]]]
=> ? = 2
[3,3,3,2,2,1,1]
=> [1,0,1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [[[.,.],[.,.]],[.,[.,[.,[.,.]]]]]
=> ? = 2
[7,6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [[[[.,[.,.]],[.,[.,[.,.]]]],.],.]
=> ? = 1
[7,5,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [[[[.,[.,.]],[.,[.,.]]],[.,.]],.]
=> ? = 1
[7,3,3,1,1,1]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [[[[.,.],[.,.]],[.,[.,[.,.]]]],.]
=> ? = 1
[7,3,2,2,1,1]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [[[[.,.],[.,.]],[.,[.,[.,.]]]],.]
=> ? = 1
[7,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [[[[.,.],[.,.]],[.,[.,[.,.]]]],.]
=> ? = 1
[7,2,2,2,2,1]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[.,[.,.]],[.,[.,[.,[.,.]]]]],.]
=> ? = 1
[6,6,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [[[.,[.,.]],[.,[.,[.,.]]]],[.,.]]
=> ? = 2
[6,6,2,1,1]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [[[.,[.,.]],[.,[.,[.,.]]]],[.,.]]
=> ? = 2
[6,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [[[.,[.,.]],[.,[.,[.,.]]]],[.,.]]
=> ? = 2
[5,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [[[.,[.,.]],[.,[.,.]]],[.,[.,.]]]
=> ? = 2
[4,4,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [[[.,[.,.]],[.,.]],[.,[.,[.,.]]]]
=> ? = 2
[4,3,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [[[.,[.,.]],[.,.]],[.,[.,[.,.]]]]
=> ? = 2
Description
The protection number of a binary tree. This is the minimal distance from the root to a leaf.
Matching statistic: St001135
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St001135: Dyck paths ⟶ ℤResult quality: 78% ā—values known / values provided: 78%ā—distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 2
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> 2
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> 2
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 1
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 2
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 1
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 2
[7,2,2]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 1
[7,2,1,1]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 1
[3,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 2
[3,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 2
[7,2,2,1]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 1
[7,2,1,1,1]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 1
[3,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 2
[3,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 2
[2,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ? = 2
[7,2,2,2]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 1
[7,2,2,1,1]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 1
[7,2,1,1,1,1]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 1
[3,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 2
[3,3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 2
[3,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ? = 2
[3,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 2
[7,3,1,1,1,1]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> ? = 1
[7,2,2,2,1]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 1
[7,2,2,1,1,1]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 1
[6,6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> ? = 2
[4,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> ? = 2
[3,3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 2
[3,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ? = 2
[3,3,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 2
[7,6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> ? = 1
[7,3,2,1,1,1]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> ? = 1
[7,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> ? = 1
[7,2,2,2,2]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 1
[7,2,2,2,1,1]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 1
[6,6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> ? = 2
[5,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> ? = 2
[4,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> ? = 2
[3,3,3,3,1,1,1]
=> [1,0,1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 2
[3,3,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> ? = 2
[3,3,3,2,2,1,1]
=> [1,0,1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 2
[7,6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> ? = 1
[7,5,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> ? = 1
[7,3,3,1,1,1]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> ? = 1
[7,3,2,2,1,1]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> ? = 1
[7,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> ? = 1
[7,2,2,2,2,1]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> ? = 1
[6,6,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> ? = 2
[6,6,2,1,1]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> ? = 2
[6,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> ? = 2
[6,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> ? = 2
[5,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> ? = 2
Description
The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001011
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001011: Dyck paths ⟶ ℤResult quality: 78% ā—values known / values provided: 78%ā—distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [2,1] => [1,1,0,0]
=> 0 = 1 - 1
[2]
=> [1,1,0,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> 0 = 1 - 1
[1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> 1 = 2 - 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> 0 = 1 - 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0 = 1 - 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [1,1,0,1,0,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0 = 1 - 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [6,2,1,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0 = 1 - 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0]
=> 1 = 2 - 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> 1 = 2 - 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> 1 = 2 - 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0]
=> 1 = 2 - 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => [1,1,1,0,0,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0 = 1 - 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0 = 1 - 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [6,2,3,1,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0 = 1 - 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> 1 = 2 - 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> 1 = 2 - 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> 1 = 2 - 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> 1 = 2 - 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> 1 = 2 - 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,6,1] => [1,1,1,0,1,0,0,1,0,1,0,0]
=> 1 = 2 - 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [7,3,1,2,4,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0 = 1 - 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0 = 1 - 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0 = 1 - 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [6,3,2,1,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0 = 1 - 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,1,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0 = 1 - 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [5,6,1,2,3,4] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1 = 2 - 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [8,3,1,2,4,5,6,7] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1 - 1
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [4,2,3,5,6,7,8,1] => [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> ? = 2 - 1
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [8,3,2,1,4,5,6,7] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1 - 1
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [4,3,2,5,6,7,8,1] => [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> ? = 2 - 1
[7,2,2]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> [8,3,4,1,2,5,6,7] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1 - 1
[7,2,1,1]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [8,3,2,4,1,5,6,7] => ?
=> ? = 1 - 1
[3,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [4,5,2,3,6,7,8,1] => [1,1,1,1,0,1,0,0,0,1,0,1,0,1,0,0]
=> ? = 2 - 1
[3,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [4,3,5,2,6,7,8,1] => [1,1,1,1,0,0,1,0,0,1,0,1,0,1,0,0]
=> ? = 2 - 1
[7,2,2,1]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0]
=> [8,3,4,2,1,5,6,7] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1 - 1
[7,2,1,1,1]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0]
=> [8,3,2,4,5,1,6,7] => ?
=> ? = 1 - 1
[3,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [4,5,3,2,6,7,8,1] => [1,1,1,1,0,1,0,0,0,1,0,1,0,1,0,0]
=> ? = 2 - 1
[3,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [4,3,5,6,2,7,8,1] => [1,1,1,1,0,0,1,0,1,0,0,1,0,1,0,0]
=> ? = 2 - 1
[2,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [3,4,5,6,7,8,1,2] => [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 2 - 1
[7,2,2,2]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0,1,0]
=> [8,3,4,5,1,2,6,7] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1 - 1
[7,2,2,1,1]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0,1,0]
=> [8,3,4,2,5,1,6,7] => ?
=> ? = 1 - 1
[7,2,1,1,1,1]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [8,3,2,4,5,6,1,7] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1 - 1
[3,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [4,5,6,2,3,7,8,1] => [1,1,1,1,0,1,0,1,0,0,0,1,0,1,0,0]
=> ? = 2 - 1
[3,3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [4,5,3,6,2,7,8,1] => ?
=> ? = 2 - 1
[3,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [4,3,5,6,7,8,1,2] => [1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 2 - 1
[3,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [4,3,5,6,7,2,8,1] => ?
=> ? = 2 - 1
[7,3,1,1,1,1]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [8,4,2,3,5,6,1,7] => ?
=> ? = 1 - 1
[7,2,2,2,1]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0,1,0]
=> [8,3,4,5,2,1,6,7] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1 - 1
[7,2,2,1,1,1]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [8,3,4,2,5,6,1,7] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1 - 1
[6,6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,1,0,0]
=> [7,8,3,1,2,4,5,6] => [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 2 - 1
[4,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [5,3,4,6,7,8,1,2] => [1,1,1,1,1,0,0,0,1,0,1,0,1,0,0,0]
=> ? = 2 - 1
[3,3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [4,5,6,3,2,7,8,1] => [1,1,1,1,0,1,0,1,0,0,0,1,0,1,0,0]
=> ? = 2 - 1
[3,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [4,5,3,6,7,8,1,2] => [1,1,1,1,0,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 2 - 1
[3,3,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [4,5,3,6,7,2,8,1] => [1,1,1,1,0,1,0,0,1,0,1,0,0,1,0,0]
=> ? = 2 - 1
[7,6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0,1,0]
=> [8,7,3,1,2,4,5,6] => ?
=> ? = 1 - 1
[7,3,2,1,1,1]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [8,4,3,2,5,6,1,7] => ?
=> ? = 1 - 1
[7,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [8,4,2,3,5,6,7,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1 - 1
[7,2,2,2,2]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0,1,0]
=> [8,3,4,5,6,1,2,7] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1 - 1
[7,2,2,2,1,1]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [8,3,4,5,2,6,1,7] => ?
=> ? = 1 - 1
[6,6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,1,0,0]
=> [7,8,3,2,1,4,5,6] => [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 2 - 1
[5,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [6,3,4,5,7,8,1,2] => [1,1,1,1,1,1,0,0,0,0,1,0,1,0,0,0]
=> ? = 2 - 1
[4,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [5,4,3,6,7,8,1,2] => [1,1,1,1,1,0,0,0,1,0,1,0,1,0,0,0]
=> ? = 2 - 1
[3,3,3,3,1,1,1]
=> [1,0,1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [4,5,6,7,2,3,8,1] => [1,1,1,1,0,1,0,1,0,1,0,0,0,1,0,0]
=> ? = 2 - 1
[3,3,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [4,5,6,3,7,8,1,2] => [1,1,1,1,0,1,0,1,0,0,1,0,1,0,0,0]
=> ? = 2 - 1
[3,3,3,2,2,1,1]
=> [1,0,1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [4,5,6,3,7,2,8,1] => [1,1,1,1,0,1,0,1,0,0,1,0,0,1,0,0]
=> ? = 2 - 1
[7,6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0,1,0]
=> [8,7,3,2,1,4,5,6] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1 - 1
[7,5,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,0,1,0]
=> [8,6,3,4,1,2,5,7] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1 - 1
[7,3,3,1,1,1]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [8,4,5,2,3,6,1,7] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1 - 1
[7,3,2,2,1,1]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [8,4,3,5,2,6,1,7] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1 - 1
[7,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [8,4,3,2,5,6,7,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1 - 1
[7,2,2,2,2,1]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [8,3,4,5,6,2,1,7] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1 - 1
[6,6,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,1,0,0]
=> [7,8,3,4,1,2,5,6] => [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 2 - 1
[6,6,2,1,1]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,1,0,0]
=> [7,8,3,2,4,1,5,6] => [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 2 - 1
[6,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [7,4,5,2,3,6,8,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 2 - 1
[6,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [7,3,4,5,6,8,1,2] => [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> ? = 2 - 1
[5,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [6,4,3,5,7,8,1,2] => [1,1,1,1,1,1,0,0,0,0,1,0,1,0,0,0]
=> ? = 2 - 1
Description
Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path.
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St001498: Dyck paths ⟶ ℤResult quality: 77% ā—values known / values provided: 77%ā—distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> ? = 1 - 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 0 = 1 - 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 0 = 1 - 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ? = 1 - 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0 = 1 - 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 0 = 1 - 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 0 = 1 - 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0 = 1 - 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 0 = 1 - 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> 0 = 1 - 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 0 = 1 - 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0 = 1 - 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ? = 1 - 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 2 - 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1 = 2 - 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> 0 = 1 - 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 0 = 1 - 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 0 = 1 - 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 0 = 1 - 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> 0 = 1 - 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 0 = 1 - 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 0 = 1 - 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 0 = 1 - 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 - 1
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> ? = 2 - 1
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 - 1
[4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? = 1 - 1
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> ? = 2 - 1
[7,2,2]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 - 1
[7,2,1,1]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 - 1
[3,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> ? = 2 - 1
[3,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> ? = 2 - 1
[7,2,2,1]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 - 1
[7,2,1,1,1]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 - 1
[3,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> ? = 2 - 1
[3,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> ? = 2 - 1
[2,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 2 - 1
[7,2,2,2]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 - 1
[7,2,2,1,1]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 - 1
[7,2,1,1,1,1]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 - 1
[3,3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> ? = 2 - 1
[3,3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> ? = 2 - 1
[3,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 2 - 1
[3,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> ? = 2 - 1
[7,3,1,1,1,1]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> ? = 1 - 1
[7,2,2,2,1]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 - 1
[7,2,2,1,1,1]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 - 1
[6,6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 2 - 1
[4,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> ? = 2 - 1
[3,3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> ? = 2 - 1
[3,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 2 - 1
[3,3,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> ? = 2 - 1
[7,6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[7,3,2,1,1,1]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> ? = 1 - 1
[7,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> ? = 1 - 1
[7,2,2,2,2]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 - 1
[7,2,2,2,1,1]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 - 1
[6,6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 2 - 1
[5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 - 1
[5,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 2 - 1
[4,3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> ? = 2 - 1
[3,3,3,3,1,1,1]
=> [1,0,1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> ? = 2 - 1
[3,3,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 2 - 1
[3,3,3,2,2,1,1]
=> [1,0,1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> ? = 2 - 1
[7,6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[7,5,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> ? = 1 - 1
[7,3,3,1,1,1]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> ? = 1 - 1
[7,3,2,2,1,1]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> ? = 1 - 1
[7,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> ? = 1 - 1
[7,2,2,2,2,1]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1 - 1
Description
The normalised height of a Nakayama algebra with magnitude 1. We use the bijection (see code) suggested by Christian Stump, to have a bijection between such Nakayama algebras with magnitude 1 and Dyck paths. The normalised height is the height of the (periodic) Dyck path given by the top of the Auslander-Reiten quiver. Thus when having a CNakayama algebra it is the Loewy length minus the number of simple modules and for the LNakayama algebras it is the usual height.
Matching statistic: St000069
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St000069: Posets ⟶ ℤResult quality: 51% ā—values known / values provided: 51%ā—distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,2] => ([(0,1)],2)
=> 1
[2]
=> [1,1,0,0,1,0]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => ([(0,1),(0,2)],3)
=> 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> 2
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> 2
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1,2,3,4,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> 2
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> 2
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5,7] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,1,2,3,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,2,3,4] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,2,3,4,5,6] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,1,2,3,4,7] => ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7)
=> 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,5,2,3,6] => ([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,5,1,2,4,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> 2
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,6,3,4] => ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> 2
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,2,3,5] => ([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,2,3,4,5] => ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> 2
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,6,2,3,4,7] => ([(0,6),(1,4),(1,6),(2,5),(3,2),(4,3),(6,5)],7)
=> ? = 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,1,2,3,5,7] => ([(0,3),(0,6),(1,4),(2,6),(3,5),(4,2),(6,5)],7)
=> 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,1,2,5,3,6] => ([(0,5),(1,2),(2,3),(2,5),(3,4),(5,4)],6)
=> 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,1,2,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,1,3,4,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,1,2,3,6,5] => ([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> 2
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 1
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 1
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,2,3,4,6] => ([(0,4),(0,5),(2,6),(3,2),(4,3),(5,1),(5,6)],7)
=> ? = 2
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [6,1,7,2,3,4,5,8] => ([(0,7),(1,5),(1,7),(2,6),(3,4),(4,2),(5,3),(7,6)],8)
=> ? = 1
[6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [5,1,2,6,3,4,7] => ([(0,6),(1,4),(2,5),(3,2),(4,3),(4,6),(6,5)],7)
=> ? = 1
[6,1,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [3,6,1,2,4,5,7] => ([(0,3),(1,4),(1,6),(2,5),(3,6),(4,5),(6,2)],7)
=> ? = 1
[4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,6,2,3,7,4,5] => ([(0,2),(0,5),(2,6),(3,1),(4,3),(4,6),(5,4)],7)
=> ? = 2
[2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,4,7,2,3,5,6] => ([(0,4),(0,5),(2,6),(4,2),(5,1),(5,6),(6,3)],7)
=> ? = 2
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [5,6,7,1,2,3,4,8] => ([(0,5),(1,6),(2,7),(3,7),(4,3),(5,4),(6,2)],8)
=> ? = 1
[6,4]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [5,1,2,3,6,4,7] => ([(0,6),(1,4),(2,5),(3,2),(3,6),(4,3),(6,5)],7)
=> ? = 1
[6,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [4,5,1,6,2,3,7] => ([(0,3),(1,4),(1,6),(2,5),(3,6),(4,2),(6,5)],7)
=> ? = 1
[6,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [4,1,6,2,3,5,7] => ([(0,2),(0,6),(1,5),(1,6),(2,3),(3,5),(5,4),(6,4)],7)
=> ? = 1
[6,2,1,1]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [3,5,6,1,2,4,7] => ([(0,3),(1,4),(1,6),(2,5),(3,6),(4,2),(6,5)],7)
=> ? = 1
[6,1,1,1,1]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [2,6,1,3,4,5,7] => ([(0,6),(1,3),(1,6),(2,5),(3,5),(4,2),(6,4)],7)
=> ? = 1
[5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [5,1,2,3,4,7,6] => ([(0,5),(0,6),(1,4),(2,5),(2,6),(3,2),(4,3)],7)
=> ? = 2
[5,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,6,2,3,4,7,5] => ([(0,2),(0,5),(2,6),(3,4),(4,1),(4,6),(5,3)],7)
=> ? = 2
[4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,5,6,2,7,3,4] => ([(0,4),(0,5),(2,6),(3,1),(4,2),(5,3),(5,6)],7)
=> ? = 2
[3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,5,2,7,3,4,6] => ([(0,2),(0,4),(1,5),(2,5),(2,6),(3,1),(4,3),(4,6)],7)
=> ? = 2
[3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,6,7,2,3,5] => ([(0,4),(0,5),(2,6),(3,1),(4,2),(5,3),(5,6)],7)
=> ? = 2
[2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,3,7,2,4,5,6] => ([(0,3),(0,5),(3,6),(4,2),(5,1),(5,6),(6,4)],7)
=> ? = 2
[7,2,2]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> [5,1,7,2,3,4,6,8] => ([(0,6),(0,7),(1,4),(1,7),(2,6),(3,2),(4,3),(6,5),(7,5)],8)
=> ? = 1
[7,2,1,1]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [4,6,7,1,2,3,5,8] => ([(0,4),(1,5),(1,7),(2,7),(3,6),(4,2),(5,3),(7,6)],8)
=> ? = 1
[6,4,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [4,5,1,2,6,3,7] => ([(0,3),(1,4),(2,6),(3,5),(4,2),(4,5),(5,6)],7)
=> ? = 1
[6,3,2]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [4,1,5,6,2,3,7] => ([(0,6),(1,4),(1,6),(2,5),(3,5),(4,3),(6,2)],7)
=> ? = 1
[6,3,1,1]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [3,5,1,6,2,4,7] => ([(0,3),(0,6),(1,2),(1,5),(2,6),(3,5),(5,4),(6,4)],7)
=> ? = 1
[6,2,2,1]
=> [1,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [3,4,6,1,2,5,7] => ([(0,3),(1,4),(2,6),(3,5),(4,2),(4,5),(5,6)],7)
=> ? = 1
[6,2,1,1,1]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [2,5,6,1,3,4,7] => ([(0,6),(1,4),(1,6),(2,5),(3,5),(4,3),(6,2)],7)
=> ? = 1
[5,5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [4,5,1,2,3,7,6] => ([(0,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,2)],7)
=> ? = 2
[5,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,5,6,2,3,7,4] => ([(0,4),(0,5),(2,6),(3,1),(3,6),(4,2),(5,3)],7)
=> ? = 2
[4,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,5,2,6,7,3,4] => ([(0,3),(0,5),(3,6),(4,1),(5,4),(5,6),(6,2)],7)
=> ? = 2
[4,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,4,6,2,7,3,5] => ([(0,3),(0,4),(1,6),(2,5),(3,2),(3,6),(4,1),(4,5)],7)
=> ? = 2
[3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,4,5,7,2,3,6] => ([(0,4),(0,5),(2,6),(3,1),(3,6),(4,2),(5,3)],7)
=> ? = 2
[3,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,6,2,8,3,4,5,7] => ([(0,2),(0,5),(1,7),(2,6),(2,7),(3,4),(4,1),(5,3),(5,6)],8)
=> ? = 2
[3,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,3,6,7,2,4,5] => ([(0,3),(0,5),(3,6),(4,1),(5,4),(5,6),(6,2)],7)
=> ? = 2
[3,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,5,7,8,2,3,4,6] => ([(0,5),(0,6),(2,7),(3,2),(4,1),(5,3),(6,4),(6,7)],8)
=> ? = 2
[7,2,2,1]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0]
=> [4,5,7,1,2,3,6,8] => ?
=> ? = 1
[7,2,1,1,1]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0]
=> [3,6,7,1,2,4,5,8] => ([(0,4),(1,5),(1,7),(2,6),(3,6),(4,7),(5,3),(7,2)],8)
=> ? = 1
[6,4,1,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0,1,0]
=> [3,5,1,2,6,4,7] => ([(0,3),(1,2),(1,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> ? = 1
[6,3,3]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [4,1,2,6,3,5,7] => ([(0,3),(1,5),(1,6),(2,6),(3,2),(3,5),(5,4),(6,4)],7)
=> ? = 1
[6,3,1,1,1]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [2,5,1,6,3,4,7] => ([(0,3),(0,5),(1,5),(1,6),(2,4),(3,6),(5,2),(6,4)],7)
=> ? = 1
[6,2,2,2]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [3,1,6,2,4,5,7] => ([(0,3),(0,6),(1,4),(1,6),(2,5),(3,4),(4,2),(6,5)],7)
=> ? = 1
[5,5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,1,0,0]
=> [3,5,1,2,4,7,6] => ([(0,2),(1,3),(1,6),(2,6),(3,4),(3,5),(6,4),(6,5)],7)
=> ? = 2
[5,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,4,6,2,3,7,5] => ([(0,3),(0,4),(1,5),(2,5),(2,6),(3,2),(4,1),(4,6)],7)
=> ? = 2
[4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [4,1,2,3,7,5,6] => ([(0,5),(0,6),(1,4),(3,5),(3,6),(4,3),(6,2)],7)
=> ? = 2
[4,4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,5,2,3,7,4,6] => ([(0,2),(0,4),(1,5),(2,5),(2,6),(3,1),(3,6),(4,3)],7)
=> ? = 2
[4,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,3,6,2,7,4,5] => ([(0,3),(0,4),(2,5),(3,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ? = 2
[3,3,3,3]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [3,1,2,7,4,5,6] => ([(0,5),(0,6),(1,3),(3,5),(3,6),(4,2),(6,4)],7)
=> ? = 2
[3,3,3,1,1,1]
=> [1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,4,2,7,3,5,6] => ([(0,3),(0,4),(2,6),(3,5),(3,6),(4,2),(4,5),(6,1)],7)
=> ? = 2
[3,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,5,6,8,2,3,4,7] => ([(0,5),(0,6),(2,7),(3,2),(4,1),(4,7),(5,3),(6,4)],8)
=> ? = 2
[3,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,4,7,8,2,3,5,6] => ([(0,5),(0,6),(2,7),(4,1),(5,2),(6,4),(6,7),(7,3)],8)
=> ? = 2
[2,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,8,3,4,5,6,7] => ([(0,6),(0,7),(1,6),(1,7),(3,5),(4,3),(5,2),(7,4)],8)
=> ? = 2
Description
The number of maximal elements of a poset.
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St000542: Permutations ⟶ ℤResult quality: 44% ā—values known / values provided: 44%ā—distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,2] => 1
[2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 2
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => 2
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1,2,3,4,6] => 2
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,2,3,4,5,6] => ? = 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,2,3,4] => 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,1,2,3,6] => 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5,7] => ? = 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,2,3,4,5] => ? = 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,2,3,5] => 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,6,3,4] => 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 2
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,5,1,2,4,6] => 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => 2
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,5,2,3,6] => 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,1,2,3,4,7] => ? = 2
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,2,3,4,6] => ? = 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,2,7,3,4,5] => ? = 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,3,6,2,4,5] => 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,4,5,6,2,3] => 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,6,4] => 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,6,3,4,5] => 2
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 1
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 1
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,1,3,4,6] => 2
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 2
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,1,2,6] => 2
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,1,2,3,5,7] => ? = 2
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,6,2,3,4,7] => ? = 2
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,6,8,2,3,4,5,7] => ? = 1
[6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,4,7,2,3,5,6] => ? = 1
[6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,5,6,7,2,3,4] => ? = 1
[6,1,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,6,2,3,7,4,5] => ? = 1
[4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [3,6,1,2,4,5,7] => ? = 2
[3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [4,5,6,1,2,3,7] => ? = 2
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [5,7,1,2,3,4,6,8] => ? = 2
[2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [5,1,2,6,3,4,7] => ? = 2
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,6,7,8,2,3,4,5] => ? = 1
[6,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,6,7,2,3,5] => ? = 1
[6,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,5,2,7,3,4,6] => ? = 1
[6,2,1,1]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,5,6,2,7,3,4] => ? = 1
[6,1,1,1,1]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,6,2,3,4,7,5] => ? = 1
[5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,3,4,5,6] => ? = 2
[5,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [2,6,1,3,4,5,7] => ? = 2
[4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [3,5,6,1,2,4,7] => ? = 2
[3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [4,1,6,2,3,5,7] => ? = 2
[3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [4,5,1,6,2,3,7] => ? = 2
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [5,6,7,1,2,3,4,8] => ? = 2
[2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [5,1,2,3,4,7,6] => ? = 2
[2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [5,1,2,3,6,4,7] => ? = 2
[7,2,2]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,6,2,8,3,4,5,7] => ? = 1
[7,2,1,1]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,6,7,2,8,3,4,5] => ? = 1
[6,2,2,1]
=> [1,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,5,2,6,7,3,4] => ? = 1
[6,2,1,1,1]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,5,6,2,3,7,4] => ? = 1
[6,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,2,3,4,5,7] => ? = 1
[5,5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [2,1,6,7,3,4,5] => ? = 2
[5,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [2,5,6,1,3,4,7] => ? = 2
[4,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [3,4,6,1,2,5,7] => ? = 2
[4,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [3,5,1,6,2,4,7] => ? = 2
[3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [4,1,5,6,2,3,7] => ? = 2
[3,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> [5,1,7,2,3,4,6,8] => ? = 2
[3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [4,5,1,2,3,7,6] => ? = 2
[3,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [4,5,1,2,6,3,7] => ? = 2
[3,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> [5,6,1,7,2,3,4,8] => ? = 2
[2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [5,1,2,3,4,6,7] => ? = 2
[7,2,2,1]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,6,2,7,8,3,4,5] => ? = 1
[7,2,1,1,1]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [1,6,7,2,3,8,4,5] => ? = 1
[6,2,2,2]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,5,2,3,7,4,6] => ? = 1
[6,2,2,1,1]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,5,2,6,3,7,4] => ? = 1
[6,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,5,6,2,3,4,7] => ? = 1
[5,5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [2,1,5,7,3,4,6] => ? = 2
Description
The number of left-to-right-minima of a permutation. An integer $\sigma_i$ in the one-line notation of a permutation $\sigma$ is a left-to-right-minimum if there does not exist a j < i such that $\sigma_j < \sigma_i$.
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St000541: Permutations ⟶ ℤResult quality: 44% ā—values known / values provided: 44%ā—distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,2] => 0 = 1 - 1
[2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 0 = 1 - 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1 = 2 - 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 0 = 1 - 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 0 = 1 - 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 1 = 2 - 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => 0 = 1 - 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 0 = 1 - 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 1 = 2 - 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1 = 2 - 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => 1 = 2 - 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => 0 = 1 - 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => 0 = 1 - 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 0 = 1 - 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 0 = 1 - 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1 = 2 - 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => 1 = 2 - 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1,2,3,4,6] => 1 = 2 - 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,2,3,4,5,6] => ? = 1 - 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,2,3,4] => 0 = 1 - 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => 0 = 1 - 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => 0 = 1 - 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 1 = 2 - 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0 = 1 - 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => 1 = 2 - 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => 1 = 2 - 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => 1 = 2 - 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,1,2,3,6] => 1 = 2 - 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5,7] => ? = 2 - 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,2,3,4,5] => ? = 1 - 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,2,3,5] => 0 = 1 - 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,6,3,4] => 0 = 1 - 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => 0 = 1 - 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 0 = 1 - 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => 0 = 1 - 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 1 = 2 - 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 1 = 2 - 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 1 = 2 - 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,5,1,2,4,6] => 1 = 2 - 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => 1 = 2 - 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,5,2,3,6] => 1 = 2 - 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,1,2,3,4,7] => ? = 2 - 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,2,3,4,6] => ? = 1 - 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,2,7,3,4,5] => ? = 1 - 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,3,6,2,4,5] => 0 = 1 - 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,4,5,6,2,3] => 0 = 1 - 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,6,4] => 0 = 1 - 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,6,3,4,5] => 1 = 2 - 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 0 = 1 - 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 0 = 1 - 1
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 0 = 1 - 1
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,1,3,4,6] => 1 = 2 - 1
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1 = 2 - 1
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 1 = 2 - 1
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 1 = 2 - 1
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,1,2,6] => 1 = 2 - 1
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,1,2,3,5,7] => ? = 2 - 1
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,6,2,3,4,7] => ? = 2 - 1
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,6,8,2,3,4,5,7] => ? = 1 - 1
[6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,4,7,2,3,5,6] => ? = 1 - 1
[6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,5,6,7,2,3,4] => ? = 1 - 1
[6,1,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,6,2,3,7,4,5] => ? = 1 - 1
[4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [3,6,1,2,4,5,7] => ? = 2 - 1
[3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [4,5,6,1,2,3,7] => ? = 2 - 1
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [5,7,1,2,3,4,6,8] => ? = 2 - 1
[2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [5,1,2,6,3,4,7] => ? = 2 - 1
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,6,7,8,2,3,4,5] => ? = 1 - 1
[6,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,6,7,2,3,5] => ? = 1 - 1
[6,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,5,2,7,3,4,6] => ? = 1 - 1
[6,2,1,1]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,5,6,2,7,3,4] => ? = 1 - 1
[6,1,1,1,1]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,6,2,3,4,7,5] => ? = 1 - 1
[5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,3,4,5,6] => ? = 2 - 1
[5,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [2,6,1,3,4,5,7] => ? = 2 - 1
[4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [3,5,6,1,2,4,7] => ? = 2 - 1
[3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [4,1,6,2,3,5,7] => ? = 2 - 1
[3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [4,5,1,6,2,3,7] => ? = 2 - 1
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [5,6,7,1,2,3,4,8] => ? = 2 - 1
[2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [5,1,2,3,4,7,6] => ? = 2 - 1
[2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [5,1,2,3,6,4,7] => ? = 2 - 1
[7,2,2]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,6,2,8,3,4,5,7] => ? = 1 - 1
[7,2,1,1]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,6,7,2,8,3,4,5] => ? = 1 - 1
[6,2,2,1]
=> [1,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,5,2,6,7,3,4] => ? = 1 - 1
[6,2,1,1,1]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,5,6,2,3,7,4] => ? = 1 - 1
[6,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,2,3,4,5,7] => ? = 1 - 1
[5,5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [2,1,6,7,3,4,5] => ? = 2 - 1
[5,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [2,5,6,1,3,4,7] => ? = 2 - 1
[4,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [3,4,6,1,2,5,7] => ? = 2 - 1
[4,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [3,5,1,6,2,4,7] => ? = 2 - 1
[3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [4,1,5,6,2,3,7] => ? = 2 - 1
[3,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> [5,1,7,2,3,4,6,8] => ? = 2 - 1
[3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [4,5,1,2,3,7,6] => ? = 2 - 1
[3,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [4,5,1,2,6,3,7] => ? = 2 - 1
[3,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> [5,6,1,7,2,3,4,8] => ? = 2 - 1
[2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [5,1,2,3,4,6,7] => ? = 2 - 1
[7,2,2,1]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,6,2,7,8,3,4,5] => ? = 1 - 1
[7,2,1,1,1]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [1,6,7,2,3,8,4,5] => ? = 1 - 1
[6,2,2,2]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,5,2,3,7,4,6] => ? = 1 - 1
[6,2,2,1,1]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,5,2,6,3,7,4] => ? = 1 - 1
[6,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,5,6,2,3,4,7] => ? = 1 - 1
[5,5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [2,1,5,7,3,4,6] => ? = 2 - 1
Description
The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. For a permutation $\pi$ of length $n$, this is the number of indices $2 \leq j \leq n$ such that for all $1 \leq i < j$, the pair $(i,j)$ is an inversion of $\pi$.
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St000864: Permutations ⟶ ℤResult quality: 44% ā—values known / values provided: 44%ā—distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,2] => 0 = 1 - 1
[2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 0 = 1 - 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1 = 2 - 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 0 = 1 - 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 0 = 1 - 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 1 = 2 - 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => 0 = 1 - 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 0 = 1 - 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 1 = 2 - 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1 = 2 - 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => 1 = 2 - 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => 0 = 1 - 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => 0 = 1 - 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 0 = 1 - 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 0 = 1 - 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1 = 2 - 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => 1 = 2 - 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1,2,3,4,6] => 1 = 2 - 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,2,3,4,5,6] => ? = 1 - 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,2,3,4] => 0 = 1 - 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => 0 = 1 - 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => 0 = 1 - 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 1 = 2 - 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0 = 1 - 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => 1 = 2 - 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => 1 = 2 - 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => 1 = 2 - 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,1,2,3,6] => 1 = 2 - 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5,7] => ? = 2 - 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,2,3,4,5] => ? = 1 - 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,2,3,5] => 0 = 1 - 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,6,3,4] => 0 = 1 - 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => 0 = 1 - 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 0 = 1 - 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => 0 = 1 - 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 1 = 2 - 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 1 = 2 - 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 1 = 2 - 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,5,1,2,4,6] => 1 = 2 - 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => 1 = 2 - 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,5,2,3,6] => 1 = 2 - 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,1,2,3,4,7] => ? = 2 - 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,2,3,4,6] => ? = 1 - 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,2,7,3,4,5] => ? = 1 - 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,3,6,2,4,5] => 0 = 1 - 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,4,5,6,2,3] => 0 = 1 - 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,6,4] => 0 = 1 - 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,6,3,4,5] => 1 = 2 - 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 0 = 1 - 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 0 = 1 - 1
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 0 = 1 - 1
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,1,3,4,6] => 1 = 2 - 1
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1 = 2 - 1
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 1 = 2 - 1
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 1 = 2 - 1
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,1,2,6] => 1 = 2 - 1
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,1,2,3,5,7] => ? = 2 - 1
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,6,2,3,4,7] => ? = 2 - 1
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,6,8,2,3,4,5,7] => ? = 1 - 1
[6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,4,7,2,3,5,6] => ? = 1 - 1
[6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,5,6,7,2,3,4] => ? = 1 - 1
[6,1,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,6,2,3,7,4,5] => ? = 1 - 1
[4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [3,6,1,2,4,5,7] => ? = 2 - 1
[3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [4,5,6,1,2,3,7] => ? = 2 - 1
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [5,7,1,2,3,4,6,8] => ? = 2 - 1
[2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [5,1,2,6,3,4,7] => ? = 2 - 1
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,6,7,8,2,3,4,5] => ? = 1 - 1
[6,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,6,7,2,3,5] => ? = 1 - 1
[6,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,5,2,7,3,4,6] => ? = 1 - 1
[6,2,1,1]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,5,6,2,7,3,4] => ? = 1 - 1
[6,1,1,1,1]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,6,2,3,4,7,5] => ? = 1 - 1
[5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,3,4,5,6] => ? = 2 - 1
[5,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [2,6,1,3,4,5,7] => ? = 2 - 1
[4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [3,5,6,1,2,4,7] => ? = 2 - 1
[3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [4,1,6,2,3,5,7] => ? = 2 - 1
[3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [4,5,1,6,2,3,7] => ? = 2 - 1
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [5,6,7,1,2,3,4,8] => ? = 2 - 1
[2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [5,1,2,3,4,7,6] => ? = 2 - 1
[2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [5,1,2,3,6,4,7] => ? = 2 - 1
[7,2,2]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,6,2,8,3,4,5,7] => ? = 1 - 1
[7,2,1,1]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,6,7,2,8,3,4,5] => ? = 1 - 1
[6,2,2,1]
=> [1,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,5,2,6,7,3,4] => ? = 1 - 1
[6,2,1,1,1]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,5,6,2,3,7,4] => ? = 1 - 1
[6,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,2,3,4,5,7] => ? = 1 - 1
[5,5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [2,1,6,7,3,4,5] => ? = 2 - 1
[5,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [2,5,6,1,3,4,7] => ? = 2 - 1
[4,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [3,4,6,1,2,5,7] => ? = 2 - 1
[4,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [3,5,1,6,2,4,7] => ? = 2 - 1
[3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [4,1,5,6,2,3,7] => ? = 2 - 1
[3,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> [5,1,7,2,3,4,6,8] => ? = 2 - 1
[3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [4,5,1,2,3,7,6] => ? = 2 - 1
[3,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [4,5,1,2,6,3,7] => ? = 2 - 1
[3,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> [5,6,1,7,2,3,4,8] => ? = 2 - 1
[2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [5,1,2,3,4,6,7] => ? = 2 - 1
[7,2,2,1]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,6,2,7,8,3,4,5] => ? = 1 - 1
[7,2,1,1,1]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [1,6,7,2,3,8,4,5] => ? = 1 - 1
[6,2,2,2]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,5,2,3,7,4,6] => ? = 1 - 1
[6,2,2,1,1]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,5,2,6,3,7,4] => ? = 1 - 1
[6,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,5,6,2,3,4,7] => ? = 1 - 1
[5,5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [2,1,5,7,3,4,6] => ? = 2 - 1
Description
The number of circled entries of the shifted recording tableau of a permutation. The diagram of a strict partition $\lambda_1 < \lambda_2 < \dots < \lambda_\ell$ of $n$ is a tableau with $\ell$ rows, the $i$-th row being indented by $i$ cells. A shifted standard Young tableau is a filling of such a diagram, where entries in rows and columns are strictly increasing. The shifted Robinson-Schensted algorithm [1] associates to a permutation a pair $(P, Q)$ of standard shifted Young tableaux of the same shape, where off-diagonal entries in $Q$ may be circled. This statistic records the number of circled entries in $Q$.
The following 19 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000007The number of saliances of the permutation. St000260The radius of a connected graph. St000374The number of exclusive right-to-left minima of a permutation. St000996The number of exclusive left-to-right maxima of a permutation. St000314The number of left-to-right-maxima of a permutation. St000654The first descent of a permutation. St000700The protection number of an ordered tree. St000991The number of right-to-left minima of a permutation. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{nāˆ’1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000200The row of the unique '1' in the last column of the alternating sign matrix. St001948The number of augmented double ascents of a permutation. St000768The number of peaks in an integer composition.