searching the database
Your data matches 7 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000655
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000655: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000655: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> 1
[1,2] => [1,0,1,0]
=> 1
[2,1] => [1,1,0,0]
=> 2
[1,2,3] => [1,0,1,0,1,0]
=> 1
[1,3,2] => [1,0,1,1,0,0]
=> 1
[2,1,3] => [1,1,0,0,1,0]
=> 1
[2,3,1] => [1,1,0,1,0,0]
=> 1
[3,1,2] => [1,1,1,0,0,0]
=> 3
[3,2,1] => [1,1,1,0,0,0]
=> 3
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 2
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> 2
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 4
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> 4
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> 4
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 4
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> 4
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 4
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> 1
Description
The length of the minimal rise of a Dyck path.
For the length of a maximal rise, see [[St000444]].
Matching statistic: St000657
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00102: Dyck paths —rise composition⟶ Integer compositions
St000657: Integer compositions ⟶ ℤResult quality: 82% ●values known / values provided: 97%●distinct values known / distinct values provided: 82%
Mp00102: Dyck paths —rise composition⟶ Integer compositions
St000657: Integer compositions ⟶ ℤResult quality: 82% ●values known / values provided: 97%●distinct values known / distinct values provided: 82%
Values
[1] => [1,0]
=> [1] => 1
[1,2] => [1,0,1,0]
=> [1,1] => 1
[2,1] => [1,1,0,0]
=> [2] => 2
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,1] => 1
[1,3,2] => [1,0,1,1,0,0]
=> [1,2] => 1
[2,1,3] => [1,1,0,0,1,0]
=> [2,1] => 1
[2,3,1] => [1,1,0,1,0,0]
=> [2,1] => 1
[3,1,2] => [1,1,1,0,0,0]
=> [3] => 3
[3,2,1] => [1,1,1,0,0,0]
=> [3] => 3
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,2] => 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,2,1] => 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,2,1] => 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,3] => 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,3] => 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [2,1,1] => 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,2] => 2
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [2,1,1] => 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1,1] => 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [2,2] => 2
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [2,2] => 2
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3,1] => 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [3,1] => 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3,1] => 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [3,1] => 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [3,1] => 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [3,1] => 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [4] => 4
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [4] => 4
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [4] => 4
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [4] => 4
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [4] => 4
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [4] => 4
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => 1
[8,3,2,5,4,7,6,1,10,9] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0]
=> [8,2] => ? = 2
[10,3,2,5,4,7,6,9,8,1] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10] => ? = 10
[8,5,4,3,2,7,6,1,10,9] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0]
=> [8,2] => ? = 2
[10,5,4,3,2,7,6,9,8,1] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10] => ? = 10
[8,7,4,3,6,5,2,1,10,9] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0]
=> [8,2] => ? = 2
[10,7,4,3,6,5,2,9,8,1] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10] => ? = 10
[2,1,10,5,4,7,6,9,8,3] => [1,1,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [2,8] => ? = 2
[10,9,4,3,6,5,8,7,2,1] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10] => ? = 10
[8,3,2,7,6,5,4,1,10,9] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0]
=> [8,2] => ? = 2
[10,3,2,7,6,5,4,9,8,1] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10] => ? = 10
[8,7,6,5,4,3,2,1,10,9] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0]
=> [8,2] => ? = 2
[10,7,6,5,4,3,2,9,8,1] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10] => ? = 10
[2,1,10,7,6,5,4,9,8,3] => [1,1,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [2,8] => ? = 2
[10,9,6,5,4,3,8,7,2,1] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10] => ? = 10
[10,3,2,9,6,5,8,7,4,1] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10] => ? = 10
[2,1,10,9,6,5,8,7,4,3] => [1,1,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [2,8] => ? = 2
[10,9,8,5,4,7,6,3,2,1] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10] => ? = 10
[10,8,9,6,7,4,5,2,3,1] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10] => ? = 10
[10,3,2,5,4,9,8,7,6,1] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10] => ? = 10
[10,5,4,3,2,9,8,7,6,1] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10] => ? = 10
[2,1,10,5,4,9,8,7,6,3] => [1,1,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [2,8] => ? = 2
[10,9,4,3,8,7,6,5,2,1] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10] => ? = 10
[10,3,2,9,8,7,6,5,4,1] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10] => ? = 10
[2,1,10,9,8,7,6,5,4,3] => [1,1,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [2,8] => ? = 2
[9,10,8,7,6,5,4,3,1,2] => [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [9,1] => ? = 1
[10,9,8,7,6,5,4,3,2,1] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10] => ? = 10
[2,3,4,5,6,7,8,9,10,1] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1,1,1,1,1,1] => ? = 1
[2,3,4,5,6,7,8,9,1,10] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1,1,1,1,1,1] => ? = 1
[2,3,4,5,6,7,8,10,1,9] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,1,1,1,1,1,1,2] => ? = 1
[3,4,5,6,7,8,9,10,1,2] => [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [3,1,1,1,1,1,1,1] => ? = 1
[10,8,9,5,6,7,1,2,3,4] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10] => ? = 10
[10,8,9,4,5,6,1,2,3,7] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10] => ? = 10
[10,7,8,5,6,9,1,2,3,4] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10] => ? = 10
[10,7,8,4,5,9,1,2,3,6] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10] => ? = 10
[10,6,7,4,5,8,1,2,3,9] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10] => ? = 10
[10,7,8,3,4,9,1,2,5,6] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10] => ? = 10
[10,6,7,3,4,8,1,2,5,9] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10] => ? = 10
[9,8,10,5,6,7,1,2,3,4] => [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [9,1] => ? = 1
[9,8,10,4,5,6,1,2,3,7] => [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [9,1] => ? = 1
[9,7,10,5,6,8,1,2,3,4] => [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [9,1] => ? = 1
[9,7,10,4,5,8,1,2,3,6] => [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [9,1] => ? = 1
[9,6,10,4,5,7,1,2,3,8] => [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [9,1] => ? = 1
[9,7,10,3,4,8,1,2,5,6] => [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [9,1] => ? = 1
[9,6,10,3,4,7,1,2,5,8] => [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [9,1] => ? = 1
[9,6,10,5,7,8,1,2,3,4] => [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [9,1] => ? = 1
[9,6,10,4,7,8,1,2,3,5] => [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [9,1] => ? = 1
[9,5,10,4,6,7,1,2,3,8] => [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [9,1] => ? = 1
[9,6,10,3,7,8,1,2,4,5] => [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [9,1] => ? = 1
[9,5,10,3,6,7,1,2,4,8] => [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [9,1] => ? = 1
[9,6,10,2,7,8,1,3,4,5] => [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [9,1] => ? = 1
Description
The smallest part of an integer composition.
Matching statistic: St001075
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St001075: Set partitions ⟶ ℤResult quality: 60% ●values known / values provided: 60%●distinct values known / distinct values provided: 73%
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St001075: Set partitions ⟶ ℤResult quality: 60% ●values known / values provided: 60%●distinct values known / distinct values provided: 73%
Values
[1] => [1,0]
=> [1,0]
=> {{1}}
=> ? = 1
[1,2] => [1,0,1,0]
=> [1,0,1,0]
=> {{1},{2}}
=> 1
[2,1] => [1,1,0,0]
=> [1,1,0,0]
=> {{1,2}}
=> 2
[1,2,3] => [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 1
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 1
[2,1,3] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
[2,3,1] => [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> {{1,3},{2}}
=> 1
[3,1,2] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> 3
[3,2,1] => [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> 3
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 2
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 2
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> {{1,4},{2,3},{5}}
=> 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> {{1,4},{2,3},{5}}
=> 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> {{1,2,4},{3},{5}}
=> 1
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> {{1,2,4},{3},{5}}
=> 1
[6,7,8,5,4,3,2,1] => [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> {{1,2,3,4,5,8},{6},{7}}
=> ? = 1
[6,7,5,8,4,3,2,1] => [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> {{1,2,3,4,6,8},{5},{7}}
=> ? = 1
[6,5,7,8,4,3,2,1] => [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> {{1,2,3,4,7,8},{5},{6}}
=> ? = 1
[5,6,7,8,4,3,2,1] => [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5},{6},{7}}
=> ? = 1
[6,7,8,4,5,3,2,1] => [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> {{1,2,3,4,5,8},{6},{7}}
=> ? = 1
[6,7,5,4,8,3,2,1] => [1,1,1,1,1,1,0,1,0,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0]
=> {{1,2,3,5,6,8},{4},{7}}
=> ? = 1
[6,5,7,4,8,3,2,1] => [1,1,1,1,1,1,0,0,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0]
=> {{1,2,3,5,7,8},{4},{6}}
=> ? = 1
[6,7,4,5,8,3,2,1] => [1,1,1,1,1,1,0,1,0,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0]
=> {{1,2,3,5,6,8},{4},{7}}
=> ? = 1
[6,5,4,7,8,3,2,1] => [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> {{1,2,3,6,7,8},{4},{5}}
=> ? = 1
[6,4,5,7,8,3,2,1] => [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> {{1,2,3,6,7,8},{4},{5}}
=> ? = 1
[6,7,5,8,3,4,2,1] => [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> {{1,2,3,4,6,8},{5},{7}}
=> ? = 1
[6,5,7,8,3,4,2,1] => [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> {{1,2,3,4,7,8},{5},{6}}
=> ? = 1
[5,6,7,8,3,4,2,1] => [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5},{6},{7}}
=> ? = 1
[6,7,8,4,3,5,2,1] => [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> {{1,2,3,4,5,8},{6},{7}}
=> ? = 1
[6,7,8,3,4,5,2,1] => [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> {{1,2,3,4,5,8},{6},{7}}
=> ? = 1
[4,3,5,6,7,8,2,1] => [1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0]
=> {{1,2,7,8},{3},{4},{5},{6}}
=> ? = 1
[3,4,5,6,7,8,2,1] => [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> {{1,2,8},{3},{4},{5},{6},{7}}
=> ? = 1
[6,7,5,8,4,2,3,1] => [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> {{1,2,3,4,6,8},{5},{7}}
=> ? = 1
[5,6,7,8,4,2,3,1] => [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5},{6},{7}}
=> ? = 1
[6,7,8,4,5,2,3,1] => [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> {{1,2,3,4,5,8},{6},{7}}
=> ? = 1
[6,5,7,4,8,2,3,1] => [1,1,1,1,1,1,0,0,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0]
=> {{1,2,3,5,7,8},{4},{6}}
=> ? = 1
[6,7,4,5,8,2,3,1] => [1,1,1,1,1,1,0,1,0,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0]
=> {{1,2,3,5,6,8},{4},{7}}
=> ? = 1
[6,7,8,5,3,2,4,1] => [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> {{1,2,3,4,5,8},{6},{7}}
=> ? = 1
[6,7,5,8,3,2,4,1] => [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> {{1,2,3,4,6,8},{5},{7}}
=> ? = 1
[5,6,7,8,3,2,4,1] => [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5},{6},{7}}
=> ? = 1
[6,7,8,5,2,3,4,1] => [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> {{1,2,3,4,5,8},{6},{7}}
=> ? = 1
[6,7,5,8,2,3,4,1] => [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> {{1,2,3,4,6,8},{5},{7}}
=> ? = 1
[6,5,7,8,2,3,4,1] => [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> {{1,2,3,4,7,8},{5},{6}}
=> ? = 1
[5,6,7,8,2,3,4,1] => [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> {{1,2,3,4,8},{5},{6},{7}}
=> ? = 1
[6,7,8,4,3,2,5,1] => [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> {{1,2,3,4,5,8},{6},{7}}
=> ? = 1
[6,7,8,3,4,2,5,1] => [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> {{1,2,3,4,5,8},{6},{7}}
=> ? = 1
[6,7,8,4,2,3,5,1] => [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> {{1,2,3,4,5,8},{6},{7}}
=> ? = 1
[6,7,8,3,2,4,5,1] => [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> {{1,2,3,4,5,8},{6},{7}}
=> ? = 1
[6,7,8,2,3,4,5,1] => [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> {{1,2,3,4,5,8},{6},{7}}
=> ? = 1
[6,7,5,4,3,2,8,1] => [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> {{1,3,4,5,6,8},{2},{7}}
=> ? = 1
[6,5,7,4,3,2,8,1] => [1,1,1,1,1,1,0,0,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> {{1,3,4,5,7,8},{2},{6}}
=> ? = 1
[6,7,4,5,3,2,8,1] => [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> {{1,3,4,5,6,8},{2},{7}}
=> ? = 1
[6,4,5,7,3,2,8,1] => [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> {{1,3,4,6,7,8},{2},{5}}
=> ? = 1
[6,5,7,3,4,2,8,1] => [1,1,1,1,1,1,0,0,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> {{1,3,4,5,7,8},{2},{6}}
=> ? = 1
[3,4,5,6,7,2,8,1] => [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> {{1,3,8},{2},{4},{5},{6},{7}}
=> ? = 1
[6,7,5,4,2,3,8,1] => [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> {{1,3,4,5,6,8},{2},{7}}
=> ? = 1
[6,5,7,4,2,3,8,1] => [1,1,1,1,1,1,0,0,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> {{1,3,4,5,7,8},{2},{6}}
=> ? = 1
[5,6,7,4,2,3,8,1] => [1,1,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> {{1,3,4,5,8},{2},{6},{7}}
=> ? = 1
[6,7,4,5,2,3,8,1] => [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> {{1,3,4,5,6,8},{2},{7}}
=> ? = 1
[6,5,4,7,2,3,8,1] => [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> {{1,3,4,6,7,8},{2},{5}}
=> ? = 1
[6,4,5,7,2,3,8,1] => [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> {{1,3,4,6,7,8},{2},{5}}
=> ? = 1
[6,7,5,3,2,4,8,1] => [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> {{1,3,4,5,6,8},{2},{7}}
=> ? = 1
[6,5,7,3,2,4,8,1] => [1,1,1,1,1,1,0,0,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> {{1,3,4,5,7,8},{2},{6}}
=> ? = 1
[5,6,7,2,3,4,8,1] => [1,1,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> {{1,3,4,5,8},{2},{6},{7}}
=> ? = 1
Description
The minimal size of a block of a set partition.
Matching statistic: St001236
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00039: Integer compositions —complement⟶ Integer compositions
St001236: Integer compositions ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 55%
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00039: Integer compositions —complement⟶ Integer compositions
St001236: Integer compositions ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 55%
Values
[1] => [1,0]
=> [1] => [1] => 1
[1,2] => [1,0,1,0]
=> [1,1] => [2] => 1
[2,1] => [1,1,0,0]
=> [2] => [1,1] => 2
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,1] => [3] => 1
[1,3,2] => [1,0,1,1,0,0]
=> [1,2] => [2,1] => 1
[2,1,3] => [1,1,0,0,1,0]
=> [2,1] => [1,2] => 1
[2,3,1] => [1,1,0,1,0,0]
=> [2,1] => [1,2] => 1
[3,1,2] => [1,1,1,0,0,0]
=> [3] => [1,1,1] => 3
[3,2,1] => [1,1,1,0,0,0]
=> [3] => [1,1,1] => 3
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,2] => [3,1] => 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,2] => 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,2,1] => [2,2] => 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,3] => [2,1,1] => 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,3] => [2,1,1] => 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,3] => 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,2] => [1,2,1] => 2
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,3] => 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,3] => 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [2,2] => [1,2,1] => 2
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [2,2] => [1,2,1] => 2
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,2] => 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,2] => 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,2] => 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,2] => 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,2] => 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,2] => 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1] => 4
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1] => 4
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1] => 4
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1] => 4
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1] => 4
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1] => 4
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [4,1] => 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [3,2] => 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [3,2] => 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1] => 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1] => 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [2,3] => 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [2,2,1] => 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [2,3] => 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [2,3] => 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [2,2,1] => 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [2,2,1] => 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [2,1,2] => 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [2,1,2] => 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [2,1,2] => 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [2,1,2] => 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [2,1,2] => 1
[1,2,3,4,5,6,7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1] => [7] => ? = 1
[1,2,3,4,5,7,6] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,2] => [6,1] => ? = 1
[1,2,3,4,6,5,7] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,2,1] => [5,2] => ? = 1
[1,2,3,4,6,7,5] => [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,2,1] => [5,2] => ? = 1
[1,2,3,4,7,5,6] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,3] => [5,1,1] => ? = 1
[1,2,3,4,7,6,5] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,3] => [5,1,1] => ? = 1
[1,2,3,5,4,6,7] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,2,1,1] => [4,3] => ? = 1
[1,2,3,5,4,7,6] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,2,2] => [4,2,1] => ? = 1
[1,2,3,5,6,4,7] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,2,1,1] => [4,3] => ? = 1
[1,2,3,5,6,7,4] => [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,2,1,1] => [4,3] => ? = 1
[1,2,3,5,7,4,6] => [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,2,2] => [4,2,1] => ? = 1
[1,2,3,5,7,6,4] => [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,2,2] => [4,2,1] => ? = 1
[1,2,3,6,4,5,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,3,1] => [4,1,2] => ? = 1
[1,2,3,6,4,7,5] => [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,3,1] => [4,1,2] => ? = 1
[1,2,3,6,5,4,7] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,3,1] => [4,1,2] => ? = 1
[1,2,3,6,5,7,4] => [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,3,1] => [4,1,2] => ? = 1
[1,2,3,6,7,4,5] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,3,1] => [4,1,2] => ? = 1
[1,2,3,6,7,5,4] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,3,1] => [4,1,2] => ? = 1
[1,2,3,7,4,5,6] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,4] => [4,1,1,1] => ? = 1
[1,2,3,7,4,6,5] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,4] => [4,1,1,1] => ? = 1
[1,2,3,7,5,4,6] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,4] => [4,1,1,1] => ? = 1
[1,2,3,7,5,6,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,4] => [4,1,1,1] => ? = 1
[1,2,3,7,6,4,5] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,4] => [4,1,1,1] => ? = 1
[1,2,3,7,6,5,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,4] => [4,1,1,1] => ? = 1
[1,2,4,3,5,6,7] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,2,1,1,1] => [3,4] => ? = 1
[1,2,4,3,5,7,6] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,2,1,2] => [3,3,1] => ? = 1
[1,2,4,3,6,5,7] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,2,2,1] => [3,2,2] => ? = 1
[1,2,4,3,6,7,5] => [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,2,2,1] => [3,2,2] => ? = 1
[1,2,4,3,7,5,6] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,2,3] => [3,2,1,1] => ? = 1
[1,2,4,3,7,6,5] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,2,3] => [3,2,1,1] => ? = 1
[1,2,4,5,3,6,7] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,2,1,1,1] => [3,4] => ? = 1
[1,2,4,5,3,7,6] => [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,2,1,2] => [3,3,1] => ? = 1
[1,2,4,5,6,3,7] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,2,1,1,1] => [3,4] => ? = 1
[1,2,4,5,6,7,3] => [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,2,1,1,1] => [3,4] => ? = 1
[1,2,4,5,7,3,6] => [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,2,1,2] => [3,3,1] => ? = 1
[1,2,4,5,7,6,3] => [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,2,1,2] => [3,3,1] => ? = 1
[1,2,4,6,3,5,7] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,2,2,1] => [3,2,2] => ? = 1
[1,2,4,6,3,7,5] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,2,2,1] => [3,2,2] => ? = 1
[1,2,4,6,5,3,7] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,2,2,1] => [3,2,2] => ? = 1
[1,2,4,6,5,7,3] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,2,2,1] => [3,2,2] => ? = 1
[1,2,4,6,7,3,5] => [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,2,2,1] => [3,2,2] => ? = 1
[1,2,4,6,7,5,3] => [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,2,2,1] => [3,2,2] => ? = 1
[1,2,4,7,3,5,6] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,2,3] => [3,2,1,1] => ? = 1
[1,2,4,7,3,6,5] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,2,3] => [3,2,1,1] => ? = 1
[1,2,4,7,5,3,6] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,2,3] => [3,2,1,1] => ? = 1
[1,2,4,7,5,6,3] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,2,3] => [3,2,1,1] => ? = 1
[1,2,4,7,6,3,5] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,2,3] => [3,2,1,1] => ? = 1
[1,2,4,7,6,5,3] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,2,3] => [3,2,1,1] => ? = 1
[1,2,5,3,4,6,7] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,3,1,1] => [3,1,3] => ? = 1
[1,2,5,3,4,7,6] => [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,3,2] => [3,1,2,1] => ? = 1
Description
The dominant dimension of the corresponding Comp-Nakayama algebra.
Matching statistic: St001880
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 45%
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001880: Posets ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 45%
Values
[1] => [1,0]
=> [1] => ([],1)
=> ? = 1
[1,2] => [1,0,1,0]
=> [2,1] => ([],2)
=> ? = 1
[2,1] => [1,1,0,0]
=> [1,2] => ([(0,1)],2)
=> ? = 2
[1,2,3] => [1,0,1,0,1,0]
=> [3,2,1] => ([],3)
=> ? = 1
[1,3,2] => [1,0,1,1,0,0]
=> [2,3,1] => ([(1,2)],3)
=> ? = 1
[2,1,3] => [1,1,0,0,1,0]
=> [3,1,2] => ([(1,2)],3)
=> ? = 1
[2,3,1] => [1,1,0,1,0,0]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ? = 1
[3,1,2] => [1,1,1,0,0,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[3,2,1] => [1,1,1,0,0,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => ([],4)
=> ? = 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => ([(2,3)],4)
=> ? = 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => ([(2,3)],4)
=> ? = 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> ? = 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ? = 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ? = 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => ([(2,3)],4)
=> ? = 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ? = 2
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => ([(1,3),(2,3)],4)
=> ? = 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ? = 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ? = 2
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ? = 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ? = 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ? = 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ? = 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ? = 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => ([],5)
=> ? = 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => ([(3,4)],5)
=> ? = 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => ([(3,4)],5)
=> ? = 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> ? = 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ? = 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ? = 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => ([(3,4)],5)
=> ? = 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ? = 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> ? = 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ? = 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ? = 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ? = 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ? = 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ? = 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ? = 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ? = 1
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ? = 1
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 1
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 1
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 1
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 1
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 1
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 1
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => ([(3,4)],5)
=> ? = 1
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5
[6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[6,1,2,3,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[6,1,2,4,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[6,1,2,4,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[6,1,2,5,4,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[6,1,3,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[6,1,3,2,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[6,1,3,4,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[6,1,3,4,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[6,1,3,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[6,1,3,5,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[6,1,4,2,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[6,1,4,3,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[6,1,4,3,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[6,1,4,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
[6,1,4,5,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St001879
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 45%
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001879: Posets ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 45%
Values
[1] => [1,0]
=> [1] => ([],1)
=> ? = 1 - 1
[1,2] => [1,0,1,0]
=> [2,1] => ([],2)
=> ? = 1 - 1
[2,1] => [1,1,0,0]
=> [1,2] => ([(0,1)],2)
=> ? = 2 - 1
[1,2,3] => [1,0,1,0,1,0]
=> [3,2,1] => ([],3)
=> ? = 1 - 1
[1,3,2] => [1,0,1,1,0,0]
=> [2,3,1] => ([(1,2)],3)
=> ? = 1 - 1
[2,1,3] => [1,1,0,0,1,0]
=> [3,1,2] => ([(1,2)],3)
=> ? = 1 - 1
[2,3,1] => [1,1,0,1,0,0]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ? = 1 - 1
[3,1,2] => [1,1,1,0,0,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[3,2,1] => [1,1,1,0,0,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 2 = 3 - 1
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => ([],4)
=> ? = 1 - 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => ([(2,3)],4)
=> ? = 1 - 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => ([(2,3)],4)
=> ? = 1 - 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> ? = 1 - 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ? = 1 - 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ? = 1 - 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => ([(2,3)],4)
=> ? = 1 - 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ? = 2 - 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => ([(1,3),(2,3)],4)
=> ? = 1 - 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ? = 1 - 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ? = 2 - 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ? = 1 - 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ? = 1 - 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ? = 1 - 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ? = 1 - 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3 = 4 - 1
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => ([],5)
=> ? = 1 - 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => ([(3,4)],5)
=> ? = 1 - 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => ([(3,4)],5)
=> ? = 1 - 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> ? = 1 - 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ? = 1 - 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ? = 1 - 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => ([(3,4)],5)
=> ? = 1 - 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ? = 1 - 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> ? = 1 - 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1 - 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ? = 1 - 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ? = 1 - 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ? = 1 - 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ? = 1 - 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ? = 1 - 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ? = 1 - 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ? = 1 - 1
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ? = 1 - 1
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 1 - 1
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 1 - 1
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 1 - 1
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 1 - 1
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 1 - 1
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 1 - 1
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => ([(3,4)],5)
=> ? = 1 - 1
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 5 - 1
[6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[6,1,2,3,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[6,1,2,4,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[6,1,2,4,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[6,1,2,5,4,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[6,1,3,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[6,1,3,2,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[6,1,3,4,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[6,1,3,4,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[6,1,3,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[6,1,3,5,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[6,1,4,2,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[6,1,4,3,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[6,1,4,3,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[6,1,4,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
[6,1,4,5,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 6 - 1
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Matching statistic: St001232
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 55%
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 1% ●values known / values provided: 1%●distinct values known / distinct values provided: 55%
Values
[1] => [1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,2] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> ? = 1
[2,1] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 1
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? = 1
[2,1,3] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? = 1
[2,3,1] => [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? = 1
[3,1,2] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[3,2,1] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ? = 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ? = 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ? = 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? = 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? = 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ? = 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ? = 2
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ? = 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ? = 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ? = 2
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ? = 2
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? = 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ? = 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? = 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ? = 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ? = 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ? = 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> ? = 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> ? = 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> ? = 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> ? = 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> ? = 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> ? = 1
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> ? = 1
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 1
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 1
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 1
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 1
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 1
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 1
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 1
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 1
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> ? = 1
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5
[6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6
[6,1,2,3,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6
[6,1,2,4,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6
[6,1,2,4,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6
[6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6
[6,1,2,5,4,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6
[6,1,3,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6
[6,1,3,2,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6
[6,1,3,4,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6
[6,1,3,4,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6
[6,1,3,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6
[6,1,3,5,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6
[6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6
[6,1,4,2,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6
[6,1,4,3,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6
[6,1,4,3,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!