searching the database
Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000417
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00139: Ordered trees —Zeilberger's Strahler bijection⟶ Binary trees
Mp00015: Binary trees —to ordered tree: right child = right brother⟶ Ordered trees
St000417: Ordered trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00015: Binary trees —to ordered tree: right child = right brother⟶ Ordered trees
St000417: Ordered trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[],[]]
=> [.,[.,.]]
=> [[],[]]
=> 2
[[[]]]
=> [[.,.],.]
=> [[[]]]
=> 1
[[],[],[]]
=> [.,[.,[.,.]]]
=> [[],[],[]]
=> 6
[[],[[]]]
=> [.,[[.,.],.]]
=> [[],[[]]]
=> 1
[[[]],[]]
=> [[.,[.,.]],.]
=> [[[],[]]]
=> 2
[[[],[]]]
=> [[.,.],[.,.]]
=> [[[]],[]]
=> 1
[[[[]]]]
=> [[[.,.],.],.]
=> [[[[]]]]
=> 1
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [[],[],[],[]]
=> 24
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [[],[],[[]]]
=> 2
[[],[[]],[]]
=> [.,[[.,[.,.]],.]]
=> [[],[[],[]]]
=> 2
[[],[[],[]]]
=> [.,[[.,.],[.,.]]]
=> [[],[[]],[]]
=> 2
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [[],[[[]]]]
=> 1
[[[]],[],[]]
=> [[.,[.,[.,.]]],.]
=> [[[],[],[]]]
=> 6
[[[]],[[]]]
=> [[.,[[.,.],.]],.]
=> [[[],[[]]]]
=> 1
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [[[],[]],[]]
=> 2
[[[[]]],[]]
=> [[[.,[.,.]],.],.]
=> [[[[],[]]]]
=> 2
[[[],[],[]]]
=> [[.,.],[.,[.,.]]]
=> [[[]],[],[]]
=> 2
[[[],[[]]]]
=> [[.,.],[[.,.],.]]
=> [[[]],[[]]]
=> 2
[[[[]],[]]]
=> [[[.,.],.],[.,.]]
=> [[[[]]],[]]
=> 1
[[[[],[]]]]
=> [[[.,.],[.,.]],.]
=> [[[[]],[]]]
=> 1
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [[[[[]]]]]
=> 1
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [[],[],[],[],[]]
=> 120
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [[],[],[],[[]]]
=> 6
[[],[],[[]],[]]
=> [.,[.,[[.,[.,.]],.]]]
=> [[],[],[[],[]]]
=> 4
[[],[],[[],[]]]
=> [.,[.,[[.,.],[.,.]]]]
=> [[],[],[[]],[]]
=> 6
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [[],[],[[[]]]]
=> 2
[[],[[]],[],[]]
=> [.,[[.,[.,[.,.]]],.]]
=> [[],[[],[],[]]]
=> 6
[[],[[]],[[]]]
=> [.,[[.,[[.,.],.]],.]]
=> [[],[[],[[]]]]
=> 1
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [[],[[],[]],[]]
=> 4
[[],[[[]]],[]]
=> [.,[[[.,[.,.]],.],.]]
=> [[],[[[],[]]]]
=> 2
[[],[[],[],[]]]
=> [.,[[.,.],[.,[.,.]]]]
=> [[],[[]],[],[]]
=> 6
[[],[[],[[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> [[],[[]],[[]]]
=> 2
[[],[[[]],[]]]
=> [.,[[[.,.],.],[.,.]]]
=> [[],[[[]]],[]]
=> 2
[[],[[[],[]]]]
=> [.,[[[.,.],[.,.]],.]]
=> [[],[[[]],[]]]
=> 1
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [[],[[[[]]]]]
=> 1
[[[]],[],[],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [[[],[],[],[]]]
=> 24
[[[]],[],[[]]]
=> [[.,[.,[[.,.],.]]],.]
=> [[[],[],[[]]]]
=> 2
[[[]],[[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [[[],[[],[]]]]
=> 2
[[[]],[[],[]]]
=> [[.,.],[[.,.],[.,.]]]
=> [[[]],[[]],[]]
=> 2
[[[]],[[[]]]]
=> [[.,[[[.,.],.],.]],.]
=> [[[],[[[]]]]]
=> 1
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [[[],[]],[],[]]
=> 4
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [[[[],[],[]]]]
=> 6
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [[[],[]],[[]]]
=> 2
[[[[]]],[[]]]
=> [[[.,[[.,.],.]],.],.]
=> [[[[],[[]]]]]
=> 1
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [[[],[],[]],[]]
=> 6
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [[[],[[]]],[]]
=> 1
[[[[]],[]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [[[[],[]]],[]]
=> 2
[[[[],[]]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [[[[],[]],[]]]
=> 2
[[[[[]]]],[]]
=> [[[[.,[.,.]],.],.],.]
=> [[[[[],[]]]]]
=> 2
[[[],[],[],[]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [[[]],[],[],[]]
=> 6
Description
The size of the automorphism group of the ordered tree.
Matching statistic: St000633
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00139: Ordered trees —Zeilberger's Strahler bijection⟶ Binary trees
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St000633: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St000633: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[],[]]
=> [.,[.,.]]
=> [2,1] => ([],2)
=> 2
[[[]]]
=> [[.,.],.]
=> [1,2] => ([(0,1)],2)
=> 1
[[],[],[]]
=> [.,[.,[.,.]]]
=> [3,2,1] => ([],3)
=> 6
[[],[[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => ([(1,2)],3)
=> 1
[[[]],[]]
=> [[.,[.,.]],.]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> 2
[[[],[]]]
=> [[.,.],[.,.]]
=> [3,1,2] => ([(1,2)],3)
=> 1
[[[[]]]]
=> [[[.,.],.],.]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 1
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([],4)
=> 24
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(2,3)],4)
=> 2
[[],[[]],[]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> 2
[[],[[],[]]]
=> [.,[[.,.],[.,.]]]
=> [4,2,3,1] => ([(2,3)],4)
=> 2
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> 1
[[[]],[],[]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 6
[[[]],[[]]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> 1
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [4,2,1,3] => ([(1,3),(2,3)],4)
=> 2
[[[[]]],[]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 2
[[[],[],[]]]
=> [[.,.],[.,[.,.]]]
=> [4,3,1,2] => ([(2,3)],4)
=> 2
[[[],[[]]]]
=> [[.,.],[[.,.],.]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> 2
[[[[]],[]]]
=> [[[.,.],.],[.,.]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> 1
[[[[],[]]]]
=> [[[.,.],[.,.]],.]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> 1
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([],5)
=> 120
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(3,4)],5)
=> 6
[[],[],[[]],[]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> 4
[[],[],[[],[]]]
=> [.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => ([(3,4)],5)
=> 6
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> 2
[[],[[]],[],[]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> 6
[[],[[]],[[]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> 1
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 4
[[],[[[]]],[]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> 2
[[],[[],[],[]]]
=> [.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => ([(3,4)],5)
=> 6
[[],[[],[[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> 2
[[],[[[]],[]]]
=> [.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> 2
[[],[[[],[]]]]
=> [.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> 1
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 1
[[[]],[],[],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 24
[[[]],[],[[]]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[[[]],[[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> 2
[[[]],[[],[]]]
=> [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> 2
[[[]],[[[]]]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> 1
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 4
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> 6
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> 2
[[[[]]],[[]]]
=> [[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> 1
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> 6
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => ([(1,4),(2,3),(3,4)],5)
=> 1
[[[[]],[]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => ([(1,4),(2,4),(4,3)],5)
=> 2
[[[[],[]]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> 2
[[[[[]]]],[]]
=> [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2
[[[],[],[],[]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => ([(3,4)],5)
=> 6
Description
The size of the automorphism group of a poset.
A poset automorphism is a permutation of the elements of the poset preserving the order relation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!