Your data matches 22 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00252: Permutations restrictionPermutations
St000542: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,2] => [1] => 1
[2]
=> [1,1,0,0,1,0]
=> [2,1,3] => [2,1] => 2
[1,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => [1,2] => 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1,2] => 2
[2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => [1,2] => 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,2,3] => 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [4,1,2,3] => 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,3,1] => 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,3] => 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,3,2] => 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,2,3,4] => 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1,2,3,4,6] => [5,1,2,3,4] => 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [3,4,1,2] => 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3] => 2
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2] => 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3] => 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,4,2,3] => 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => [1,2,3,4,5] => 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5,7] => [6,1,2,3,4,5] => 2
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,1,2,3,6] => [4,5,1,2,3] => 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [3,1,4,2] => 2
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [2,4,1,3] => 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [3,1,2,4] => 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3] => 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,4,2,3] => 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,3,4] => 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,3,2,4] => 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,2,3,4] => [1,5,2,3,4] => 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,2,3,4,5,6] => [1,2,3,4,5,6] => 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,1,2,3,4,7] => [5,6,1,2,3,4] => 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,5,2,3,6] => [4,1,5,2,3] => 2
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,5,1,2,4,6] => [3,5,1,2,4] => 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [3,1,2,4] => 2
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,3,4,1] => 2
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,4,2,3] => 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,3,1,4] => 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,4,3] => 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,3,4,2] => 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,6,3,4] => [1,5,2,3,4] => 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,3,4] => 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,2,3,5] => [1,4,2,3,5] => 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,2,3,4,5] => [1,6,2,3,4,5] => 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,8,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,6,2,3,4,7] => [5,1,6,2,3,4] => 2
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,1,2,3,5,7] => [4,6,1,2,3,5] => 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,1,2,5,3,6] => [4,1,2,5,3] => 2
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,1,2,6] => [3,4,5,1,2] => 2
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,1,3,4,6] => [2,5,1,3,4] => 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,1,2,3,6,5] => [4,1,2,3,5] => 2
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,3,1,4] => 2
Description
The number of left-to-right-minima of a permutation. An integer $\sigma_i$ in the one-line notation of a permutation $\sigma$ is a left-to-right-minimum if there does not exist a j < i such that $\sigma_j < \sigma_i$.
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00072: Permutations binary search tree: left to rightBinary trees
St000701: Binary trees ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,2] => [.,[.,.]]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [2,1,3] => [[.,.],[.,.]]
=> 2
[1,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => [.,[[.,.],.]]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [[.,[.,.]],[.,.]]
=> 2
[2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => [.,[.,[.,.]]]
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [.,[[.,[.,.]],.]]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [[.,[.,[.,.]]],[.,.]]
=> 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [.,[[.,.],[.,.]]]
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1,2,3,4,6] => [[.,[.,[.,[.,.]]]],[.,.]]
=> 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]]
=> 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> 2
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [.,[[.,.],[.,.]]]
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [.,[.,[[.,.],.]]]
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => [.,[[.,[.,[.,[.,.]]]],.]]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5,7] => [[.,[.,[.,[.,[.,.]]]]],[.,.]]
=> 2
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,1,2,3,6] => [[.,[.,[.,.]]],[.,[.,.]]]
=> 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [[.,[.,.]],[.,[.,.]]]
=> 2
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [[.,.],[[.,.],[.,.]]]
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [[.,[.,.]],[[.,.],.]]
=> 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [[.,.],[[.,[.,.]],.]]
=> 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,2,3,4] => [.,[[.,[.,[.,.]]],[.,.]]]
=> 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,2,3,4,5,6] => [.,[[.,[.,[.,[.,[.,.]]]]],.]]
=> 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,1,2,3,4,7] => [[.,[.,[.,[.,.]]]],[.,[.,.]]]
=> 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,5,2,3,6] => [[.,[.,[.,.]]],[.,[.,.]]]
=> 2
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,5,1,2,4,6] => [[.,[.,.]],[[.,.],[.,.]]]
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [[.,[.,.]],[.,[.,.]]]
=> 2
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> 2
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,6,3,4] => [.,[[.,[.,[.,.]]],[.,.]]]
=> 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,2,3,5] => [.,[[.,[.,.]],[[.,.],.]]]
=> 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,2,3,4,5] => [.,[[.,[.,[.,[.,.]]]],[.,.]]]
=> 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,8,2,3,4,5,6,7] => [.,[[.,[.,[.,[.,[.,[.,.]]]]]],.]]
=> 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,6,2,3,4,7] => [[.,[.,[.,[.,.]]]],[.,[.,.]]]
=> 2
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,1,2,3,5,7] => [[.,[.,[.,.]]],[[.,.],[.,.]]]
=> 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,1,2,5,3,6] => [[.,[.,[.,.]]],[.,[.,.]]]
=> 2
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,1,2,6] => [[.,[.,.]],[.,[.,[.,.]]]]
=> 2
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,1,3,4,6] => [[.,.],[[.,[.,.]],[.,.]]]
=> 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,1,2,3,6,5] => [[.,[.,[.,.]]],[[.,.],.]]
=> 2
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [[.,.],[.,[.,[.,.]]]]
=> 2
Description
The protection number of a binary tree. This is the minimal distance from the root to a leaf.
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00252: Permutations restrictionPermutations
St000864: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,2] => [1] => 0 = 1 - 1
[2]
=> [1,1,0,0,1,0]
=> [2,1,3] => [2,1] => 1 = 2 - 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => [1,2] => 0 = 1 - 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1,2] => 1 = 2 - 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => [1,2] => 0 = 1 - 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,2,3] => 0 = 1 - 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [4,1,2,3] => 1 = 2 - 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,3,1] => 1 = 2 - 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,3] => 1 = 2 - 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,3,2] => 0 = 1 - 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,2,3,4] => 0 = 1 - 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1,2,3,4,6] => [5,1,2,3,4] => 1 = 2 - 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [3,4,1,2] => 1 = 2 - 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3] => 1 = 2 - 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2] => 0 = 1 - 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3] => 0 = 1 - 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,4,2,3] => 0 = 1 - 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => [1,2,3,4,5] => 0 = 1 - 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5,7] => [6,1,2,3,4,5] => 1 = 2 - 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,1,2,3,6] => [4,5,1,2,3] => 1 = 2 - 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [3,1,4,2] => 1 = 2 - 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [2,4,1,3] => 1 = 2 - 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [3,1,2,4] => 1 = 2 - 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3] => 0 = 1 - 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,4,2,3] => 0 = 1 - 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,3,4] => 1 = 2 - 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,3,2,4] => 0 = 1 - 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,2,3,4] => [1,5,2,3,4] => 0 = 1 - 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,2,3,4,5,6] => [1,2,3,4,5,6] => 0 = 1 - 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,1,2,3,4,7] => [5,6,1,2,3,4] => 1 = 2 - 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,5,2,3,6] => [4,1,5,2,3] => 1 = 2 - 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,5,1,2,4,6] => [3,5,1,2,4] => 1 = 2 - 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [3,1,2,4] => 1 = 2 - 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,3,4,1] => 1 = 2 - 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,4,2,3] => 0 = 1 - 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,3,1,4] => 1 = 2 - 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,4,3] => 1 = 2 - 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,3,4,2] => 0 = 1 - 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,6,3,4] => [1,5,2,3,4] => 0 = 1 - 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,3,4] => 0 = 1 - 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,2,3,5] => [1,4,2,3,5] => 0 = 1 - 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,2,3,4,5] => [1,6,2,3,4,5] => 0 = 1 - 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,8,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => 0 = 1 - 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,6,2,3,4,7] => [5,1,6,2,3,4] => 1 = 2 - 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,1,2,3,5,7] => [4,6,1,2,3,5] => 1 = 2 - 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,1,2,5,3,6] => [4,1,2,5,3] => 1 = 2 - 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,1,2,6] => [3,4,5,1,2] => 1 = 2 - 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,1,3,4,6] => [2,5,1,3,4] => 1 = 2 - 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,1,2,3,6,5] => [4,1,2,3,5] => 1 = 2 - 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,3,1,4] => 1 = 2 - 1
Description
The number of circled entries of the shifted recording tableau of a permutation. The diagram of a strict partition $\lambda_1 < \lambda_2 < \dots < \lambda_\ell$ of $n$ is a tableau with $\ell$ rows, the $i$-th row being indented by $i$ cells. A shifted standard Young tableau is a filling of such a diagram, where entries in rows and columns are strictly increasing. The shifted Robinson-Schensted algorithm [1] associates to a permutation a pair $(P, Q)$ of standard shifted Young tableaux of the same shape, where off-diagonal entries in $Q$ may be circled. This statistic records the number of circled entries in $Q$.
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00252: Permutations restrictionPermutations
St000541: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,2] => [1] => ? = 1 - 1
[2]
=> [1,1,0,0,1,0]
=> [2,1,3] => [2,1] => 1 = 2 - 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => [1,2] => 0 = 1 - 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1,2] => 1 = 2 - 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => [1,2] => 0 = 1 - 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,2,3] => 0 = 1 - 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [4,1,2,3] => 1 = 2 - 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,3,1] => 1 = 2 - 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,3] => 1 = 2 - 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,3,2] => 0 = 1 - 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,2,3,4] => 0 = 1 - 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1,2,3,4,6] => [5,1,2,3,4] => 1 = 2 - 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [3,4,1,2] => 1 = 2 - 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3] => 1 = 2 - 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2] => 0 = 1 - 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3] => 0 = 1 - 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,4,2,3] => 0 = 1 - 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => [1,2,3,4,5] => 0 = 1 - 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5,7] => [6,1,2,3,4,5] => 1 = 2 - 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,1,2,3,6] => [4,5,1,2,3] => 1 = 2 - 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [3,1,4,2] => 1 = 2 - 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [2,4,1,3] => 1 = 2 - 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [3,1,2,4] => 1 = 2 - 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3] => 0 = 1 - 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,4,2,3] => 0 = 1 - 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,3,4] => 1 = 2 - 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,3,2,4] => 0 = 1 - 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,2,3,4] => [1,5,2,3,4] => 0 = 1 - 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,2,3,4,5,6] => [1,2,3,4,5,6] => 0 = 1 - 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,1,2,3,4,7] => [5,6,1,2,3,4] => 1 = 2 - 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,5,2,3,6] => [4,1,5,2,3] => 1 = 2 - 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,5,1,2,4,6] => [3,5,1,2,4] => 1 = 2 - 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [3,1,2,4] => 1 = 2 - 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,3,4,1] => 1 = 2 - 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,4,2,3] => 0 = 1 - 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,3,1,4] => 1 = 2 - 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,4,3] => 1 = 2 - 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,3,4,2] => 0 = 1 - 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,6,3,4] => [1,5,2,3,4] => 0 = 1 - 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,3,4] => 0 = 1 - 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,2,3,5] => [1,4,2,3,5] => 0 = 1 - 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,2,3,4,5] => [1,6,2,3,4,5] => 0 = 1 - 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,8,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => 0 = 1 - 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,6,2,3,4,7] => [5,1,6,2,3,4] => 1 = 2 - 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,1,2,3,5,7] => [4,6,1,2,3,5] => 1 = 2 - 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,1,2,5,3,6] => [4,1,2,5,3] => 1 = 2 - 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,1,2,6] => [3,4,5,1,2] => 1 = 2 - 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,1,3,4,6] => [2,5,1,3,4] => 1 = 2 - 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,1,2,3,6,5] => [4,1,2,3,5] => 1 = 2 - 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,3,1,4] => 1 = 2 - 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3] => 1 = 2 - 1
Description
The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. For a permutation $\pi$ of length $n$, this is the number of indices $2 \leq j \leq n$ such that for all $1 \leq i < j$, the pair $(i,j)$ is an inversion of $\pi$.
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00252: Permutations restrictionPermutations
St001390: Permutations ⟶ ℤResult quality: 91% values known / values provided: 91%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,2] => [1] => 1
[2]
=> [1,1,0,0,1,0]
=> [2,1,3] => [2,1] => 2
[1,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => [1,2] => 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1,2] => 2
[2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => [1,2] => 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,2,3] => 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [4,1,2,3] => 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,3,1] => 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,3] => 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,3,2] => 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,2,3,4] => 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1,2,3,4,6] => [5,1,2,3,4] => 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [3,4,1,2] => 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3] => 2
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2] => 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3] => 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,4,2,3] => 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => [1,2,3,4,5] => 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5,7] => [6,1,2,3,4,5] => 2
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,1,2,3,6] => [4,5,1,2,3] => 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [3,1,4,2] => 2
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [2,4,1,3] => 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [3,1,2,4] => 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3] => 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,4,2,3] => 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,3,4] => 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,3,2,4] => 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,2,3,4] => [1,5,2,3,4] => 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,2,3,4,5,6] => [1,2,3,4,5,6] => 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,1,2,3,4,7] => [5,6,1,2,3,4] => 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,5,2,3,6] => [4,1,5,2,3] => 2
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,5,1,2,4,6] => [3,5,1,2,4] => 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [3,1,2,4] => 2
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,3,4,1] => 2
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,4,2,3] => 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,3,1,4] => 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,4,3] => 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,3,4,2] => 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,6,3,4] => [1,5,2,3,4] => 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,3,4] => 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,2,3,5] => [1,4,2,3,5] => 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,2,3,4,5] => [1,6,2,3,4,5] => 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,8,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,6,2,3,4,7] => [5,1,6,2,3,4] => 2
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,1,2,3,5,7] => [4,6,1,2,3,5] => 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,1,2,5,3,6] => [4,1,2,5,3] => 2
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,1,2,6] => [3,4,5,1,2] => 2
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,1,3,4,6] => [2,5,1,3,4] => 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,1,2,3,6,5] => [4,1,2,3,5] => 2
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,3,1,4] => 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3] => 2
[4,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,3,7,2,8,4,5,6] => [1,3,7,2,4,5,6] => ? = 1
[3,3,3,3,1,1,1]
=> [1,0,1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,4,2,8,3,5,6,7] => [1,4,2,3,5,6,7] => ? = 1
[3,3,3,2,2,1,1]
=> [1,0,1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,3,5,8,2,4,6,7] => [1,3,5,2,4,6,7] => ? = 1
[5,4,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> [1,4,6,2,7,8,3,5] => [1,4,6,2,7,3,5] => ? = 1
[4,3,3,3,1,1,1]
=> [1,0,1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,4,2,7,8,3,5,6] => [1,4,2,7,3,5,6] => ? = 1
[6,4,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> [1,4,6,2,7,3,8,5] => [1,4,6,2,7,3,5] => ? = 1
[6,3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,4,5,7,2,3,8,6] => [1,4,5,7,2,3,6] => ? = 1
[6,2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,2,7,3,4,5,8,6] => [1,2,7,3,4,5,6] => ? = 1
[5,4,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,4,5,6,7,8,2,3] => [1,4,5,6,7,2,3] => ? = 1
[5,4,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,3,6,2,7,8,4,5] => [1,3,6,2,7,4,5] => ? = 1
[5,3,3,3,1,1,1]
=> [1,0,1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [1,4,2,7,3,8,5,6] => [1,4,2,7,3,5,6] => ? = 1
[3,3,3,3,3,1,1]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,3,2,8,4,5,6,7] => [1,3,2,4,5,6,7] => ? = 1
[7,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7] => ? = 1
[6,6,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,8,7] => [1,2,3,4,5,6,7] => ? = 1
[7,5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,5,7,6,8] => [1,2,3,4,5,7,6] => ? = 1
[6,5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,5,7,8,6] => [1,2,3,4,5,7,6] => ? = 1
[5,5,5,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,4,5,8,6,7] => [1,2,3,4,5,6,7] => ? = 1
[6,5,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,3,4,6,7,8,5] => [1,2,3,4,6,7,5] => ? = 1
[6,4,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,3,4,7,5,8,6] => [1,2,3,4,7,5,6] => ? = 1
[5,4,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,4,7,8,5,6] => [1,2,3,4,7,5,6] => ? = 1
[4,4,4,4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,3,4,8,5,6,7] => [1,2,3,4,5,6,7] => ? = 1
[6,5,4,3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,3,5,6,7,8,4] => [1,2,3,5,6,7,4] => ? = 1
[6,5,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,2,3,6,4,7,8,5] => [1,2,3,6,4,7,5] => ? = 1
[6,4,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,2,3,6,7,4,8,5] => [1,2,3,6,7,4,5] => ? = 1
[6,3,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,2,3,7,4,5,8,6] => [1,2,3,7,4,5,6] => ? = 1
[3,3,3,3,3,2,1]
=> [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,8,4,5,6,7] => [1,2,3,4,5,6,7] => ? = 1
[6,5,4,4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,2,4,3,6,7,8,5] => [1,2,4,3,6,7,5] => ? = 1
[6,5,4,3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,8,3] => [1,2,4,5,6,7,3] => ? = 1
[6,5,4,2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,2,5,3,6,7,8,4] => [1,2,5,3,6,7,4] => ? = 1
[6,5,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,2,5,6,3,7,8,4] => [1,2,5,6,3,7,4] => ? = 1
[6,4,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,2,5,6,7,3,8,4] => [1,2,5,6,7,3,4] => ? = 1
[5,4,3,2,2,2,1]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,2,5,6,7,8,3,4] => [1,2,5,6,7,3,4] => ? = 1
[6,5,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,2,6,3,4,7,8,5] => [1,2,6,3,4,7,5] => ? = 1
[7,6,5,4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7,8] => [1,3,2,4,5,6,7] => ? = 1
[4,4,4,4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,4,2,8,5,6,7] => [1,3,4,2,5,6,7] => ? = 1
[6,5,4,3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,7,8,2] => [1,3,4,5,6,7,2] => ? = 1
[7,6,5,4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,4,2,3,5,6,7,8] => [1,4,2,3,5,6,7] => ? = 1
[6,5,4,3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,4,2,5,6,7,8,3] => [1,4,2,5,6,7,3] => ? = 1
[6,5,4,2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,4,5,2,6,7,8,3] => [1,4,5,2,6,7,3] => ? = 1
[7,4,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,4,5,6,7,2,3,8] => [1,4,5,6,7,2,3] => ? = 1
Description
The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. For a given permutation $\pi$, this is the index of the row containing $\pi^{-1}(1)$ of the recording tableau of $\pi$ (obtained by [[Mp00070]]).
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00068: Permutations Simion-Schmidt mapPermutations
St001085: Permutations ⟶ ℤResult quality: 74% values known / values provided: 74%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,2] => [1,2] => 0 = 1 - 1
[2]
=> [1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 1 = 2 - 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 0 = 1 - 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1,4,2] => 1 = 2 - 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => [1,3,2] => 0 = 1 - 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,4,3,2] => 0 = 1 - 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [4,1,5,3,2] => 1 = 2 - 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,4,1,3] => 1 = 2 - 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 1 = 2 - 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => 0 = 1 - 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,5,4,3,2] => 0 = 1 - 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1,2,3,4,6] => [5,1,6,4,3,2] => 1 = 2 - 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [3,5,1,4,2] => 1 = 2 - 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,4,3] => 1 = 2 - 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,4,3,2] => 0 = 1 - 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,4,3,2] => 0 = 1 - 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,5,4,3,2] => 0 = 1 - 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => [1,6,5,4,3,2] => 0 = 1 - 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5,7] => [6,1,7,5,4,3,2] => ? = 2 - 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,1,2,3,6] => [4,6,1,5,3,2] => 1 = 2 - 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [3,1,5,4,2] => 1 = 2 - 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [2,5,1,4,3] => 1 = 2 - 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [3,1,5,4,2] => 1 = 2 - 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,4,3,2] => 0 = 1 - 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,5,4,3,2] => 0 = 1 - 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,5,4,3] => 1 = 2 - 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,5,4,3,2] => 0 = 1 - 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,2,3,4] => [1,6,5,4,3,2] => 0 = 1 - 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,2,3,4,5,6] => [1,7,6,5,4,3,2] => 0 = 1 - 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,1,2,3,4,7] => [5,7,1,6,4,3,2] => ? = 2 - 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,5,2,3,6] => [4,1,6,5,3,2] => 1 = 2 - 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,5,1,2,4,6] => [3,6,1,5,4,2] => 1 = 2 - 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [3,1,5,4,2] => 1 = 2 - 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,5,4,1,3] => 1 = 2 - 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,5,4,3,2] => 0 = 1 - 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,5,1,4,3] => 1 = 2 - 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => 1 = 2 - 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,4,3,2] => 0 = 1 - 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,6,3,4] => [1,6,5,4,3,2] => 0 = 1 - 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,5,4,3,2] => 0 = 1 - 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,2,3,5] => [1,6,5,4,3,2] => 0 = 1 - 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,2,3,4,5] => [1,7,6,5,4,3,2] => 0 = 1 - 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,8,2,3,4,5,6,7] => [1,8,7,6,5,4,3,2] => 0 = 1 - 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,6,2,3,4,7] => [5,1,7,6,4,3,2] => ? = 2 - 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,1,2,3,5,7] => [4,7,1,6,5,3,2] => ? = 2 - 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,1,2,5,3,6] => [4,1,6,5,3,2] => 1 = 2 - 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,1,2,6] => [3,6,5,1,4,2] => 1 = 2 - 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,1,3,4,6] => [2,6,1,5,4,3] => 1 = 2 - 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,1,2,3,6,5] => [4,1,6,5,3,2] => 1 = 2 - 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,5,1,4,3] => 1 = 2 - 1
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,5,4,3] => 1 = 2 - 1
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,5,4,3,2] => 0 = 1 - 1
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,6,4] => [1,6,5,4,3,2] => 0 = 1 - 1
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,5,4,3] => 1 = 2 - 1
[6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [5,1,2,6,3,4,7] => [5,1,7,6,4,3,2] => ? = 2 - 1
[6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [4,5,6,1,2,3,7] => [4,7,6,1,5,3,2] => ? = 2 - 1
[6,1,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [3,6,1,2,4,5,7] => [3,7,1,6,5,4,2] => ? = 2 - 1
[6,4]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [5,1,2,3,6,4,7] => [5,1,7,6,4,3,2] => ? = 2 - 1
[6,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [4,5,1,6,2,3,7] => [4,7,1,6,5,3,2] => ? = 2 - 1
[6,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [4,1,6,2,3,5,7] => [4,1,7,6,5,3,2] => ? = 2 - 1
[6,2,1,1]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [3,5,6,1,2,4,7] => [3,7,6,1,5,4,2] => ? = 2 - 1
[6,1,1,1,1]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [2,6,1,3,4,5,7] => [2,7,1,6,5,4,3] => ? = 2 - 1
[5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [5,1,2,3,4,7,6] => [5,1,7,6,4,3,2] => ? = 2 - 1
[6,5]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [5,1,2,3,4,6,7] => [5,1,7,6,4,3,2] => ? = 2 - 1
[6,4,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [4,5,1,2,6,3,7] => [4,7,1,6,5,3,2] => ? = 2 - 1
[6,3,2]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [4,1,5,6,2,3,7] => [4,1,7,6,5,3,2] => ? = 2 - 1
[6,3,1,1]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [3,5,1,6,2,4,7] => [3,7,1,6,5,4,2] => ? = 2 - 1
[6,2,2,1]
=> [1,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [3,4,6,1,2,5,7] => [3,7,6,1,5,4,2] => ? = 2 - 1
[6,2,1,1,1]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [2,5,6,1,3,4,7] => [2,7,6,1,5,4,3] => ? = 2 - 1
[5,5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [4,5,1,2,3,7,6] => [4,7,1,6,5,3,2] => ? = 2 - 1
[6,5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [4,5,1,2,3,6,7] => [4,7,1,6,5,3,2] => ? = 2 - 1
[6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [4,1,5,2,6,3,7] => [4,1,7,6,5,3,2] => ? = 2 - 1
[6,4,1,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0,1,0]
=> [3,5,1,2,6,4,7] => [3,7,1,6,5,4,2] => ? = 2 - 1
[6,3,3]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [4,1,2,6,3,5,7] => [4,1,7,6,5,3,2] => ? = 2 - 1
[6,3,2,1]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,6,1,2,7] => [3,7,6,5,1,4,2] => ? = 2 - 1
[6,3,1,1,1]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [2,5,1,6,3,4,7] => [2,7,1,6,5,4,3] => ? = 2 - 1
[6,2,2,2]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [3,1,6,2,4,5,7] => [3,1,7,6,5,4,2] => ? = 2 - 1
[6,2,2,1,1]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [2,4,6,1,3,5,7] => [2,7,6,1,5,4,3] => ? = 2 - 1
[5,5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> [4,1,5,2,3,7,6] => [4,1,7,6,5,3,2] => ? = 2 - 1
[5,5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,1,0,0]
=> [3,5,1,2,4,7,6] => [3,7,1,6,5,4,2] => ? = 2 - 1
[4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [4,1,2,3,7,5,6] => [4,1,7,6,5,3,2] => ? = 2 - 1
[3,3,3,3]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [3,1,2,7,4,5,6] => [3,1,7,6,5,4,2] => ? = 2 - 1
[6,5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3,6,7] => [4,1,7,6,5,3,2] => ? = 2 - 1
[6,5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> [3,5,1,2,4,6,7] => [3,7,1,6,5,4,2] => ? = 2 - 1
[6,4,3]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [4,1,2,5,6,3,7] => [4,1,7,6,5,3,2] => ? = 2 - 1
[6,4,2,1]
=> [1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [3,4,5,1,6,2,7] => [3,7,6,1,5,4,2] => ? = 2 - 1
[6,4,1,1,1]
=> [1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [2,5,1,3,6,4,7] => [2,7,1,6,5,4,3] => ? = 2 - 1
[6,3,3,1]
=> [1,1,1,0,1,0,0,1,1,0,0,0,1,0]
=> [3,4,1,6,2,5,7] => [3,7,1,6,5,4,2] => ? = 2 - 1
[6,3,2,2]
=> [1,1,1,0,0,1,1,0,1,0,0,0,1,0]
=> [3,1,5,6,2,4,7] => [3,1,7,6,5,4,2] => ? = 2 - 1
[6,3,2,1,1]
=> [1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [2,4,5,6,1,3,7] => [2,7,6,5,1,4,3] => ? = 2 - 1
[6,2,2,2,1]
=> [1,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> [2,3,6,1,4,5,7] => [2,7,6,1,5,4,3] => ? = 2 - 1
[5,5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> [4,1,2,5,3,7,6] => [4,1,7,6,5,3,2] => ? = 2 - 1
[5,5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> [3,4,5,1,2,7,6] => [3,7,6,1,5,4,2] => ? = 2 - 1
[5,5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [2,5,1,3,4,7,6] => [2,7,1,6,5,4,3] => ? = 2 - 1
[5,4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> [4,1,2,3,6,7,5] => [4,1,7,6,5,3,2] => ? = 2 - 1
[4,4,4,1]
=> [1,1,1,0,1,0,0,0,1,1,1,0,0,0]
=> [3,4,1,2,7,5,6] => [3,7,1,6,5,4,2] => ? = 2 - 1
[4,3,3,3]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [3,1,2,6,7,4,5] => [3,1,7,6,5,4,2] => ? = 2 - 1
[3,3,3,3,1]
=> [1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [2,3,1,7,4,5,6] => [2,7,1,6,5,4,3] => ? = 2 - 1
[6,5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [4,1,2,5,3,6,7] => [4,1,7,6,5,3,2] => ? = 2 - 1
[6,5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [3,4,5,1,2,6,7] => [3,7,6,1,5,4,2] => ? = 2 - 1
Description
The number of occurrences of the vincular pattern |21-3 in a permutation. This is the number of occurrences of the pattern $213$, where the first matched entry is the first entry of the permutation and the other two matched entries are consecutive. In other words, this is the number of ascents whose bottom value is strictly smaller and the top value is strictly larger than the first entry of the permutation.
Matching statistic: St000068
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00065: Permutations permutation posetPosets
St000068: Posets ⟶ ℤResult quality: 49% values known / values provided: 49%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,2] => ([(0,1)],2)
=> 1
[2]
=> [1,1,0,0,1,0]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> 2
[1,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => ([(0,1),(0,2)],3)
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> 2
[2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1,2,3,4,6] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 2
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5,7] => ([(0,6),(1,5),(2,6),(3,4),(4,2),(5,3)],7)
=> 2
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,1,2,3,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,2,3,4] => ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,2,3,4,5,6] => ([(0,2),(0,6),(3,5),(4,3),(5,1),(6,4)],7)
=> 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,1,2,3,4,7] => ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7)
=> 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,5,2,3,6] => ([(0,4),(1,2),(1,4),(2,3),(3,5),(4,5)],6)
=> 2
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,5,1,2,4,6] => ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,6,3,4] => ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,2,3,5] => ([(0,3),(0,4),(2,5),(3,2),(4,1),(4,5)],6)
=> 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,2,3,4,5] => ([(0,5),(0,6),(3,4),(4,2),(5,3),(6,1)],7)
=> 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,8,2,3,4,5,6,7] => ([(0,2),(0,7),(3,4),(4,6),(5,3),(6,1),(7,5)],8)
=> 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,6,2,3,4,7] => ([(0,6),(1,4),(1,6),(2,5),(3,2),(4,3),(6,5)],7)
=> ? = 2
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,1,2,3,5,7] => ([(0,3),(0,6),(1,4),(2,6),(3,5),(4,2),(6,5)],7)
=> 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,1,2,5,3,6] => ([(0,5),(1,2),(2,3),(2,5),(3,4),(5,4)],6)
=> 2
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,1,2,6] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 2
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,1,3,4,6] => ([(0,4),(1,2),(1,4),(2,5),(3,5),(4,3)],6)
=> 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,1,2,3,6,5] => ([(0,4),(0,5),(1,2),(2,3),(3,4),(3,5)],6)
=> 2
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 2
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,2,3,4,6] => ([(0,4),(0,5),(2,6),(3,2),(4,3),(5,1),(5,6)],7)
=> ? = 1
[6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [5,1,2,6,3,4,7] => ([(0,6),(1,4),(2,5),(3,2),(4,3),(4,6),(6,5)],7)
=> ? = 2
[6,1,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [3,6,1,2,4,5,7] => ([(0,3),(1,4),(1,6),(2,5),(3,6),(4,5),(6,2)],7)
=> ? = 2
[4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,6,2,3,7,4,5] => ([(0,2),(0,5),(2,6),(3,1),(4,3),(4,6),(5,4)],7)
=> ? = 1
[2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,4,7,2,3,5,6] => ([(0,4),(0,5),(2,6),(4,2),(5,1),(5,6),(6,3)],7)
=> ? = 1
[6,4]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [5,1,2,3,6,4,7] => ([(0,6),(1,4),(2,5),(3,2),(3,6),(4,3),(6,5)],7)
=> ? = 2
[6,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [4,5,1,6,2,3,7] => ([(0,3),(1,4),(1,6),(2,5),(3,6),(4,2),(6,5)],7)
=> ? = 2
[6,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [4,1,6,2,3,5,7] => ([(0,2),(0,6),(1,5),(1,6),(2,3),(3,5),(5,4),(6,4)],7)
=> ? = 2
[6,2,1,1]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [3,5,6,1,2,4,7] => ([(0,3),(1,4),(1,6),(2,5),(3,6),(4,2),(6,5)],7)
=> ? = 2
[6,1,1,1,1]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [2,6,1,3,4,5,7] => ([(0,6),(1,3),(1,6),(2,5),(3,5),(4,2),(6,4)],7)
=> ? = 2
[5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [5,1,2,3,4,7,6] => ([(0,5),(0,6),(1,4),(2,5),(2,6),(3,2),(4,3)],7)
=> ? = 2
[5,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,6,2,3,4,7,5] => ([(0,2),(0,5),(2,6),(3,4),(4,1),(4,6),(5,3)],7)
=> ? = 1
[4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,5,6,2,7,3,4] => ([(0,4),(0,5),(2,6),(3,1),(4,2),(5,3),(5,6)],7)
=> ? = 1
[3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,5,2,7,3,4,6] => ([(0,2),(0,4),(1,5),(2,5),(2,6),(3,1),(4,3),(4,6)],7)
=> ? = 1
[3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,6,7,2,3,5] => ([(0,4),(0,5),(2,6),(3,1),(4,2),(5,3),(5,6)],7)
=> ? = 1
[2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,3,4,5,6] => ([(0,5),(0,6),(1,5),(1,6),(3,4),(4,2),(6,3)],7)
=> ? = 2
[2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,3,7,2,4,5,6] => ([(0,3),(0,5),(3,6),(4,2),(5,1),(5,6),(6,4)],7)
=> ? = 1
[6,4,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [4,5,1,2,6,3,7] => ([(0,3),(1,4),(2,6),(3,5),(4,2),(4,5),(5,6)],7)
=> ? = 2
[6,3,2]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [4,1,5,6,2,3,7] => ([(0,6),(1,4),(1,6),(2,5),(3,5),(4,3),(6,2)],7)
=> ? = 2
[6,3,1,1]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [3,5,1,6,2,4,7] => ([(0,3),(0,6),(1,2),(1,5),(2,6),(3,5),(5,4),(6,4)],7)
=> ? = 2
[6,2,2,1]
=> [1,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [3,4,6,1,2,5,7] => ([(0,3),(1,4),(2,6),(3,5),(4,2),(4,5),(5,6)],7)
=> ? = 2
[6,2,1,1,1]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [2,5,6,1,3,4,7] => ([(0,6),(1,4),(1,6),(2,5),(3,5),(4,3),(6,2)],7)
=> ? = 2
[5,5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [4,5,1,2,3,7,6] => ([(0,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,2)],7)
=> ? = 2
[5,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,5,6,2,3,7,4] => ([(0,4),(0,5),(2,6),(3,1),(3,6),(4,2),(5,3)],7)
=> ? = 1
[4,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,5,2,6,7,3,4] => ([(0,3),(0,5),(3,6),(4,1),(5,4),(5,6),(6,2)],7)
=> ? = 1
[4,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,4,6,2,7,3,5] => ([(0,3),(0,4),(1,6),(2,5),(3,2),(3,6),(4,1),(4,5)],7)
=> ? = 1
[3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,4,5,7,2,3,6] => ([(0,4),(0,5),(2,6),(3,1),(3,6),(4,2),(5,3)],7)
=> ? = 1
[3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [2,1,6,7,3,4,5] => ([(0,5),(0,6),(1,5),(1,6),(4,3),(5,4),(6,2)],7)
=> ? = 2
[3,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,3,6,7,2,4,5] => ([(0,3),(0,5),(3,6),(4,1),(5,4),(5,6),(6,2)],7)
=> ? = 1
[6,4,1,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0,1,0]
=> [3,5,1,2,6,4,7] => ([(0,3),(1,2),(1,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> ? = 2
[6,3,3]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [4,1,2,6,3,5,7] => ([(0,3),(1,5),(1,6),(2,6),(3,2),(3,5),(5,4),(6,4)],7)
=> ? = 2
[6,3,1,1,1]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [2,5,1,6,3,4,7] => ([(0,3),(0,5),(1,5),(1,6),(2,4),(3,6),(5,2),(6,4)],7)
=> ? = 2
[6,2,2,2]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [3,1,6,2,4,5,7] => ([(0,3),(0,6),(1,4),(1,6),(2,5),(3,4),(4,2),(6,5)],7)
=> ? = 2
[5,5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> [4,1,5,2,3,7,6] => ([(0,6),(1,2),(1,6),(2,3),(3,4),(3,5),(6,4),(6,5)],7)
=> ? = 2
[5,5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,1,0,0]
=> [3,5,1,2,4,7,6] => ([(0,2),(1,3),(1,6),(2,6),(3,4),(3,5),(6,4),(6,5)],7)
=> ? = 2
[5,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,4,6,2,3,7,5] => ([(0,3),(0,4),(1,5),(2,5),(2,6),(3,2),(4,1),(4,6)],7)
=> ? = 1
[4,4,4]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [4,1,2,3,7,5,6] => ([(0,5),(0,6),(1,4),(3,5),(3,6),(4,3),(6,2)],7)
=> ? = 2
[4,4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,5,2,3,7,4,6] => ([(0,2),(0,4),(1,5),(2,5),(2,6),(3,1),(3,6),(4,3)],7)
=> ? = 1
[4,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [2,1,6,3,7,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(5,4),(6,2),(6,4)],7)
=> ? = 2
[4,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,3,6,2,7,4,5] => ([(0,3),(0,4),(2,5),(3,5),(3,6),(4,2),(4,6),(6,1)],7)
=> ? = 1
[3,3,3,3]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [3,1,2,7,4,5,6] => ([(0,5),(0,6),(1,3),(3,5),(3,6),(4,2),(6,4)],7)
=> ? = 2
[3,3,3,1,1,1]
=> [1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,4,2,7,3,5,6] => ([(0,3),(0,4),(2,6),(3,5),(3,6),(4,2),(4,5),(6,1)],7)
=> ? = 1
[3,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [2,1,5,7,3,4,6] => ([(0,5),(0,6),(1,5),(1,6),(3,4),(5,3),(6,2),(6,4)],7)
=> ? = 2
[6,5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3,6,7] => ([(0,5),(1,4),(1,5),(3,6),(4,3),(5,6),(6,2)],7)
=> ? = 2
[6,5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> [3,5,1,2,4,6,7] => ([(0,4),(1,3),(1,5),(3,6),(4,5),(5,6),(6,2)],7)
=> ? = 2
[6,4,3]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [4,1,2,5,6,3,7] => ([(0,6),(1,4),(2,5),(3,5),(4,3),(4,6),(6,2)],7)
=> ? = 2
[6,4,1,1,1]
=> [1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [2,5,1,3,6,4,7] => ([(0,6),(1,3),(1,6),(2,4),(3,5),(5,4),(6,2),(6,5)],7)
=> ? = 2
[6,3,3,1]
=> [1,1,1,0,1,0,0,1,1,0,0,0,1,0]
=> [3,4,1,6,2,5,7] => ([(0,3),(1,2),(1,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> ? = 2
[6,3,2,2]
=> [1,1,1,0,0,1,1,0,1,0,0,0,1,0]
=> [3,1,5,6,2,4,7] => ([(0,3),(0,5),(1,5),(1,6),(2,4),(3,6),(5,2),(6,4)],7)
=> ? = 2
Description
The number of minimal elements in a poset.
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00030: Dyck paths zeta mapDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
St000007: Permutations ⟶ ℤResult quality: 43% values known / values provided: 43%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,2] => 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [3,1,2] => 2
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [2,1,3] => 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => 2
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,6,1,5] => 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => 2
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [3,1,2,4] => 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,1,6] => 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,5,7,1,6] => 2
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,4,6,2,5] => 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => 2
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,4,5,2,6] => 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,6,1,7] => 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,3,4,5,7,2,6] => ? = 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [3,1,4,6,2,5] => 2
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,6,3,5] => 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => 2
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,2,5,3,4] => 2
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,4,5,2,3] => 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [3,1,4,5,2,6] => 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,5,3,6] => 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,3,4,5,6,2,7] => ? = 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,6,7,1,8] => 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [3,1,4,5,7,2,6] => ? = 2
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,4,5,7,3,6] => ? = 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,6,3,5] => 2
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,2,4,6,3,5] => 2
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,6,4,5] => 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,4,5,6,1,3] => 2
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,3,4] => 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [4,5,1,2,3] => 2
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => 1
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [2,4,1,5,3,6] => 1
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => 2
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [3,1,4,5,6,2,7] => ? = 1
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 1
[6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [2,4,1,5,7,3,6] => ? = 2
[6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,7,3,6] => ? = 2
[6,1,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,3,1,5,7,4,6] => ? = 2
[4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [2,4,1,5,6,3,7] => ? = 1
[3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,2,4,5,6,3,7] => ? = 1
[2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 1
[6,4]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [2,3,5,1,7,4,6] => ? = 2
[6,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,1,0,0]
=> [1,4,2,5,7,3,6] => ? = 2
[6,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,7,2,6] => ? = 2
[6,2,1,1]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,7,4,6] => ? = 2
[6,1,1,1,1]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [2,3,4,1,7,5,6] => ? = 2
[5,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [2,3,5,1,6,4,7] => ? = 1
[4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,1,0,0]
=> [1,4,2,5,6,3,7] => ? = 1
[3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [3,4,1,5,6,2,7] => ? = 1
[3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,5,6,4,7] => ? = 1
[2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 1
[6,4,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [1,3,5,2,7,4,6] => ? = 2
[6,3,2]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> [4,1,2,5,7,3,6] => ? = 2
[6,3,1,1]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [3,1,2,5,7,4,6] => ? = 2
[6,2,2,1]
=> [1,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,0,1,0,0]
=> [2,1,3,5,7,4,6] => ? = 2
[6,2,1,1,1]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [1,3,4,2,7,5,6] => ? = 2
[6,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,3,4,6,1,5,7] => ? = 1
[5,5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,5,6,7,2,4] => ? = 2
[5,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,5,2,6,4,7] => ? = 1
[4,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,1,0,0]
=> [4,1,2,5,6,3,7] => ? = 1
[4,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,1,0,0]
=> [3,1,2,5,6,4,7] => ? = 1
[3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,1,3,5,6,4,7] => ? = 1
[3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,6,7,2,5] => ? = 2
[3,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,3,4,2,6,5,7] => ? = 1
[6,5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [1,3,4,7,2,5,6] => ? = 2
[6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [3,1,5,2,7,4,6] => ? = 2
[6,4,1,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [2,1,5,3,7,4,6] => ? = 2
[6,3,3]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [3,4,5,1,7,2,6] => ? = 2
[6,3,2,1]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> [1,2,3,5,7,4,6] => ? = 2
[6,3,1,1,1]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,1,0,0,1,0,0]
=> [3,1,4,2,7,5,6] => ? = 2
[6,2,2,2]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,4,5,1,7,3,6] => ? = 2
[6,2,2,1,1]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,1,4,3,7,5,6] => ? = 2
[6,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [1,3,4,6,2,5,7] => ? = 1
[5,5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [3,1,5,6,7,2,4] => ? = 2
[5,5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [2,1,5,6,7,3,4] => ? = 2
[5,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4,7] => ? = 1
[5,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,1,5,3,6,4,7] => ? = 1
[4,4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [3,4,5,1,6,2,7] => ? = 1
[4,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,2,3,5,6,4,7] => ? = 1
Description
The number of saliances of the permutation. A saliance is a right-to-left maximum. This can be described as an occurrence of the mesh pattern $([1], {(1,1)})$, i.e., the upper right quadrant is shaded, see [1].
Matching statistic: St000996
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00069: Permutations complementPermutations
St000996: Permutations ⟶ ℤResult quality: 31% values known / values provided: 31%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,2] => [2,1] => 1
[2]
=> [1,1,0,0,1,0]
=> [2,1,3] => [2,3,1] => 2
[1,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [2,4,3,1] => 2
[2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => [3,2,1] => 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [4,1,3,2] => 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [2,5,4,3,1] => 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,4,1] => 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [3,4,1,2] => 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [4,2,1,3] => 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [5,1,4,3,2] => 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1,2,3,4,6] => [2,6,5,4,3,1] => 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [3,2,5,4,1] => 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [3,4,2,1] => 2
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [4,2,3,1] => 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,3,1,2] => 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [5,2,1,4,3] => 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => [6,1,5,4,3,2] => 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5,7] => [2,7,6,5,4,3,1] => ? = 2
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,1,2,3,6] => [3,2,6,5,4,1] => 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [3,5,2,4,1] => 2
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [4,2,5,3,1] => 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [3,5,4,1,2] => 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4,3,2,1] => 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [5,2,4,1,3] => 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [4,5,1,3,2] => 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [5,3,1,4,2] => 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,2,3,4] => [6,2,1,5,4,3] => 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,2,3,4,5,6] => [7,1,6,5,4,3,2] => ? = 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,1,2,3,4,7] => [3,2,7,6,5,4,1] => ? = 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,5,2,3,6] => [3,6,2,5,4,1] => 2
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,5,1,2,4,6] => [4,2,6,5,3,1] => 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [3,5,4,2,1] => 2
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,3,2,5,1] => 2
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [5,2,4,3,1] => 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [4,3,5,1,2] => 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [4,5,2,1,3] => 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [5,3,2,1,4] => 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,6,3,4] => [6,2,5,1,4,3] => 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [5,4,1,3,2] => 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,2,3,5] => [6,3,1,5,4,2] => 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,2,3,4,5] => [7,2,1,6,5,4,3] => ? = 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,8,2,3,4,5,6,7] => [8,1,7,6,5,4,3,2] => ? = 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,6,2,3,4,7] => [3,7,2,6,5,4,1] => ? = 2
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,1,2,3,5,7] => [4,2,7,6,5,3,1] => ? = 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,1,2,5,3,6] => [3,6,5,2,4,1] => 2
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,1,2,6] => [4,3,2,6,5,1] => 2
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,1,3,4,6] => [5,2,6,4,3,1] => 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,1,2,3,6,5] => [3,6,5,4,1,2] => 2
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [4,3,5,2,1] => 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [4,5,2,3,1] => 2
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [5,3,2,4,1] => 1
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,6,4] => [6,2,5,4,1,3] => 1
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => 2
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [5,3,4,1,2] => 1
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [5,4,2,1,3] => 1
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,4,5,6,2,3] => [6,3,2,1,5,4] => 1
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,2,7,3,4,5] => [7,2,6,1,5,4,3] => ? = 1
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,2,3,4,6] => [7,3,1,6,5,4,2] => ? = 1
[6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [5,1,2,6,3,4,7] => [3,7,6,2,5,4,1] => ? = 2
[6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [4,5,6,1,2,3,7] => [4,3,2,7,6,5,1] => ? = 2
[6,1,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [3,6,1,2,4,5,7] => [5,2,7,6,4,3,1] => ? = 2
[4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,6,2,3,7,4,5] => [7,2,6,5,1,4,3] => ? = 1
[3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,5,6,7,2,3,4] => [7,3,2,1,6,5,4] => ? = 1
[2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,4,7,2,3,5,6] => [7,4,1,6,5,3,2] => ? = 1
[6,4]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [5,1,2,3,6,4,7] => [3,7,6,5,2,4,1] => ? = 2
[6,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [4,5,1,6,2,3,7] => [4,3,7,2,6,5,1] => ? = 2
[6,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [4,1,6,2,3,5,7] => [4,7,2,6,5,3,1] => ? = 2
[6,2,1,1]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [3,5,6,1,2,4,7] => [5,3,2,7,6,4,1] => ? = 2
[6,1,1,1,1]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [2,6,1,3,4,5,7] => [6,2,7,5,4,3,1] => ? = 2
[5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [5,1,2,3,4,7,6] => [3,7,6,5,4,1,2] => ? = 2
[5,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,6,2,3,4,7,5] => [7,2,6,5,4,1,3] => ? = 1
[4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,5,6,2,7,3,4] => [7,3,2,6,1,5,4] => ? = 1
[3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,5,2,7,3,4,6] => [7,3,6,1,5,4,2] => ? = 1
[3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,6,7,2,3,5] => [7,4,2,1,6,5,3] => ? = 1
[2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,3,4,5,6] => [6,7,1,5,4,3,2] => ? = 2
[2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,3,7,2,4,5,6] => [7,5,1,6,4,3,2] => ? = 1
[6,5]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [5,1,2,3,4,6,7] => [3,7,6,5,4,2,1] => ? = 2
[6,4,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [4,5,1,2,6,3,7] => [4,3,7,6,2,5,1] => ? = 2
[6,3,2]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [4,1,5,6,2,3,7] => [4,7,3,2,6,5,1] => ? = 2
[6,3,1,1]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [3,5,1,6,2,4,7] => [5,3,7,2,6,4,1] => ? = 2
[6,2,2,1]
=> [1,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [3,4,6,1,2,5,7] => [5,4,2,7,6,3,1] => ? = 2
[6,2,1,1,1]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [2,5,6,1,3,4,7] => [6,3,2,7,5,4,1] => ? = 2
[6,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,2,3,4,5,7] => [7,2,6,5,4,3,1] => ? = 1
[5,5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [4,5,1,2,3,7,6] => [4,3,7,6,5,1,2] => ? = 2
[5,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,5,6,2,3,7,4] => [7,3,2,6,5,1,4] => ? = 1
[4,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,5,2,6,7,3,4] => [7,3,6,2,1,5,4] => ? = 1
[4,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,4,6,2,7,3,5] => [7,4,2,6,1,5,3] => ? = 1
[3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,4,5,7,2,3,6] => [7,4,3,1,6,5,2] => ? = 1
[3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [2,1,6,7,3,4,5] => [6,7,2,1,5,4,3] => ? = 2
[3,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,3,6,7,2,4,5] => [7,5,2,1,6,4,3] => ? = 1
[2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,3,4,5,6] => [7,6,1,5,4,3,2] => ? = 1
[6,5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [4,5,1,2,3,6,7] => [4,3,7,6,5,2,1] => ? = 2
[6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [4,1,5,2,6,3,7] => [4,7,3,6,2,5,1] => ? = 2
[6,4,1,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0,1,0]
=> [3,5,1,2,6,4,7] => [5,3,7,6,2,4,1] => ? = 2
[6,3,3]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [4,1,2,6,3,5,7] => [4,7,6,2,5,3,1] => ? = 2
[6,3,2,1]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,6,1,2,7] => [5,4,3,2,7,6,1] => ? = 2
[6,3,1,1,1]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [2,5,1,6,3,4,7] => [6,3,7,2,5,4,1] => ? = 2
[6,2,2,2]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [3,1,6,2,4,5,7] => [5,7,2,6,4,3,1] => ? = 2
[6,2,2,1,1]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [2,4,6,1,3,5,7] => [6,4,2,7,5,3,1] => ? = 2
Description
The number of exclusive left-to-right maxima of a permutation. This is the number of left-to-right maxima that are not right-to-left minima.
Matching statistic: St000374
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00064: Permutations reversePermutations
St000374: Permutations ⟶ ℤResult quality: 30% values known / values provided: 30%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,2] => [2,1] => 1
[2]
=> [1,1,0,0,1,0]
=> [2,1,3] => [3,1,2] => 2
[1,1]
=> [1,0,1,1,0,0]
=> [1,3,2] => [2,3,1] => 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [4,2,1,3] => 2
[2,1]
=> [1,0,1,0,1,0]
=> [1,2,3] => [3,2,1] => 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [3,2,4,1] => 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [5,3,2,1,4] => 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [4,1,3,2] => 2
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [3,4,1,2] => 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [2,4,3,1] => 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [4,3,2,5,1] => 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1,2,3,4,6] => [6,4,3,2,1,5] => 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [5,2,1,4,3] => 2
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [4,3,1,2] => 2
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [4,2,3,1] => 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [3,4,2,1] => 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [3,2,5,4,1] => 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => [5,4,3,2,6,1] => 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5,7] => [7,5,4,3,2,1,6] => ? = 2
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,1,2,3,6] => [6,3,2,1,5,4] => 2
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [5,2,4,1,3] => 2
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [5,3,1,4,2] => 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [4,5,2,1,3] => 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4,3,2,1] => 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [3,5,2,4,1] => 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [4,3,5,1,2] => 2
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [4,2,5,3,1] => 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,2,3,4] => [4,3,2,6,5,1] => 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,2,3,4,5,6] => [6,5,4,3,2,7,1] => ? = 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,1,2,3,4,7] => [7,4,3,2,1,6,5] => ? = 2
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,5,2,3,6] => [6,3,2,5,1,4] => 2
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,5,1,2,4,6] => [6,4,2,1,5,3] => 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [5,4,2,1,3] => 2
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [5,1,4,3,2] => 2
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [5,3,2,4,1] => 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [4,5,1,3,2] => 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,5,4,1,2] => 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [2,5,4,3,1] => 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,6,3,4] => [4,3,6,2,5,1] => 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [4,3,5,2,1] => 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,2,3,5] => [5,3,2,6,4,1] => 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,2,3,4,5] => [5,4,3,2,7,6,1] => ? = 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,8,2,3,4,5,6,7] => [7,6,5,4,3,2,8,1] => 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,6,2,3,4,7] => [7,4,3,2,6,1,5] => ? = 2
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,1,2,3,5,7] => [7,5,3,2,1,6,4] => ? = 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,1,2,5,3,6] => [6,3,5,2,1,4] => 2
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,1,2,6] => [6,2,1,5,4,3] => 2
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,1,3,4,6] => [6,4,3,1,5,2] => 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,1,2,3,6,5] => [5,6,3,2,1,4] => 2
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [5,4,1,3,2] => 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [5,3,4,1,2] => 2
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [5,2,4,3,1] => 1
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,6,4] => [4,6,3,2,5,1] => 1
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => 2
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [4,5,2,3,1] => 1
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,5,4,2,1] => 1
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,2,7,3,4,5] => [5,4,3,7,2,6,1] => ? = 1
[2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,2,3,4,6] => [6,4,3,2,7,5,1] => ? = 1
[6,3]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [5,1,2,6,3,4,7] => [7,4,3,6,2,1,5] => ? = 2
[6,2,1]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [4,5,6,1,2,3,7] => [7,3,2,1,6,5,4] => ? = 2
[6,1,1,1]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [3,6,1,2,4,5,7] => [7,5,4,2,1,6,3] => ? = 2
[4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,6,2,3,7,4,5] => [5,4,7,3,2,6,1] => ? = 1
[3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,5,6,7,2,3,4] => [4,3,2,7,6,5,1] => ? = 1
[2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,4,7,2,3,5,6] => [6,5,3,2,7,4,1] => ? = 1
[6,4]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [5,1,2,3,6,4,7] => [7,4,6,3,2,1,5] => ? = 2
[6,3,1]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [4,5,1,6,2,3,7] => [7,3,2,6,1,5,4] => ? = 2
[6,2,2]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [4,1,6,2,3,5,7] => [7,5,3,2,6,1,4] => ? = 2
[6,2,1,1]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [3,5,6,1,2,4,7] => [7,4,2,1,6,5,3] => ? = 2
[6,1,1,1,1]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [2,6,1,3,4,5,7] => [7,5,4,3,1,6,2] => ? = 2
[5,5]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [5,1,2,3,4,7,6] => [6,7,4,3,2,1,5] => ? = 2
[5,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,6,2,3,4,7,5] => [5,7,4,3,2,6,1] => ? = 1
[4,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,5,6,2,7,3,4] => [4,3,7,2,6,5,1] => ? = 1
[3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,5,2,7,3,4,6] => [6,4,3,7,2,5,1] => ? = 1
[3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,4,6,7,2,3,5] => [5,3,2,7,6,4,1] => ? = 1
[2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,7,3,4,5,6] => [6,5,4,3,7,1,2] => ? = 2
[2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,3,7,2,4,5,6] => [6,5,4,2,7,3,1] => ? = 1
[6,5]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [5,1,2,3,4,6,7] => [7,6,4,3,2,1,5] => ? = 2
[6,4,1]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [4,5,1,2,6,3,7] => [7,3,6,2,1,5,4] => ? = 2
[6,3,2]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [4,1,5,6,2,3,7] => [7,3,2,6,5,1,4] => ? = 2
[6,3,1,1]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [3,5,1,6,2,4,7] => [7,4,2,6,1,5,3] => ? = 2
[6,2,2,1]
=> [1,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [3,4,6,1,2,5,7] => [7,5,2,1,6,4,3] => ? = 2
[6,2,1,1,1]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [2,5,6,1,3,4,7] => [7,4,3,1,6,5,2] => ? = 2
[6,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,2,3,4,5,7] => [7,5,4,3,2,6,1] => ? = 1
[5,5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [4,5,1,2,3,7,6] => [6,7,3,2,1,5,4] => ? = 2
[5,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,5,6,2,3,7,4] => [4,7,3,2,6,5,1] => ? = 1
[4,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,5,2,6,7,3,4] => [4,3,7,6,2,5,1] => ? = 1
[4,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,4,6,2,7,3,5] => [5,3,7,2,6,4,1] => ? = 1
[3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,4,5,7,2,3,6] => [6,3,2,7,5,4,1] => ? = 1
[3,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [2,1,6,7,3,4,5] => [5,4,3,7,6,1,2] => ? = 2
[3,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,3,6,7,2,4,5] => [5,4,2,7,6,3,1] => ? = 1
[2,2,2,2,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,2,7,3,4,5,6] => [6,5,4,3,7,2,1] => ? = 1
[6,5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [4,5,1,2,3,6,7] => [7,6,3,2,1,5,4] => ? = 2
[6,4,2]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [4,1,5,2,6,3,7] => [7,3,6,2,5,1,4] => ? = 2
[6,4,1,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0,1,0]
=> [3,5,1,2,6,4,7] => [7,4,6,2,1,5,3] => ? = 2
[6,3,3]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [4,1,2,6,3,5,7] => [7,5,3,6,2,1,4] => ? = 2
[6,3,2,1]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,6,1,2,7] => [7,2,1,6,5,4,3] => ? = 2
[6,3,1,1,1]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [2,5,1,6,3,4,7] => [7,4,3,6,1,5,2] => ? = 2
[6,2,2,2]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [3,1,6,2,4,5,7] => [7,5,4,2,6,1,3] => ? = 2
[6,2,2,1,1]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [2,4,6,1,3,5,7] => [7,5,3,1,6,4,2] => ? = 2
[6,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,5,6,2,3,4,7] => [7,4,3,2,6,5,1] => ? = 1
Description
The number of exclusive right-to-left minima of a permutation. This is the number of right-to-left minima that are not left-to-right maxima. This is also the number of non weak exceedences of a permutation that are also not mid-points of a decreasing subsequence of length 3. Given a permutation $\pi = [\pi_1,\ldots,\pi_n]$, this statistic counts the number of position $j$ such that $\pi_j < j$ and there do not exist indices $i,k$ with $i < j < k$ and $\pi_i > \pi_j > \pi_k$. See also [[St000213]] and [[St000119]].
The following 12 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000061The number of nodes on the left branch of a binary tree. St000066The column of the unique '1' in the first row of the alternating sign matrix. St000092The number of outer peaks of a permutation. St000314The number of left-to-right-maxima of a permutation. St000700The protection number of an ordered tree. St000991The number of right-to-left minima of a permutation. St000353The number of inner valleys of a permutation. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000199The column of the unique '1' in the last row of the alternating sign matrix. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra.