searching the database
Your data matches 12 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000522
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00010: Binary trees —to ordered tree: left child = left brother⟶ Ordered trees
St000522: Ordered trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000522: Ordered trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [[]]
=> 1
[.,[.,.]]
=> [[[]]]
=> 1
[[.,.],.]
=> [[],[]]
=> 1
[.,[.,[.,.]]]
=> [[[[]]]]
=> 1
[.,[[.,.],.]]
=> [[[],[]]]
=> 1
[[.,.],[.,.]]
=> [[],[[]]]
=> 2
[[.,[.,.]],.]
=> [[[]],[]]
=> 2
[[[.,.],.],.]
=> [[],[],[]]
=> 1
[.,[.,[.,[.,.]]]]
=> [[[[[]]]]]
=> 1
[.,[.,[[.,.],.]]]
=> [[[[],[]]]]
=> 1
[.,[[.,.],[.,.]]]
=> [[[],[[]]]]
=> 2
[.,[[.,[.,.]],.]]
=> [[[[]],[]]]
=> 2
[.,[[[.,.],.],.]]
=> [[[],[],[]]]
=> 1
[[.,.],[.,[.,.]]]
=> [[],[[[]]]]
=> 2
[[.,.],[[.,.],.]]
=> [[],[[],[]]]
=> 2
[[.,[.,.]],[.,.]]
=> [[[]],[[]]]
=> 2
[[[.,.],.],[.,.]]
=> [[],[],[[]]]
=> 2
[[.,[.,[.,.]]],.]
=> [[[[]]],[]]
=> 2
[[.,[[.,.],.]],.]
=> [[[],[]],[]]
=> 2
[[[.,.],[.,.]],.]
=> [[],[[]],[]]
=> 2
[[[.,[.,.]],.],.]
=> [[[]],[],[]]
=> 2
[[[[.,.],.],.],.]
=> [[],[],[],[]]
=> 1
[.,[.,[.,[.,[.,.]]]]]
=> [[[[[[]]]]]]
=> 1
[.,[.,[.,[[.,.],.]]]]
=> [[[[[],[]]]]]
=> 1
[.,[.,[[.,.],[.,.]]]]
=> [[[[],[[]]]]]
=> 2
[.,[.,[[.,[.,.]],.]]]
=> [[[[[]],[]]]]
=> 2
[.,[.,[[[.,.],.],.]]]
=> [[[[],[],[]]]]
=> 1
[.,[[.,.],[.,[.,.]]]]
=> [[[],[[[]]]]]
=> 2
[.,[[.,.],[[.,.],.]]]
=> [[[],[[],[]]]]
=> 2
[.,[[.,[.,.]],[.,.]]]
=> [[[[]],[[]]]]
=> 2
[.,[[[.,.],.],[.,.]]]
=> [[[],[],[[]]]]
=> 2
[.,[[.,[.,[.,.]]],.]]
=> [[[[[]]],[]]]
=> 2
[.,[[.,[[.,.],.]],.]]
=> [[[[],[]],[]]]
=> 2
[.,[[[.,.],[.,.]],.]]
=> [[[],[[]],[]]]
=> 2
[.,[[[.,[.,.]],.],.]]
=> [[[[]],[],[]]]
=> 2
[.,[[[[.,.],.],.],.]]
=> [[[],[],[],[]]]
=> 1
[[.,.],[.,[.,[.,.]]]]
=> [[],[[[[]]]]]
=> 2
[[.,.],[.,[[.,.],.]]]
=> [[],[[[],[]]]]
=> 2
[[.,.],[[.,.],[.,.]]]
=> [[],[[],[[]]]]
=> 3
[[.,.],[[.,[.,.]],.]]
=> [[],[[[]],[]]]
=> 3
[[.,.],[[[.,.],.],.]]
=> [[],[[],[],[]]]
=> 2
[[.,[.,.]],[.,[.,.]]]
=> [[[]],[[[]]]]
=> 2
[[.,[.,.]],[[.,.],.]]
=> [[[]],[[],[]]]
=> 2
[[[.,.],.],[.,[.,.]]]
=> [[],[],[[[]]]]
=> 2
[[[.,.],.],[[.,.],.]]
=> [[],[],[[],[]]]
=> 2
[[.,[.,[.,.]]],[.,.]]
=> [[[[]]],[[]]]
=> 2
[[.,[[.,.],.]],[.,.]]
=> [[[],[]],[[]]]
=> 2
[[[.,.],[.,.]],[.,.]]
=> [[],[[]],[[]]]
=> 3
[[[.,[.,.]],.],[.,.]]
=> [[[]],[],[[]]]
=> 3
[[[[.,.],.],.],[.,.]]
=> [[],[],[],[[]]]
=> 2
Description
The number of 1-protected nodes of a rooted tree.
This is the number of nodes with minimal distance one to a leaf.
Matching statistic: St000786
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000786: Graphs ⟶ ℤResult quality: 52% ●values known / values provided: 52%●distinct values known / distinct values provided: 100%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000786: Graphs ⟶ ℤResult quality: 52% ●values known / values provided: 52%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => ([],1)
=> ([],1)
=> 1
[.,[.,.]]
=> [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[.,.],.]
=> [1,2] => ([],2)
=> ([],1)
=> 1
[.,[.,[.,.]]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[.,[[.,.],.]]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
[[.,.],[.,.]]
=> [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[.,[.,.]],.]
=> [2,1,3] => ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[[.,.],.],.]
=> [1,2,3] => ([],3)
=> ([],1)
=> 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[[.,.],[[.,.],.]]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 2
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[[.,.],.],[.,.]]
=> [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> 2
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 2
[[[.,.],[.,.]],.]
=> [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> 2
[[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> 2
[[[[.,.],.],.],.]
=> [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> 2
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> 2
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 3
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 3
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> 2
[[.,[.,[.,.]]],[.,[.,[.,.]]]]
=> [3,2,1,7,6,5,4] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[.,[.,[.,[.,.]]]],[.,[.,.]]]
=> [4,3,2,1,7,6,5] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,8,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> [1,7,8,6,5,4,3,2] => ([(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> [1,6,8,7,5,4,3,2] => ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> [1,7,6,8,5,4,3,2] => ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> [1,6,7,8,5,4,3,2] => ([(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> [1,5,8,7,6,4,3,2] => ([(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[[.,.],[[.,.],.]]]]]
=> [1,5,7,8,6,4,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[.,[[.,[.,.]],[.,.]]]]]
=> [1,6,5,8,7,4,3,2] => ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[[[.,.],.],[.,.]]]]]
=> [1,5,6,8,7,4,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> [1,7,6,5,8,4,3,2] => ([(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[[.,[[.,.],.]],.]]]]
=> [1,6,7,5,8,4,3,2] => ([(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[[[.,.],[.,.]],.]]]]
=> [1,5,7,6,8,4,3,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[[[.,[.,.]],.],.]]]]
=> [1,6,5,7,8,4,3,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[[[[.,.],.],.],.]]]]
=> [1,5,6,7,8,4,3,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[[.,.],[.,[[.,.],[.,[.,[.,.]]]]]]
=> [1,4,8,7,6,5,3,2] => ([(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[.,.],[.,[[.,.],.]]]]]
=> [1,4,7,8,6,5,3,2] => ([(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[.,.],[[.,.],[.,.]]]]]
=> [1,4,6,8,7,5,3,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 4
[[.,.],[.,[[.,.],[[.,[.,.]],.]]]]
=> [1,4,7,6,8,5,3,2] => ?
=> ?
=> ? = 4
[[.,.],[.,[[.,.],[[[.,.],.],.]]]]
=> [1,4,6,7,8,5,3,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[.,[.,.]],[.,[.,.]]]]]
=> [1,5,4,8,7,6,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[.,[.,.]],[[.,.],.]]]]
=> [1,5,4,7,8,6,3,2] => ([(1,2),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[[.,.],.],[.,[.,.]]]]]
=> [1,4,5,8,7,6,3,2] => ([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[[.,.],.],[[.,.],.]]]]
=> [1,4,5,7,8,6,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[.,[.,[.,.]]],[.,.]]]]
=> [1,6,5,4,8,7,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[.,[[.,.],.]],[.,.]]]]
=> [1,5,6,4,8,7,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[[.,.],[.,.]],[.,.]]]]
=> [1,4,6,5,8,7,3,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 4
[[.,.],[.,[[[.,[.,.]],.],[.,.]]]]
=> [1,5,4,6,8,7,3,2] => ?
=> ?
=> ? = 4
[[.,.],[.,[[[[.,.],.],.],[.,.]]]]
=> [1,4,5,6,8,7,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[.,[.,[.,[.,.]]]],.]]]
=> [1,7,6,5,4,8,3,2] => ([(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[.,[.,[[.,.],.]]],.]]]
=> [1,6,7,5,4,8,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[.,[[.,.],[.,.]]],.]]]
=> [1,5,7,6,4,8,3,2] => ?
=> ?
=> ? = 4
[[.,.],[.,[[.,[[.,[.,.]],.]],.]]]
=> [1,6,5,7,4,8,3,2] => ?
=> ?
=> ? = 4
[[.,.],[.,[[.,[[[.,.],.],.]],.]]]
=> [1,5,6,7,4,8,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[[.,.],[.,[.,.]]],.]]]
=> [1,4,7,6,5,8,3,2] => ([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[[.,.],[[.,.],.]],.]]]
=> [1,4,6,7,5,8,3,2] => ([(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[[.,[.,.]],[.,.]],.]]]
=> [1,5,4,7,6,8,3,2] => ?
=> ?
=> ? = 4
[[.,.],[.,[[[[.,.],.],[.,.]],.]]]
=> [1,4,5,7,6,8,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[[.,[.,[.,.]]],.],.]]]
=> [1,6,5,4,7,8,3,2] => ([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[[.,[[.,.],.]],.],.]]]
=> [1,5,6,4,7,8,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[[[.,.],[.,.]],.],.]]]
=> [1,4,6,5,7,8,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[[[.,[.,.]],.],.],.]]]
=> [1,5,4,6,7,8,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[[[[.,.],.],.],.],.]]]
=> [1,4,5,6,7,8,3,2] => ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[[.,.],[[.,.],[.,[.,[.,[.,.]]]]]]
=> [1,3,8,7,6,5,4,2] => ([(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[[.,.],[.,[.,[[.,.],.]]]]]
=> [1,3,7,8,6,5,4,2] => ([(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[[.,.],[.,[[.,.],[.,.]]]]]
=> [1,3,6,8,7,5,4,2] => ([(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 4
[[.,.],[[.,.],[.,[[.,[.,.]],.]]]]
=> [1,3,7,6,8,5,4,2] => ?
=> ?
=> ? = 4
[[.,.],[[.,.],[.,[[[.,.],.],.]]]]
=> [1,3,6,7,8,5,4,2] => ([(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[[.,.],[[.,.],[.,[.,.]]]]]
=> [1,3,5,8,7,6,4,2] => ([(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 4
Description
The maximal number of occurrences of a colour in a proper colouring of a graph.
To any proper colouring with the minimal number of colours possible we associate the integer partition recording how often each colour is used. This statistic records the largest part occurring in any of these partitions.
For example, the graph on six vertices consisting of a square together with two attached triangles - ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) in the list of values - is three-colourable and admits two colouring schemes, [2,2,2] and [3,2,1]. Therefore, the statistic on this graph is 3.
Matching statistic: St001337
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001337: Graphs ⟶ ℤResult quality: 52% ●values known / values provided: 52%●distinct values known / distinct values provided: 100%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001337: Graphs ⟶ ℤResult quality: 52% ●values known / values provided: 52%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => ([],1)
=> ([],1)
=> 1
[.,[.,.]]
=> [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[.,.],.]
=> [1,2] => ([],2)
=> ([],1)
=> 1
[.,[.,[.,.]]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[.,[[.,.],.]]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
[[.,.],[.,.]]
=> [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[.,[.,.]],.]
=> [2,1,3] => ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[[.,.],.],.]
=> [1,2,3] => ([],3)
=> ([],1)
=> 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[[.,.],[[.,.],.]]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 2
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[[.,.],.],[.,.]]
=> [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> 2
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 2
[[[.,.],[.,.]],.]
=> [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> 2
[[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> 2
[[[[.,.],.],.],.]
=> [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> 2
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> 2
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 3
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 3
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> 2
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [5,7,6,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [4,7,6,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [5,4,7,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [3,7,6,5,4,2,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [6,5,4,3,7,2,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [2,7,6,5,4,3,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[.,[[.,[.,[.,[.,[.,.]]]]],.]]
=> [6,5,4,3,2,7,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,8,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> [1,7,8,6,5,4,3,2] => ([(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> [1,6,8,7,5,4,3,2] => ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> [1,7,6,8,5,4,3,2] => ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> [1,6,7,8,5,4,3,2] => ([(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> [1,5,8,7,6,4,3,2] => ([(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[[.,.],[[.,.],.]]]]]
=> [1,5,7,8,6,4,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[.,[[.,[.,.]],[.,.]]]]]
=> [1,6,5,8,7,4,3,2] => ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[[[.,.],.],[.,.]]]]]
=> [1,5,6,8,7,4,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> [1,7,6,5,8,4,3,2] => ([(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[[.,[[.,.],.]],.]]]]
=> [1,6,7,5,8,4,3,2] => ([(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[[[.,.],[.,.]],.]]]]
=> [1,5,7,6,8,4,3,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[[[.,[.,.]],.],.]]]]
=> [1,6,5,7,8,4,3,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[[[[.,.],.],.],.]]]]
=> [1,5,6,7,8,4,3,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[[.,.],[.,[[.,.],[.,[.,[.,.]]]]]]
=> [1,4,8,7,6,5,3,2] => ([(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[.,.],[.,[[.,.],.]]]]]
=> [1,4,7,8,6,5,3,2] => ([(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[.,.],[[.,.],[.,.]]]]]
=> [1,4,6,8,7,5,3,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 4
[[.,.],[.,[[.,.],[[.,[.,.]],.]]]]
=> [1,4,7,6,8,5,3,2] => ?
=> ?
=> ? = 4
[[.,.],[.,[[.,.],[[[.,.],.],.]]]]
=> [1,4,6,7,8,5,3,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[.,[.,.]],[.,[.,.]]]]]
=> [1,5,4,8,7,6,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[.,[.,.]],[[.,.],.]]]]
=> [1,5,4,7,8,6,3,2] => ([(1,2),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[[.,.],.],[.,[.,.]]]]]
=> [1,4,5,8,7,6,3,2] => ([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[[.,.],.],[[.,.],.]]]]
=> [1,4,5,7,8,6,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[.,[.,[.,.]]],[.,.]]]]
=> [1,6,5,4,8,7,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[.,[[.,.],.]],[.,.]]]]
=> [1,5,6,4,8,7,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[[.,.],[.,.]],[.,.]]]]
=> [1,4,6,5,8,7,3,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 4
[[.,.],[.,[[[.,[.,.]],.],[.,.]]]]
=> [1,5,4,6,8,7,3,2] => ?
=> ?
=> ? = 4
[[.,.],[.,[[[[.,.],.],.],[.,.]]]]
=> [1,4,5,6,8,7,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[.,[.,[.,[.,.]]]],.]]]
=> [1,7,6,5,4,8,3,2] => ([(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[.,[.,[[.,.],.]]],.]]]
=> [1,6,7,5,4,8,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[.,[[.,.],[.,.]]],.]]]
=> [1,5,7,6,4,8,3,2] => ?
=> ?
=> ? = 4
[[.,.],[.,[[.,[[.,[.,.]],.]],.]]]
=> [1,6,5,7,4,8,3,2] => ?
=> ?
=> ? = 4
[[.,.],[.,[[.,[[[.,.],.],.]],.]]]
=> [1,5,6,7,4,8,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[[.,.],[.,[.,.]]],.]]]
=> [1,4,7,6,5,8,3,2] => ([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[[.,.],[[.,.],.]],.]]]
=> [1,4,6,7,5,8,3,2] => ([(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[[.,[.,.]],[.,.]],.]]]
=> [1,5,4,7,6,8,3,2] => ?
=> ?
=> ? = 4
[[.,.],[.,[[[[.,.],.],[.,.]],.]]]
=> [1,4,5,7,6,8,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[[.,[.,[.,.]]],.],.]]]
=> [1,6,5,4,7,8,3,2] => ([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[[.,[[.,.],.]],.],.]]]
=> [1,5,6,4,7,8,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[[[.,.],[.,.]],.],.]]]
=> [1,4,6,5,7,8,3,2] => ?
=> ?
=> ? = 3
Description
The upper domination number of a graph.
This is the maximum cardinality of a minimal dominating set of G.
The smallest graph with different upper irredundance number and upper domination number has eight vertices. It is obtained from the disjoint union of two copies of K4 by joining three of the four vertices of the first with three of the four vertices of the second. For bipartite graphs the two parameters always coincide [1].
Matching statistic: St001338
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001338: Graphs ⟶ ℤResult quality: 52% ●values known / values provided: 52%●distinct values known / distinct values provided: 100%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St001338: Graphs ⟶ ℤResult quality: 52% ●values known / values provided: 52%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => ([],1)
=> ([],1)
=> 1
[.,[.,.]]
=> [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[.,.],.]
=> [1,2] => ([],2)
=> ([],1)
=> 1
[.,[.,[.,.]]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[.,[[.,.],.]]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
[[.,.],[.,.]]
=> [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[.,[.,.]],.]
=> [2,1,3] => ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[[.,.],.],.]
=> [1,2,3] => ([],3)
=> ([],1)
=> 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[[.,.],[[.,.],.]]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 2
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[[.,.],.],[.,.]]
=> [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> 2
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 2
[[[.,.],[.,.]],.]
=> [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> 2
[[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> 2
[[[[.,.],.],.],.]
=> [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> 2
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> 2
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 3
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 3
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> 2
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [5,7,6,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [4,7,6,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [5,4,7,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [3,7,6,5,4,2,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [6,5,4,3,7,2,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [2,7,6,5,4,3,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[.,[[.,[.,[.,[.,[.,.]]]]],.]]
=> [6,5,4,3,2,7,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,8,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> [1,7,8,6,5,4,3,2] => ([(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> [1,6,8,7,5,4,3,2] => ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> [1,7,6,8,5,4,3,2] => ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> [1,6,7,8,5,4,3,2] => ([(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> [1,5,8,7,6,4,3,2] => ([(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[[.,.],[[.,.],.]]]]]
=> [1,5,7,8,6,4,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[.,[[.,[.,.]],[.,.]]]]]
=> [1,6,5,8,7,4,3,2] => ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[[[.,.],.],[.,.]]]]]
=> [1,5,6,8,7,4,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> [1,7,6,5,8,4,3,2] => ([(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[[.,[[.,.],.]],.]]]]
=> [1,6,7,5,8,4,3,2] => ([(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[[[.,.],[.,.]],.]]]]
=> [1,5,7,6,8,4,3,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[[[.,[.,.]],.],.]]]]
=> [1,6,5,7,8,4,3,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[[[[.,.],.],.],.]]]]
=> [1,5,6,7,8,4,3,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[[.,.],[.,[[.,.],[.,[.,[.,.]]]]]]
=> [1,4,8,7,6,5,3,2] => ([(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[.,.],[.,[[.,.],.]]]]]
=> [1,4,7,8,6,5,3,2] => ([(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[.,.],[[.,.],[.,.]]]]]
=> [1,4,6,8,7,5,3,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 4
[[.,.],[.,[[.,.],[[.,[.,.]],.]]]]
=> [1,4,7,6,8,5,3,2] => ?
=> ?
=> ? = 4
[[.,.],[.,[[.,.],[[[.,.],.],.]]]]
=> [1,4,6,7,8,5,3,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[.,[.,.]],[.,[.,.]]]]]
=> [1,5,4,8,7,6,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[.,[.,.]],[[.,.],.]]]]
=> [1,5,4,7,8,6,3,2] => ([(1,2),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[[.,.],.],[.,[.,.]]]]]
=> [1,4,5,8,7,6,3,2] => ([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[[.,.],.],[[.,.],.]]]]
=> [1,4,5,7,8,6,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[.,[.,[.,.]]],[.,.]]]]
=> [1,6,5,4,8,7,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[.,[[.,.],.]],[.,.]]]]
=> [1,5,6,4,8,7,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[[.,.],[.,.]],[.,.]]]]
=> [1,4,6,5,8,7,3,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 4
[[.,.],[.,[[[.,[.,.]],.],[.,.]]]]
=> [1,5,4,6,8,7,3,2] => ?
=> ?
=> ? = 4
[[.,.],[.,[[[[.,.],.],.],[.,.]]]]
=> [1,4,5,6,8,7,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[.,[.,[.,[.,.]]]],.]]]
=> [1,7,6,5,4,8,3,2] => ([(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[.,[.,[[.,.],.]]],.]]]
=> [1,6,7,5,4,8,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[.,[[.,.],[.,.]]],.]]]
=> [1,5,7,6,4,8,3,2] => ?
=> ?
=> ? = 4
[[.,.],[.,[[.,[[.,[.,.]],.]],.]]]
=> [1,6,5,7,4,8,3,2] => ?
=> ?
=> ? = 4
[[.,.],[.,[[.,[[[.,.],.],.]],.]]]
=> [1,5,6,7,4,8,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[[.,.],[.,[.,.]]],.]]]
=> [1,4,7,6,5,8,3,2] => ([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[[.,.],[[.,.],.]],.]]]
=> [1,4,6,7,5,8,3,2] => ([(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[[.,[.,.]],[.,.]],.]]]
=> [1,5,4,7,6,8,3,2] => ?
=> ?
=> ? = 4
[[.,.],[.,[[[[.,.],.],[.,.]],.]]]
=> [1,4,5,7,6,8,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[[.,[.,[.,.]]],.],.]]]
=> [1,6,5,4,7,8,3,2] => ([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[[.,[[.,.],.]],.],.]]]
=> [1,5,6,4,7,8,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[[[.,.],[.,.]],.],.]]]
=> [1,4,6,5,7,8,3,2] => ?
=> ?
=> ? = 3
Description
The upper irredundance number of a graph.
A set S of vertices is irredundant, if there is no vertex in S, whose closed neighbourhood is contained in the union of the closed neighbourhoods of the other vertices of S.
The upper irredundance number is the largest size of a maximal irredundant set.
The smallest graph with different upper irredundance number and upper domination number [[St001337]] has eight vertices. It is obtained from the disjoint union of two copies of K4 by joining three of the four vertices of the first with three of the four vertices of the second. For bipartite graphs the two parameters always coincide [2].
Matching statistic: St000093
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000093: Graphs ⟶ ℤResult quality: 51% ●values known / values provided: 51%●distinct values known / distinct values provided: 100%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000093: Graphs ⟶ ℤResult quality: 51% ●values known / values provided: 51%●distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => ([],1)
=> ([],1)
=> 1
[.,[.,.]]
=> [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[.,.],.]
=> [1,2] => ([],2)
=> ([],1)
=> 1
[.,[.,[.,.]]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[.,[[.,.],.]]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
[[.,.],[.,.]]
=> [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[.,[.,.]],.]
=> [2,1,3] => ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[[[.,.],.],.]
=> [1,2,3] => ([],3)
=> ([],1)
=> 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[[.,.],[[.,.],.]]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 2
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2
[[[.,.],.],[.,.]]
=> [1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> 2
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 2
[[[.,.],[.,.]],.]
=> [1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> 2
[[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> 2
[[[[.,.],.],.],.]
=> [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> 2
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 2
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> 2
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 3
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 3
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> 2
[[.,[.,.]],[.,[.,[.,[.,.]]]]]
=> [2,1,7,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[.,[.,.]],[.,[[.,.],[.,.]]]]
=> [2,1,5,7,6,4,3] => ([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[.,[.,.]],[.,[[.,[.,.]],.]]]
=> [2,1,6,5,7,4,3] => ([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[.,[.,.]],[[.,.],[.,[.,.]]]]
=> [2,1,4,7,6,5,3] => ([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [2,1,5,4,7,6,3] => ([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 3
[[.,[.,.]],[[.,[.,[.,.]]],.]]
=> [2,1,6,5,4,7,3] => ([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[.,[.,[.,.]]],[.,[.,[.,.]]]]
=> [3,2,1,7,6,5,4] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[.,[.,[.,.]]],[[.,.],[.,.]]]
=> [3,2,1,5,7,6,4] => ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[.,[.,[.,.]]],[[.,[.,.]],.]]
=> [3,2,1,6,5,7,4] => ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[.,[.,[.,[.,.]]]],[.,[.,.]]]
=> [4,3,2,1,7,6,5] => ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[.,[[.,.],[.,.]]],[.,[.,.]]]
=> [2,4,3,1,7,6,5] => ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[.,[[.,[.,.]],.]],[.,[.,.]]]
=> [3,2,4,1,7,6,5] => ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[[.,[.,.]],[.,.]],[.,[.,.]]]
=> [2,1,4,3,7,6,5] => ([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[.,[.,[.,[.,[.,.]]]]],[.,.]]
=> [5,4,3,2,1,7,6] => ([(0,1),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[.,[.,[[.,.],[.,.]]]],[.,.]]
=> [3,5,4,2,1,7,6] => ([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[.,[.,[[.,[.,.]],.]]],[.,.]]
=> [4,3,5,2,1,7,6] => ([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[.,[[.,.],[.,[.,.]]]],[.,.]]
=> [2,5,4,3,1,7,6] => ([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[.,[[.,[.,.]],[.,.]]],[.,.]]
=> [3,2,5,4,1,7,6] => ([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 3
[[.,[[.,[.,[.,.]]],.]],[.,.]]
=> [4,3,2,5,1,7,6] => ([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[[.,[.,.]],[.,[.,.]]],[.,.]]
=> [2,1,5,4,3,7,6] => ([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[[.,[.,[.,.]]],[.,.]],[.,.]]
=> [3,2,1,5,4,7,6] => ([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,8,7,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> [1,7,8,6,5,4,3,2] => ([(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> [1,6,8,7,5,4,3,2] => ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> [1,7,6,8,5,4,3,2] => ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> [1,6,7,8,5,4,3,2] => ([(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> [1,5,8,7,6,4,3,2] => ([(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[[.,.],[[.,.],.]]]]]
=> [1,5,7,8,6,4,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[.,[[.,[.,.]],[.,.]]]]]
=> [1,6,5,8,7,4,3,2] => ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[[[.,.],.],[.,.]]]]]
=> [1,5,6,8,7,4,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> [1,7,6,5,8,4,3,2] => ([(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[[.,[[.,.],.]],.]]]]
=> [1,6,7,5,8,4,3,2] => ([(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[[[.,.],[.,.]],.]]]]
=> [1,5,7,6,8,4,3,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[[[.,[.,.]],.],.]]]]
=> [1,6,5,7,8,4,3,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[.,[[[[.,.],.],.],.]]]]
=> [1,5,6,7,8,4,3,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 2
[[.,.],[.,[[.,.],[.,[.,[.,.]]]]]]
=> [1,4,8,7,6,5,3,2] => ([(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[.,.],[.,[[.,.],.]]]]]
=> [1,4,7,8,6,5,3,2] => ([(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[.,.],[[.,.],[.,.]]]]]
=> [1,4,6,8,7,5,3,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 4
[[.,.],[.,[[.,.],[[.,[.,.]],.]]]]
=> [1,4,7,6,8,5,3,2] => ?
=> ?
=> ? = 4
[[.,.],[.,[[.,.],[[[.,.],.],.]]]]
=> [1,4,6,7,8,5,3,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[.,[.,.]],[.,[.,.]]]]]
=> [1,5,4,8,7,6,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[.,[.,.]],[[.,.],.]]]]
=> [1,5,4,7,8,6,3,2] => ([(1,2),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[[.,.],.],[.,[.,.]]]]]
=> [1,4,5,8,7,6,3,2] => ([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[.,.],[.,[[[.,.],.],[[.,.],.]]]]
=> [1,4,5,7,8,6,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[.,[.,[.,.]]],[.,.]]]]
=> [1,6,5,4,8,7,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[.,[[.,.],.]],[.,.]]]]
=> [1,5,6,4,8,7,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[[.,.],[.,.]],[.,.]]]]
=> [1,4,6,5,8,7,3,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 4
[[.,.],[.,[[[.,[.,.]],.],[.,.]]]]
=> [1,5,4,6,8,7,3,2] => ?
=> ?
=> ? = 4
[[.,.],[.,[[[[.,.],.],.],[.,.]]]]
=> [1,4,5,6,8,7,3,2] => ?
=> ?
=> ? = 3
[[.,.],[.,[[.,[.,[.,[.,.]]]],.]]]
=> [1,7,6,5,4,8,3,2] => ([(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 3
Description
The cardinality of a maximal independent set of vertices of a graph.
An independent set of a graph is a set of pairwise non-adjacent vertices. A maximum independent set is an independent set of maximum cardinality. This statistic is also called the independence number or stability number α(G) of G.
Matching statistic: St000985
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00203: Graphs —cone⟶ Graphs
St000985: Graphs ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 75%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00203: Graphs —cone⟶ Graphs
St000985: Graphs ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 75%
Values
[.,.]
=> [1] => ([],1)
=> ([(0,1)],2)
=> 1
[.,[.,.]]
=> [2,1] => ([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[[.,.],.]
=> [1,2] => ([],2)
=> ([(0,2),(1,2)],3)
=> 1
[.,[.,[.,.]]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[.,[[.,.],.]]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[.,.],[.,.]]
=> [1,3,2] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[.,[.,.]],.]
=> [2,1,3] => ([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[[[.,.],.],.]
=> [1,2,3] => ([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[.,.],[[.,.],.]]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 2
[[[.,.],.],[.,.]]
=> [1,2,4,3] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[[.,.],[.,.]],.]
=> [1,3,2,4] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[[[.,.],.],.],.]
=> [1,2,3,4] => ([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 3
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 3
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[.,[[[.,.],.],[.,[.,.]]]]
=> [2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[.,[[[.,.],[.,[.,.]]],.]]
=> [2,5,4,3,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[.,[[[.,[.,[.,.]]],.],.]]
=> [4,3,2,5,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[.,[.,.]],[.,[.,[.,.]]]]
=> [2,1,6,5,4,3] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[.,[.,.]],[.,[[.,.],.]]]
=> [2,1,5,6,4,3] => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[.,[.,.]],[[.,.],[.,.]]]
=> [2,1,4,6,5,3] => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[.,[.,.]],[[.,[.,.]],.]]
=> [2,1,5,4,6,3] => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[.,[.,[.,.]]],[.,[.,.]]]
=> [3,2,1,6,5,4] => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[.,[.,[.,.]]],[[.,.],.]]
=> [3,2,1,5,6,4] => ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 2
[[.,[[.,.],.]],[.,[.,.]]]
=> [2,3,1,6,5,4] => ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 2
[[[.,.],[.,.]],[.,[.,.]]]
=> [1,3,2,6,5,4] => ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[[.,[.,.]],.],[.,[.,.]]]
=> [2,1,3,6,5,4] => ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[.,[.,[.,[.,.]]]],[.,.]]
=> [4,3,2,1,6,5] => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[.,[.,[[.,.],.]]],[.,.]]
=> [3,4,2,1,6,5] => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[.,[[.,.],[.,.]]],[.,.]]
=> [2,4,3,1,6,5] => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[.,[[.,[.,.]],.]],[.,.]]
=> [3,2,4,1,6,5] => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[[.,.],[.,[.,.]]],[.,.]]
=> [1,4,3,2,6,5] => ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[[.,[.,[.,.]]],.],[.,.]]
=> [3,2,1,4,6,5] => ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[[.,[.,.]],[.,[.,.]]],.]
=> [2,1,5,4,3,6] => ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[[[.,[.,[.,.]]],[.,.]],.]
=> [3,2,1,5,4,6] => ([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [5,7,6,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [5,6,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [4,7,6,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [4,6,7,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [5,4,7,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [4,5,7,6,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> [5,6,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [4,6,5,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [5,4,6,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> [4,5,6,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [3,7,6,5,4,2,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[.,[.,[[.,.],[.,[[.,.],.]]]]]
=> [3,6,7,5,4,2,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [3,5,7,6,4,2,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [3,6,5,7,4,2,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[.,[.,[[.,.],[[[.,.],.],.]]]]
=> [3,5,6,7,4,2,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [4,3,7,6,5,2,1] => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [4,3,6,7,5,2,1] => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [3,4,7,6,5,2,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[.,[.,[[[.,.],.],[[.,.],.]]]]
=> [3,4,6,7,5,2,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [5,4,3,7,6,2,1] => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[.,[.,[[.,[[.,.],.]],[.,.]]]]
=> [4,5,3,7,6,2,1] => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,1),(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [3,5,4,7,6,2,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [4,3,5,7,6,2,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[.,[.,[[[[.,.],.],.],[.,.]]]]
=> [3,4,5,7,6,2,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [6,5,4,3,7,2,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[.,[.,[[.,[.,[[.,.],.]]],.]]]
=> [5,6,4,3,7,2,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(0,7),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
Description
The number of positive eigenvalues of the adjacency matrix of the graph.
Matching statistic: St000264
Values
[.,.]
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1
[.,[.,.]]
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> ? = 1
[[.,.],.]
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> ? = 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> ? = 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> ? = 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 2
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> ? = 2
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> ? = 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> ? = 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> ? = 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 2
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> ? = 2
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> ? = 1
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 2
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 2
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 2
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 2
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> ? = 2
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> ? = 2
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 2
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> ? = 2
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> ? = 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> ? = 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> ? = 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> ? = 2
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> ? = 2
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> ? = 1
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> ? = 2
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> ? = 2
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> ? = 2
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> ? = 2
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> ? = 1
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 3
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 2
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 2
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 2
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 2
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 3
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> ? = 2
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> ? = 2
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[.,.],[.,[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[.,.],[[.,.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[.,.],[[.,.],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[.,.],[[.,[.,.]],[.,.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[.,.],[[[.,.],.],[.,.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[.,.],[[[.,.],[.,.]],.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[.,[.,.]],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[[.,.],.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[[.,.],[.,.]],[.,[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[[.,.],[.,.]],[[.,.],.]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[.,[[.,.],[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[[.,.],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[[.,.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[[.,[.,.]],[.,.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[[[.,.],.],[.,.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[[[.,.],[.,.]],.],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
Description
The girth of a graph, which is not a tree.
This is the length of the shortest cycle in the graph.
Matching statistic: St001060
Values
[.,.]
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 1
[.,[.,.]]
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> ? = 1
[[.,.],.]
=> ([(0,1)],2)
=> ([],2)
=> ([],1)
=> ? = 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> ? = 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> ? = 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(0,1)],2)
=> ? = 2
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> ? = 2
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],1)
=> ? = 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> ? = 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> ? = 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 2
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> ? = 2
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> ? = 1
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 2
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 2
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 2
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? = 2
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> ? = 2
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> ? = 2
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(0,1)],2)
=> ? = 2
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> ? = 2
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],1)
=> ? = 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> ? = 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> ? = 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> ? = 2
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> ? = 2
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> ? = 1
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> ? = 2
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> ? = 2
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(0,1)],2)
=> ? = 2
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> ? = 2
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> ? = 1
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 3
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 2
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 2
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 2
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ? = 2
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 3
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? = 2
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> ? = 2
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],1)
=> ? = 2
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[.,.],[.,[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[.,.],[[.,.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[.,.],[[.,.],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[.,.],[[.,[.,.]],[.,.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[.,.],[[[.,.],.],[.,.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[.,.],[[[.,.],[.,.]],.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[.,[.,.]],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[[.,.],.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[[.,.],[.,.]],[.,[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[[.,.],[.,.]],[[.,.],.]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[.,[[.,.],[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[[.,.],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[[.,.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[[.,[.,.]],[.,.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[[[.,.],.],[.,.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[[[.,.],[.,.]],.],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
Description
The distinguishing index of a graph.
This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism.
If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Matching statistic: St001200
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
St001200: Dyck paths ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 50%
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
St001200: Dyck paths ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 50%
Values
[.,.]
=> [1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[.,[.,.]]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[[.,.],.]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[[.,.],[.,.]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[[.,[.,.]],.]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[[[.,.],.],.]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2 = 1 + 1
[.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2 = 1 + 1
[.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3 = 2 + 1
[.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[[.,.],[.,[.,.]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[[.,.],[[.,.],.]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[[.,[.,.]],[.,.]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[[[.,.],.],[.,.]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[[.,[.,[.,.]]],.]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 3 = 2 + 1
[[.,[[.,.],.]],.]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[[[.,.],[.,.]],.]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[[[.,[.,.]],.],.]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[[[[.,.],.],.],.]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1 + 1
[.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 1 + 1
[.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> ? = 2 + 1
[.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 2 + 1
[.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 1 + 1
[.,[[.,.],[.,[.,.]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> ? = 2 + 1
[.,[[.,.],[[.,.],.]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> ? = 2 + 1
[.,[[.,[.,.]],[.,.]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 2 + 1
[.,[[[.,.],.],[.,.]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 2 + 1
[.,[[.,[.,[.,.]]],.]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ? = 2 + 1
[.,[[.,[[.,.],.]],.]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> ? = 2 + 1
[.,[[[.,.],[.,.]],.]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 2 + 1
[.,[[[.,[.,.]],.],.]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[.,[[[[.,.],.],.],.]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 1 + 1
[[.,.],[.,[.,[.,.]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 2 + 1
[[.,.],[.,[[.,.],.]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 2 + 1
[[.,.],[[.,.],[.,.]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 3 + 1
[[.,.],[[.,[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> ? = 3 + 1
[[.,.],[[[.,.],.],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 2 + 1
[[.,[.,.]],[.,[.,.]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> ? = 2 + 1
[[.,[.,.]],[[.,.],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[[[.,.],.],[.,[.,.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> ? = 2 + 1
[[[.,.],.],[[.,.],.]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> ? = 2 + 1
[[.,[.,[.,.]]],[.,.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> ? = 2 + 1
[[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> ? = 2 + 1
[[[.,.],[.,.]],[.,.]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 3 + 1
[[[.,[.,.]],.],[.,.]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 3 + 1
[[[[.,.],.],.],[.,.]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> ? = 2 + 1
[[.,[.,[.,[.,.]]]],.]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 2 + 1
[[.,[.,[[.,.],.]]],.]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 2 + 1
[[.,[[.,.],[.,.]]],.]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> ? = 3 + 1
[[.,[[.,[.,.]],.]],.]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 3 + 1
[[.,[[[.,.],.],.]],.]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> ? = 2 + 1
[[[.,.],[.,[.,.]]],.]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 2 + 1
[[[.,.],[[.,.],.]],.]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 2 + 1
[[[.,[.,.]],[.,.]],.]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 3 + 1
[[[[.,.],.],[.,.]],.]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> ? = 2 + 1
[[[.,[.,[.,.]]],.],.]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> ? = 2 + 1
[[[.,[[.,.],.]],.],.]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> ? = 2 + 1
[[[[.,.],[.,.]],.],.]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 2 + 1
[[[[.,[.,.]],.],.],.]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 2 + 1
[[[[[.,.],.],.],.],.]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 1 + 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1 + 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 1 + 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> ? = 2 + 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 2 + 1
[.,[.,[.,[[[.,.],.],.]]]]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 1 + 1
[.,[.,[[.,.],[.,[.,.]]]]]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,1,0,0]
=> ? = 2 + 1
[.,[.,[[.,.],[[.,.],.]]]]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,1,0,0,0]
=> ? = 2 + 1
[.,[.,[[.,[.,.]],[.,.]]]]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> ? = 2 + 1
Description
The number of simple modules in eAe with projective dimension at most 2 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA.
Matching statistic: St001823
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00223: Permutations —runsort⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001823: Signed permutations ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 50%
Mp00223: Permutations —runsort⟶ Permutations
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001823: Signed permutations ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 50%
Values
[.,.]
=> [1] => [1] => [1] => 0 = 1 - 1
[.,[.,.]]
=> [2,1] => [1,2] => [1,2] => 0 = 1 - 1
[[.,.],.]
=> [1,2] => [1,2] => [1,2] => 0 = 1 - 1
[.,[.,[.,.]]]
=> [3,2,1] => [1,2,3] => [1,2,3] => 0 = 1 - 1
[.,[[.,.],.]]
=> [2,3,1] => [1,2,3] => [1,2,3] => 0 = 1 - 1
[[.,.],[.,.]]
=> [1,3,2] => [1,3,2] => [1,3,2] => 1 = 2 - 1
[[.,[.,.]],.]
=> [2,1,3] => [1,3,2] => [1,3,2] => 1 = 2 - 1
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0 = 1 - 1
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,2,3,4] => [1,2,3,4] => 0 = 1 - 1
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [1,2,3,4] => [1,2,3,4] => 0 = 1 - 1
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [1,2,4,3] => [1,2,4,3] => 1 = 2 - 1
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [1,2,4,3] => [1,2,4,3] => 1 = 2 - 1
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [1,2,3,4] => [1,2,3,4] => 0 = 1 - 1
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [1,4,2,3] => [1,4,2,3] => 1 = 2 - 1
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [1,3,4,2] => [1,3,4,2] => 1 = 2 - 1
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [1,4,2,3] => [1,4,2,3] => 1 = 2 - 1
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 1 = 2 - 1
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [1,4,2,3] => [1,4,2,3] => 1 = 2 - 1
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [1,4,2,3] => [1,4,2,3] => 1 = 2 - 1
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 1 = 2 - 1
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [1,3,4,2] => [1,3,4,2] => 1 = 2 - 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0 = 1 - 1
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 1 - 1
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 1 - 1
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [1,2,3,5,4] => [1,2,3,5,4] => ? = 2 - 1
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [1,2,3,5,4] => [1,2,3,5,4] => ? = 2 - 1
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 1 - 1
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [1,2,5,3,4] => [1,2,5,3,4] => ? = 2 - 1
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [1,2,4,5,3] => [1,2,4,5,3] => ? = 2 - 1
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [1,2,5,3,4] => [1,2,5,3,4] => ? = 2 - 1
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [1,2,3,5,4] => [1,2,3,5,4] => ? = 2 - 1
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [1,2,5,3,4] => [1,2,5,3,4] => ? = 2 - 1
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [1,2,5,3,4] => [1,2,5,3,4] => ? = 2 - 1
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [1,2,4,3,5] => [1,2,4,3,5] => ? = 2 - 1
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [1,2,4,5,3] => [1,2,4,5,3] => ? = 2 - 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 1 - 1
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [1,5,2,3,4] => [1,5,2,3,4] => ? = 2 - 1
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [1,4,5,2,3] => [1,4,5,2,3] => ? = 2 - 1
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [1,3,5,2,4] => [1,3,5,2,4] => ? = 3 - 1
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [1,4,2,3,5] => [1,4,2,3,5] => ? = 3 - 1
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [1,3,4,5,2] => [1,3,4,5,2] => ? = 2 - 1
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [1,5,2,3,4] => [1,5,2,3,4] => ? = 2 - 1
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [1,4,5,2,3] => [1,4,5,2,3] => ? = 2 - 1
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [1,2,5,3,4] => [1,2,5,3,4] => ? = 2 - 1
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [1,2,4,5,3] => [1,2,4,5,3] => ? = 2 - 1
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [1,5,2,3,4] => [1,5,2,3,4] => ? = 2 - 1
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [1,5,2,3,4] => [1,5,2,3,4] => ? = 2 - 1
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => ? = 3 - 1
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [1,3,5,2,4] => [1,3,5,2,4] => ? = 3 - 1
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => ? = 2 - 1
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [1,5,2,3,4] => [1,5,2,3,4] => ? = 2 - 1
[[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => [1,5,2,3,4] => [1,5,2,3,4] => ? = 2 - 1
[[.,[[.,.],[.,.]]],.]
=> [2,4,3,1,5] => [1,5,2,4,3] => [1,5,2,4,3] => ? = 3 - 1
[[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => [1,5,2,4,3] => [1,5,2,4,3] => ? = 3 - 1
[[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => [1,5,2,3,4] => [1,5,2,3,4] => ? = 2 - 1
[[[.,.],[.,[.,.]]],.]
=> [1,4,3,2,5] => [1,4,2,5,3] => [1,4,2,5,3] => ? = 2 - 1
[[[.,.],[[.,.],.]],.]
=> [1,3,4,2,5] => [1,3,4,2,5] => [1,3,4,2,5] => ? = 2 - 1
[[[.,[.,.]],[.,.]],.]
=> [2,1,4,3,5] => [1,4,2,3,5] => [1,4,2,3,5] => ? = 3 - 1
[[[[.,.],.],[.,.]],.]
=> [1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => ? = 2 - 1
[[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => [1,4,5,2,3] => [1,4,5,2,3] => ? = 2 - 1
[[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => [1,4,5,2,3] => [1,4,5,2,3] => ? = 2 - 1
[[[[.,.],[.,.]],.],.]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => ? = 2 - 1
[[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => [1,3,4,5,2] => [1,3,4,5,2] => ? = 2 - 1
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 1 - 1
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? = 1 - 1
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? = 1 - 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> [4,6,5,3,2,1] => [1,2,3,4,6,5] => [1,2,3,4,6,5] => ? = 2 - 1
[.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => [1,2,3,4,6,5] => [1,2,3,4,6,5] => ? = 2 - 1
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ? = 1 - 1
[.,[.,[[.,.],[.,[.,.]]]]]
=> [3,6,5,4,2,1] => [1,2,3,6,4,5] => [1,2,3,6,4,5] => ? = 2 - 1
[.,[.,[[.,.],[[.,.],.]]]]
=> [3,5,6,4,2,1] => [1,2,3,5,6,4] => [1,2,3,5,6,4] => ? = 2 - 1
[.,[.,[[.,[.,.]],[.,.]]]]
=> [4,3,6,5,2,1] => [1,2,3,6,4,5] => [1,2,3,6,4,5] => ? = 2 - 1
Description
The Stasinski-Voll length of a signed permutation.
The Stasinski-Voll length of a signed permutation σ is
L(σ)=12#{(i,j) ∣−n≤i<j≤n, i≢
where n is the size of \sigma.
The following 2 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!