Your data matches 9 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00151: Permutations to cycle typeSet partitions
St000503: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => {{1},{2}}
=> 0
[2,1] => {{1,2}}
=> 1
[1,2,3] => {{1},{2},{3}}
=> 0
[1,3,2] => {{1},{2,3}}
=> 1
[2,1,3] => {{1,2},{3}}
=> 1
[2,3,1] => {{1,2,3}}
=> 2
[3,1,2] => {{1,2,3}}
=> 2
[3,2,1] => {{1,3},{2}}
=> 2
[1,2,3,4] => {{1},{2},{3},{4}}
=> 0
[1,2,4,3] => {{1},{2},{3,4}}
=> 1
[1,3,2,4] => {{1},{2,3},{4}}
=> 1
[1,3,4,2] => {{1},{2,3,4}}
=> 2
[1,4,2,3] => {{1},{2,3,4}}
=> 2
[1,4,3,2] => {{1},{2,4},{3}}
=> 2
[2,1,3,4] => {{1,2},{3},{4}}
=> 1
[2,1,4,3] => {{1,2},{3,4}}
=> 1
[2,3,1,4] => {{1,2,3},{4}}
=> 2
[2,3,4,1] => {{1,2,3,4}}
=> 3
[2,4,1,3] => {{1,2,3,4}}
=> 3
[2,4,3,1] => {{1,2,4},{3}}
=> 3
[3,1,2,4] => {{1,2,3},{4}}
=> 2
[3,1,4,2] => {{1,2,3,4}}
=> 3
[3,2,1,4] => {{1,3},{2},{4}}
=> 2
[3,2,4,1] => {{1,3,4},{2}}
=> 3
[3,4,1,2] => {{1,3},{2,4}}
=> 2
[3,4,2,1] => {{1,2,3,4}}
=> 3
[4,1,2,3] => {{1,2,3,4}}
=> 3
[4,1,3,2] => {{1,2,4},{3}}
=> 3
[4,2,1,3] => {{1,3,4},{2}}
=> 3
[4,2,3,1] => {{1,4},{2},{3}}
=> 3
[4,3,1,2] => {{1,2,3,4}}
=> 3
[4,3,2,1] => {{1,4},{2,3}}
=> 3
[1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> 0
[1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> 1
[1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> 1
[1,2,4,5,3] => {{1},{2},{3,4,5}}
=> 2
[1,2,5,3,4] => {{1},{2},{3,4,5}}
=> 2
[1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> 2
[1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> 1
[1,3,2,5,4] => {{1},{2,3},{4,5}}
=> 1
[1,3,4,2,5] => {{1},{2,3,4},{5}}
=> 2
[1,3,4,5,2] => {{1},{2,3,4,5}}
=> 3
[1,3,5,2,4] => {{1},{2,3,4,5}}
=> 3
[1,3,5,4,2] => {{1},{2,3,5},{4}}
=> 3
[1,4,2,3,5] => {{1},{2,3,4},{5}}
=> 2
[1,4,2,5,3] => {{1},{2,3,4,5}}
=> 3
[1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> 2
[1,4,3,5,2] => {{1},{2,4,5},{3}}
=> 3
[1,4,5,2,3] => {{1},{2,4},{3,5}}
=> 2
[1,4,5,3,2] => {{1},{2,3,4,5}}
=> 3
Description
The maximal difference between two elements in a common block.
Mp00151: Permutations to cycle typeSet partitions
Mp00080: Set partitions to permutationPermutations
Mp00066: Permutations inversePermutations
St000141: Permutations ⟶ ℤResult quality: 48% values known / values provided: 48%distinct values known / distinct values provided: 100%
Values
[1,2] => {{1},{2}}
=> [1,2] => [1,2] => 0
[2,1] => {{1,2}}
=> [2,1] => [2,1] => 1
[1,2,3] => {{1},{2},{3}}
=> [1,2,3] => [1,2,3] => 0
[1,3,2] => {{1},{2,3}}
=> [1,3,2] => [1,3,2] => 1
[2,1,3] => {{1,2},{3}}
=> [2,1,3] => [2,1,3] => 1
[2,3,1] => {{1,2,3}}
=> [2,3,1] => [3,1,2] => 2
[3,1,2] => {{1,2,3}}
=> [2,3,1] => [3,1,2] => 2
[3,2,1] => {{1,3},{2}}
=> [3,2,1] => [3,2,1] => 2
[1,2,3,4] => {{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => {{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => 1
[1,3,2,4] => {{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => 1
[1,3,4,2] => {{1},{2,3,4}}
=> [1,3,4,2] => [1,4,2,3] => 2
[1,4,2,3] => {{1},{2,3,4}}
=> [1,3,4,2] => [1,4,2,3] => 2
[1,4,3,2] => {{1},{2,4},{3}}
=> [1,4,3,2] => [1,4,3,2] => 2
[2,1,3,4] => {{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => 1
[2,1,4,3] => {{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => 1
[2,3,1,4] => {{1,2,3},{4}}
=> [2,3,1,4] => [3,1,2,4] => 2
[2,3,4,1] => {{1,2,3,4}}
=> [2,3,4,1] => [4,1,2,3] => 3
[2,4,1,3] => {{1,2,3,4}}
=> [2,3,4,1] => [4,1,2,3] => 3
[2,4,3,1] => {{1,2,4},{3}}
=> [2,4,3,1] => [4,1,3,2] => 3
[3,1,2,4] => {{1,2,3},{4}}
=> [2,3,1,4] => [3,1,2,4] => 2
[3,1,4,2] => {{1,2,3,4}}
=> [2,3,4,1] => [4,1,2,3] => 3
[3,2,1,4] => {{1,3},{2},{4}}
=> [3,2,1,4] => [3,2,1,4] => 2
[3,2,4,1] => {{1,3,4},{2}}
=> [3,2,4,1] => [4,2,1,3] => 3
[3,4,1,2] => {{1,3},{2,4}}
=> [3,4,1,2] => [3,4,1,2] => 2
[3,4,2,1] => {{1,2,3,4}}
=> [2,3,4,1] => [4,1,2,3] => 3
[4,1,2,3] => {{1,2,3,4}}
=> [2,3,4,1] => [4,1,2,3] => 3
[4,1,3,2] => {{1,2,4},{3}}
=> [2,4,3,1] => [4,1,3,2] => 3
[4,2,1,3] => {{1,3,4},{2}}
=> [3,2,4,1] => [4,2,1,3] => 3
[4,2,3,1] => {{1,4},{2},{3}}
=> [4,2,3,1] => [4,2,3,1] => 3
[4,3,1,2] => {{1,2,3,4}}
=> [2,3,4,1] => [4,1,2,3] => 3
[4,3,2,1] => {{1,4},{2,3}}
=> [4,3,2,1] => [4,3,2,1] => 3
[1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,2,4,5,3] => {{1},{2},{3,4,5}}
=> [1,2,4,5,3] => [1,2,5,3,4] => 2
[1,2,5,3,4] => {{1},{2},{3,4,5}}
=> [1,2,4,5,3] => [1,2,5,3,4] => 2
[1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => [1,2,5,4,3] => 2
[1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,3,2,5,4] => {{1},{2,3},{4,5}}
=> [1,3,2,5,4] => [1,3,2,5,4] => 1
[1,3,4,2,5] => {{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [1,4,2,3,5] => 2
[1,3,4,5,2] => {{1},{2,3,4,5}}
=> [1,3,4,5,2] => [1,5,2,3,4] => 3
[1,3,5,2,4] => {{1},{2,3,4,5}}
=> [1,3,4,5,2] => [1,5,2,3,4] => 3
[1,3,5,4,2] => {{1},{2,3,5},{4}}
=> [1,3,5,4,2] => [1,5,2,4,3] => 3
[1,4,2,3,5] => {{1},{2,3,4},{5}}
=> [1,3,4,2,5] => [1,4,2,3,5] => 2
[1,4,2,5,3] => {{1},{2,3,4,5}}
=> [1,3,4,5,2] => [1,5,2,3,4] => 3
[1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => [1,4,3,2,5] => 2
[1,4,3,5,2] => {{1},{2,4,5},{3}}
=> [1,4,3,5,2] => [1,5,3,2,4] => 3
[1,4,5,2,3] => {{1},{2,4},{3,5}}
=> [1,4,5,2,3] => [1,4,5,2,3] => 2
[1,4,5,3,2] => {{1},{2,3,4,5}}
=> [1,3,4,5,2] => [1,5,2,3,4] => 3
[1,2,3,4,6,7,5] => {{1},{2},{3},{4},{5,6,7}}
=> [1,2,3,4,6,7,5] => [1,2,3,4,7,5,6] => ? = 2
[1,2,3,4,7,5,6] => {{1},{2},{3},{4},{5,6,7}}
=> [1,2,3,4,6,7,5] => [1,2,3,4,7,5,6] => ? = 2
[1,2,3,4,7,6,5] => {{1},{2},{3},{4},{5,7},{6}}
=> [1,2,3,4,7,6,5] => [1,2,3,4,7,6,5] => ? = 2
[1,2,3,5,4,6,7] => {{1},{2},{3},{4,5},{6},{7}}
=> [1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => ? = 1
[1,2,3,5,4,7,6] => {{1},{2},{3},{4,5},{6,7}}
=> [1,2,3,5,4,7,6] => [1,2,3,5,4,7,6] => ? = 1
[1,2,3,5,6,4,7] => {{1},{2},{3},{4,5,6},{7}}
=> [1,2,3,5,6,4,7] => [1,2,3,6,4,5,7] => ? = 2
[1,2,3,5,6,7,4] => {{1},{2},{3},{4,5,6,7}}
=> [1,2,3,5,6,7,4] => [1,2,3,7,4,5,6] => ? = 3
[1,2,3,5,7,4,6] => {{1},{2},{3},{4,5,6,7}}
=> [1,2,3,5,6,7,4] => [1,2,3,7,4,5,6] => ? = 3
[1,2,3,5,7,6,4] => {{1},{2},{3},{4,5,7},{6}}
=> [1,2,3,5,7,6,4] => [1,2,3,7,4,6,5] => ? = 3
[1,2,3,6,4,5,7] => {{1},{2},{3},{4,5,6},{7}}
=> [1,2,3,5,6,4,7] => [1,2,3,6,4,5,7] => ? = 2
[1,2,3,6,4,7,5] => {{1},{2},{3},{4,5,6,7}}
=> [1,2,3,5,6,7,4] => [1,2,3,7,4,5,6] => ? = 3
[1,2,3,6,5,4,7] => {{1},{2},{3},{4,6},{5},{7}}
=> [1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => ? = 2
[1,2,3,6,5,7,4] => {{1},{2},{3},{4,6,7},{5}}
=> [1,2,3,6,5,7,4] => [1,2,3,7,5,4,6] => ? = 3
[1,2,3,6,7,4,5] => {{1},{2},{3},{4,6},{5,7}}
=> [1,2,3,6,7,4,5] => [1,2,3,6,7,4,5] => ? = 2
[1,2,3,6,7,5,4] => {{1},{2},{3},{4,5,6,7}}
=> [1,2,3,5,6,7,4] => [1,2,3,7,4,5,6] => ? = 3
[1,2,3,7,4,5,6] => {{1},{2},{3},{4,5,6,7}}
=> [1,2,3,5,6,7,4] => [1,2,3,7,4,5,6] => ? = 3
[1,2,3,7,4,6,5] => {{1},{2},{3},{4,5,7},{6}}
=> [1,2,3,5,7,6,4] => [1,2,3,7,4,6,5] => ? = 3
[1,2,3,7,5,4,6] => {{1},{2},{3},{4,6,7},{5}}
=> [1,2,3,6,5,7,4] => [1,2,3,7,5,4,6] => ? = 3
[1,2,3,7,5,6,4] => {{1},{2},{3},{4,7},{5},{6}}
=> [1,2,3,7,5,6,4] => [1,2,3,7,5,6,4] => ? = 3
[1,2,3,7,6,4,5] => {{1},{2},{3},{4,5,6,7}}
=> [1,2,3,5,6,7,4] => [1,2,3,7,4,5,6] => ? = 3
[1,2,3,7,6,5,4] => {{1},{2},{3},{4,7},{5,6}}
=> [1,2,3,7,6,5,4] => [1,2,3,7,6,5,4] => ? = 3
[1,2,4,3,5,6,7] => {{1},{2},{3,4},{5},{6},{7}}
=> [1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => ? = 1
[1,2,4,3,5,7,6] => {{1},{2},{3,4},{5},{6,7}}
=> [1,2,4,3,5,7,6] => [1,2,4,3,5,7,6] => ? = 1
[1,2,4,3,6,5,7] => {{1},{2},{3,4},{5,6},{7}}
=> [1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => ? = 1
[1,2,4,3,6,7,5] => {{1},{2},{3,4},{5,6,7}}
=> [1,2,4,3,6,7,5] => [1,2,4,3,7,5,6] => ? = 2
[1,2,4,3,7,5,6] => {{1},{2},{3,4},{5,6,7}}
=> [1,2,4,3,6,7,5] => [1,2,4,3,7,5,6] => ? = 2
[1,2,4,3,7,6,5] => {{1},{2},{3,4},{5,7},{6}}
=> [1,2,4,3,7,6,5] => [1,2,4,3,7,6,5] => ? = 2
[1,2,4,5,3,6,7] => {{1},{2},{3,4,5},{6},{7}}
=> [1,2,4,5,3,6,7] => [1,2,5,3,4,6,7] => ? = 2
[1,2,4,5,3,7,6] => {{1},{2},{3,4,5},{6,7}}
=> [1,2,4,5,3,7,6] => [1,2,5,3,4,7,6] => ? = 2
[1,2,4,5,6,3,7] => {{1},{2},{3,4,5,6},{7}}
=> [1,2,4,5,6,3,7] => [1,2,6,3,4,5,7] => ? = 3
[1,2,4,5,6,7,3] => {{1},{2},{3,4,5,6,7}}
=> [1,2,4,5,6,7,3] => [1,2,7,3,4,5,6] => ? = 4
[1,2,4,5,7,3,6] => {{1},{2},{3,4,5,6,7}}
=> [1,2,4,5,6,7,3] => [1,2,7,3,4,5,6] => ? = 4
[1,2,4,5,7,6,3] => {{1},{2},{3,4,5,7},{6}}
=> [1,2,4,5,7,6,3] => [1,2,7,3,4,6,5] => ? = 4
[1,2,4,6,3,5,7] => {{1},{2},{3,4,5,6},{7}}
=> [1,2,4,5,6,3,7] => [1,2,6,3,4,5,7] => ? = 3
[1,2,4,6,3,7,5] => {{1},{2},{3,4,5,6,7}}
=> [1,2,4,5,6,7,3] => [1,2,7,3,4,5,6] => ? = 4
[1,2,4,6,5,3,7] => {{1},{2},{3,4,6},{5},{7}}
=> [1,2,4,6,5,3,7] => [1,2,6,3,5,4,7] => ? = 3
[1,2,4,6,5,7,3] => {{1},{2},{3,4,6,7},{5}}
=> [1,2,4,6,5,7,3] => [1,2,7,3,5,4,6] => ? = 4
[1,2,4,6,7,3,5] => {{1},{2},{3,4,6},{5,7}}
=> [1,2,4,6,7,3,5] => [1,2,6,3,7,4,5] => ? = 3
[1,2,4,6,7,5,3] => {{1},{2},{3,4,5,6,7}}
=> [1,2,4,5,6,7,3] => [1,2,7,3,4,5,6] => ? = 4
[1,2,4,7,3,5,6] => {{1},{2},{3,4,5,6,7}}
=> [1,2,4,5,6,7,3] => [1,2,7,3,4,5,6] => ? = 4
[1,2,4,7,3,6,5] => {{1},{2},{3,4,5,7},{6}}
=> [1,2,4,5,7,6,3] => [1,2,7,3,4,6,5] => ? = 4
[1,2,4,7,5,3,6] => {{1},{2},{3,4,6,7},{5}}
=> [1,2,4,6,5,7,3] => [1,2,7,3,5,4,6] => ? = 4
[1,2,4,7,5,6,3] => {{1},{2},{3,4,7},{5},{6}}
=> [1,2,4,7,5,6,3] => [1,2,7,3,5,6,4] => ? = 4
[1,2,4,7,6,3,5] => {{1},{2},{3,4,5,6,7}}
=> [1,2,4,5,6,7,3] => [1,2,7,3,4,5,6] => ? = 4
[1,2,4,7,6,5,3] => {{1},{2},{3,4,7},{5,6}}
=> [1,2,4,7,6,5,3] => [1,2,7,3,6,5,4] => ? = 4
[1,2,5,3,4,6,7] => {{1},{2},{3,4,5},{6},{7}}
=> [1,2,4,5,3,6,7] => [1,2,5,3,4,6,7] => ? = 2
[1,2,5,3,4,7,6] => {{1},{2},{3,4,5},{6,7}}
=> [1,2,4,5,3,7,6] => [1,2,5,3,4,7,6] => ? = 2
[1,2,5,3,6,4,7] => {{1},{2},{3,4,5,6},{7}}
=> [1,2,4,5,6,3,7] => [1,2,6,3,4,5,7] => ? = 3
[1,2,5,3,6,7,4] => {{1},{2},{3,4,5,6,7}}
=> [1,2,4,5,6,7,3] => [1,2,7,3,4,5,6] => ? = 4
[1,2,5,3,7,4,6] => {{1},{2},{3,4,5,6,7}}
=> [1,2,4,5,6,7,3] => [1,2,7,3,4,5,6] => ? = 4
Description
The maximum drop size of a permutation. The maximum drop size of a permutation $\pi$ of $[n]=\{1,2,\ldots, n\}$ is defined to be the maximum value of $i-\pi(i)$.
Matching statistic: St001330
Mp00087: Permutations inverse first fundamental transformationPermutations
Mp00160: Permutations graph of inversionsGraphs
Mp00147: Graphs squareGraphs
St001330: Graphs ⟶ ℤResult quality: 20% values known / values provided: 20%distinct values known / distinct values provided: 88%
Values
[1,2] => [1,2] => ([],2)
=> ([],2)
=> 1 = 0 + 1
[2,1] => [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,2,3] => [1,2,3] => ([],3)
=> ([],3)
=> 1 = 0 + 1
[1,3,2] => [1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 2 = 1 + 1
[2,1,3] => [2,1,3] => ([(1,2)],3)
=> ([(1,2)],3)
=> 2 = 1 + 1
[2,3,1] => [3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3 = 2 + 1
[1,2,3,4] => [1,2,3,4] => ([],4)
=> ([],4)
=> 1 = 0 + 1
[1,2,4,3] => [1,2,4,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> 2 = 1 + 1
[1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ([(2,3)],4)
=> 2 = 1 + 1
[1,3,4,2] => [1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,4,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,4,3,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ([(2,3)],4)
=> 2 = 1 + 1
[2,1,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 2 = 1 + 1
[2,3,1,4] => [3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,3,4,1] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[2,4,3,1] => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[3,1,2,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,1,4,2] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[3,2,1,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[3,2,4,1] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3 + 1
[3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 2 + 1
[3,4,2,1] => [4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[4,1,2,3] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[4,1,3,2] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[4,2,1,3] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[4,2,3,1] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[4,3,1,2] => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[4,3,2,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 4 = 3 + 1
[1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ([],5)
=> 1 = 0 + 1
[1,2,3,5,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 2 = 1 + 1
[1,2,4,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ([(3,4)],5)
=> 2 = 1 + 1
[1,2,4,5,3] => [1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,2,5,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,2,5,4,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,3,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> ([(3,4)],5)
=> 2 = 1 + 1
[1,3,2,5,4] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 2 = 1 + 1
[1,3,4,2,5] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,3,4,5,2] => [1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,3,5,2,4] => [1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,3,5,4,2] => [1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,4,2,3,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,4,2,5,3] => [1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,4,3,2,5] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,4,3,5,2] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[1,4,5,2,3] => [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[1,4,5,3,2] => [1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,5,2,3,4] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,5,2,4,3] => [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,5,3,2,4] => [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,5,3,4,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
[2,4,3,5,1] => [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
[2,4,5,1,3] => [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[3,2,4,1,5] => [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[3,2,4,5,1] => [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
[3,2,5,1,4] => [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
[3,2,5,4,1] => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
[3,4,1,2,5] => [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
[3,4,1,5,2] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[3,5,1,2,4] => [3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[3,5,1,4,2] => [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[3,5,4,1,2] => [4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[4,1,3,5,2] => [3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
[4,1,5,2,3] => [4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[4,2,1,5,3] => [2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
[4,2,3,5,1] => [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
[4,2,5,1,3] => [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[4,2,5,3,1] => [2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
[4,3,2,5,1] => [3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4 + 1
[4,3,5,1,2] => [4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[4,5,1,3,2] => [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[4,5,2,1,3] => [4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[4,5,3,1,2] => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[1,2,5,4,6,3] => [1,2,4,6,3,5] => ([(2,5),(3,4),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,2,5,6,3,4] => [1,2,5,3,6,4] => ([(2,5),(3,4),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,3,5,4,6,2] => [1,4,6,2,3,5] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,3,5,6,2,4] => [1,5,2,3,6,4] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,4,3,5,2,6] => [1,3,5,2,4,6] => ([(2,5),(3,4),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,4,3,5,6,2] => [1,3,6,2,4,5] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,4,3,6,2,5] => [1,3,6,5,2,4] => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,4,3,6,5,2] => [1,3,5,6,2,4] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,4,5,2,3,6] => [1,4,2,5,3,6] => ([(2,5),(3,4),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
[1,4,5,2,6,3] => [1,4,2,6,3,5] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,4,6,2,3,5] => [1,4,2,6,5,3] => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,4,6,2,5,3] => [1,4,2,5,6,3] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,4,6,5,2,3] => [1,5,2,4,6,3] => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,5,2,4,6,3] => [1,4,6,3,2,5] => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,5,2,6,3,4] => [1,5,3,2,6,4] => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,5,3,2,6,4] => [1,3,6,4,2,5] => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,5,3,4,6,2] => [1,3,4,6,2,5] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,5,3,6,2,4] => [1,3,5,2,6,4] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,5,3,6,4,2] => [1,3,6,2,5,4] => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,5,4,3,6,2] => [1,4,3,6,2,5] => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,5,4,6,2,3] => [1,5,2,6,3,4] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,5,6,2,4,3] => [1,5,4,2,6,3] => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,5,6,3,2,4] => [1,5,2,6,4,3] => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[1,5,6,4,2,3] => [1,4,5,2,6,3] => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Mp00151: Permutations to cycle typeSet partitions
Mp00080: Set partitions to permutationPermutations
St000209: Permutations ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 75%
Values
[1,2] => {{1},{2}}
=> [1,2] => 0
[2,1] => {{1,2}}
=> [2,1] => 1
[1,2,3] => {{1},{2},{3}}
=> [1,2,3] => 0
[1,3,2] => {{1},{2,3}}
=> [1,3,2] => 1
[2,1,3] => {{1,2},{3}}
=> [2,1,3] => 1
[2,3,1] => {{1,2,3}}
=> [2,3,1] => 2
[3,1,2] => {{1,2,3}}
=> [2,3,1] => 2
[3,2,1] => {{1,3},{2}}
=> [3,2,1] => 2
[1,2,3,4] => {{1},{2},{3},{4}}
=> [1,2,3,4] => 0
[1,2,4,3] => {{1},{2},{3,4}}
=> [1,2,4,3] => 1
[1,3,2,4] => {{1},{2,3},{4}}
=> [1,3,2,4] => 1
[1,3,4,2] => {{1},{2,3,4}}
=> [1,3,4,2] => 2
[1,4,2,3] => {{1},{2,3,4}}
=> [1,3,4,2] => 2
[1,4,3,2] => {{1},{2,4},{3}}
=> [1,4,3,2] => 2
[2,1,3,4] => {{1,2},{3},{4}}
=> [2,1,3,4] => 1
[2,1,4,3] => {{1,2},{3,4}}
=> [2,1,4,3] => 1
[2,3,1,4] => {{1,2,3},{4}}
=> [2,3,1,4] => 2
[2,3,4,1] => {{1,2,3,4}}
=> [2,3,4,1] => 3
[2,4,1,3] => {{1,2,3,4}}
=> [2,3,4,1] => 3
[2,4,3,1] => {{1,2,4},{3}}
=> [2,4,3,1] => 3
[3,1,2,4] => {{1,2,3},{4}}
=> [2,3,1,4] => 2
[3,1,4,2] => {{1,2,3,4}}
=> [2,3,4,1] => 3
[3,2,1,4] => {{1,3},{2},{4}}
=> [3,2,1,4] => 2
[3,2,4,1] => {{1,3,4},{2}}
=> [3,2,4,1] => 3
[3,4,1,2] => {{1,3},{2,4}}
=> [3,4,1,2] => 2
[3,4,2,1] => {{1,2,3,4}}
=> [2,3,4,1] => 3
[4,1,2,3] => {{1,2,3,4}}
=> [2,3,4,1] => 3
[4,1,3,2] => {{1,2,4},{3}}
=> [2,4,3,1] => 3
[4,2,1,3] => {{1,3,4},{2}}
=> [3,2,4,1] => 3
[4,2,3,1] => {{1,4},{2},{3}}
=> [4,2,3,1] => 3
[4,3,1,2] => {{1,2,3,4}}
=> [2,3,4,1] => 3
[4,3,2,1] => {{1,4},{2,3}}
=> [4,3,2,1] => 3
[1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => 0
[1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => 1
[1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => 1
[1,2,4,5,3] => {{1},{2},{3,4,5}}
=> [1,2,4,5,3] => 2
[1,2,5,3,4] => {{1},{2},{3,4,5}}
=> [1,2,4,5,3] => 2
[1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => 2
[1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => 1
[1,3,2,5,4] => {{1},{2,3},{4,5}}
=> [1,3,2,5,4] => 1
[1,3,4,2,5] => {{1},{2,3,4},{5}}
=> [1,3,4,2,5] => 2
[1,3,4,5,2] => {{1},{2,3,4,5}}
=> [1,3,4,5,2] => 3
[1,3,5,2,4] => {{1},{2,3,4,5}}
=> [1,3,4,5,2] => 3
[1,3,5,4,2] => {{1},{2,3,5},{4}}
=> [1,3,5,4,2] => 3
[1,4,2,3,5] => {{1},{2,3,4},{5}}
=> [1,3,4,2,5] => 2
[1,4,2,5,3] => {{1},{2,3,4,5}}
=> [1,3,4,5,2] => 3
[1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => 2
[1,4,3,5,2] => {{1},{2,4,5},{3}}
=> [1,4,3,5,2] => 3
[1,4,5,2,3] => {{1},{2,4},{3,5}}
=> [1,4,5,2,3] => 2
[1,4,5,3,2] => {{1},{2,3,4,5}}
=> [1,3,4,5,2] => 3
[1,4,6,5,7,3,2] => {{1},{2,4,5,7},{3,6}}
=> [1,4,6,5,7,3,2] => ? = 5
[1,4,6,7,2,3,5] => {{1},{2,4,5,7},{3,6}}
=> [1,4,6,5,7,3,2] => ? = 5
[1,4,6,7,5,3,2] => {{1},{2,4,7},{3,6},{5}}
=> [1,4,6,7,5,3,2] => ? = 5
[1,4,7,2,5,6,3] => {{1},{2,4},{3,7},{5},{6}}
=> [1,4,7,2,5,6,3] => ? = 4
[1,4,7,2,6,5,3] => {{1},{2,4},{3,7},{5,6}}
=> [1,4,7,2,6,5,3] => ? = 4
[1,4,7,5,2,6,3] => {{1},{2,4,5},{3,7},{6}}
=> [1,4,7,5,2,6,3] => ? = 4
[1,4,7,5,6,2,3] => {{1},{2,4,5,6},{3,7}}
=> [1,4,7,5,6,2,3] => ? = 4
[1,4,7,6,2,5,3] => {{1},{2,4,5,6},{3,7}}
=> [1,4,7,5,6,2,3] => ? = 4
[1,4,7,6,5,2,3] => {{1},{2,4,6},{3,7},{5}}
=> [1,4,7,6,5,2,3] => ? = 4
[1,5,3,4,2,6,7] => {{1},{2,5},{3},{4},{6},{7}}
=> [1,5,3,4,2,6,7] => ? = 3
[1,5,3,4,2,7,6] => {{1},{2,5},{3},{4},{6,7}}
=> [1,5,3,4,2,7,6] => ? = 3
[1,5,3,4,6,2,7] => {{1},{2,5,6},{3},{4},{7}}
=> [1,5,3,4,6,2,7] => ? = 4
[1,5,3,4,6,7,2] => {{1},{2,5,6,7},{3},{4}}
=> [1,5,3,4,6,7,2] => ? = 5
[1,5,3,4,7,2,6] => {{1},{2,5,6,7},{3},{4}}
=> [1,5,3,4,6,7,2] => ? = 5
[1,5,3,4,7,6,2] => {{1},{2,5,7},{3},{4},{6}}
=> [1,5,3,4,7,6,2] => ? = 5
[1,5,3,6,2,4,7] => {{1},{2,5},{3},{4,6},{7}}
=> [1,5,3,6,2,4,7] => ? = 3
[1,5,3,6,2,7,4] => {{1},{2,5},{3},{4,6,7}}
=> [1,5,3,6,2,7,4] => ? = 3
[1,5,3,6,7,4,2] => {{1},{2,5,7},{3},{4,6}}
=> [1,5,3,6,7,4,2] => ? = 5
[1,5,3,7,2,4,6] => {{1},{2,5},{3},{4,6,7}}
=> [1,5,3,6,2,7,4] => ? = 3
[1,5,3,7,2,6,4] => {{1},{2,5},{3},{4,7},{6}}
=> [1,5,3,7,2,6,4] => ? = 3
[1,5,3,7,6,2,4] => {{1},{2,5,6},{3},{4,7}}
=> [1,5,3,7,6,2,4] => ? = 4
[1,5,4,3,2,6,7] => {{1},{2,5},{3,4},{6},{7}}
=> [1,5,4,3,2,6,7] => ? = 3
[1,5,4,3,2,7,6] => {{1},{2,5},{3,4},{6,7}}
=> [1,5,4,3,2,7,6] => ? = 3
[1,5,4,3,6,2,7] => {{1},{2,5,6},{3,4},{7}}
=> [1,5,4,3,6,2,7] => ? = 4
[1,5,4,3,6,7,2] => {{1},{2,5,6,7},{3,4}}
=> [1,5,4,3,6,7,2] => ? = 5
[1,5,4,3,7,2,6] => {{1},{2,5,6,7},{3,4}}
=> [1,5,4,3,6,7,2] => ? = 5
[1,5,4,3,7,6,2] => {{1},{2,5,7},{3,4},{6}}
=> [1,5,4,3,7,6,2] => ? = 5
[1,5,4,6,2,3,7] => {{1},{2,5},{3,4,6},{7}}
=> [1,5,4,6,2,3,7] => ? = 3
[1,5,4,6,2,7,3] => {{1},{2,5},{3,4,6,7}}
=> [1,5,4,6,2,7,3] => ? = 4
[1,5,4,6,7,3,2] => {{1},{2,5,7},{3,4,6}}
=> [1,5,4,6,7,3,2] => ? = 5
[1,5,4,7,2,3,6] => {{1},{2,5},{3,4,6,7}}
=> [1,5,4,6,2,7,3] => ? = 4
[1,5,4,7,2,6,3] => {{1},{2,5},{3,4,7},{6}}
=> [1,5,4,7,2,6,3] => ? = 4
[1,5,4,7,6,2,3] => {{1},{2,5,6},{3,4,7}}
=> [1,5,4,7,6,2,3] => ? = 4
[1,5,6,2,7,3,4] => {{1},{2,4,5,7},{3,6}}
=> [1,4,6,5,7,3,2] => ? = 5
[1,5,6,3,2,4,7] => {{1},{2,5},{3,4,6},{7}}
=> [1,5,4,6,2,3,7] => ? = 3
[1,5,6,3,2,7,4] => {{1},{2,5},{3,4,6,7}}
=> [1,5,4,6,2,7,3] => ? = 4
[1,5,6,3,7,4,2] => {{1},{2,5,7},{3,4,6}}
=> [1,5,4,6,7,3,2] => ? = 5
[1,5,6,4,2,3,7] => {{1},{2,5},{3,6},{4},{7}}
=> [1,5,6,4,2,3,7] => ? = 3
[1,5,6,4,2,7,3] => {{1},{2,5},{3,6,7},{4}}
=> [1,5,6,4,2,7,3] => ? = 4
[1,5,6,4,7,3,2] => {{1},{2,5,7},{3,6},{4}}
=> [1,5,6,4,7,3,2] => ? = 5
[1,5,6,7,2,3,4] => {{1},{2,5},{3,6},{4,7}}
=> [1,5,6,7,2,3,4] => ? = 3
[1,5,6,7,2,4,3] => {{1},{2,5},{3,4,6,7}}
=> [1,5,4,6,2,7,3] => ? = 4
[1,5,6,7,4,3,2] => {{1},{2,4,5,7},{3,6}}
=> [1,4,6,5,7,3,2] => ? = 5
[1,5,7,2,4,6,3] => {{1},{2,4,5},{3,7},{6}}
=> [1,4,7,5,2,6,3] => ? = 4
[1,5,7,2,6,4,3] => {{1},{2,4,5,6},{3,7}}
=> [1,4,7,5,6,2,3] => ? = 4
[1,5,7,3,2,4,6] => {{1},{2,5},{3,4,6,7}}
=> [1,5,4,6,2,7,3] => ? = 4
[1,5,7,3,2,6,4] => {{1},{2,5},{3,4,7},{6}}
=> [1,5,4,7,2,6,3] => ? = 4
[1,5,7,3,6,2,4] => {{1},{2,5,6},{3,4,7}}
=> [1,5,4,7,6,2,3] => ? = 4
[1,5,7,4,2,3,6] => {{1},{2,5},{3,6,7},{4}}
=> [1,5,6,4,2,7,3] => ? = 4
[1,5,7,4,2,6,3] => {{1},{2,5},{3,7},{4},{6}}
=> [1,5,7,4,2,6,3] => ? = 4
Description
Maximum difference of elements in cycles. Given a cycle $C$ in a permutation, we can compute the maximum distance between elements in the cycle, that is $\max \{ a_i-a_j | a_i, a_j \in C \}$. The statistic is then the maximum of this value over all cycles in the permutation.
Mp00151: Permutations to cycle typeSet partitions
Mp00080: Set partitions to permutationPermutations
St000956: Permutations ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 75%
Values
[1,2] => {{1},{2}}
=> [1,2] => 0
[2,1] => {{1,2}}
=> [2,1] => 1
[1,2,3] => {{1},{2},{3}}
=> [1,2,3] => 0
[1,3,2] => {{1},{2,3}}
=> [1,3,2] => 1
[2,1,3] => {{1,2},{3}}
=> [2,1,3] => 1
[2,3,1] => {{1,2,3}}
=> [2,3,1] => 2
[3,1,2] => {{1,2,3}}
=> [2,3,1] => 2
[3,2,1] => {{1,3},{2}}
=> [3,2,1] => 2
[1,2,3,4] => {{1},{2},{3},{4}}
=> [1,2,3,4] => 0
[1,2,4,3] => {{1},{2},{3,4}}
=> [1,2,4,3] => 1
[1,3,2,4] => {{1},{2,3},{4}}
=> [1,3,2,4] => 1
[1,3,4,2] => {{1},{2,3,4}}
=> [1,3,4,2] => 2
[1,4,2,3] => {{1},{2,3,4}}
=> [1,3,4,2] => 2
[1,4,3,2] => {{1},{2,4},{3}}
=> [1,4,3,2] => 2
[2,1,3,4] => {{1,2},{3},{4}}
=> [2,1,3,4] => 1
[2,1,4,3] => {{1,2},{3,4}}
=> [2,1,4,3] => 1
[2,3,1,4] => {{1,2,3},{4}}
=> [2,3,1,4] => 2
[2,3,4,1] => {{1,2,3,4}}
=> [2,3,4,1] => 3
[2,4,1,3] => {{1,2,3,4}}
=> [2,3,4,1] => 3
[2,4,3,1] => {{1,2,4},{3}}
=> [2,4,3,1] => 3
[3,1,2,4] => {{1,2,3},{4}}
=> [2,3,1,4] => 2
[3,1,4,2] => {{1,2,3,4}}
=> [2,3,4,1] => 3
[3,2,1,4] => {{1,3},{2},{4}}
=> [3,2,1,4] => 2
[3,2,4,1] => {{1,3,4},{2}}
=> [3,2,4,1] => 3
[3,4,1,2] => {{1,3},{2,4}}
=> [3,4,1,2] => 2
[3,4,2,1] => {{1,2,3,4}}
=> [2,3,4,1] => 3
[4,1,2,3] => {{1,2,3,4}}
=> [2,3,4,1] => 3
[4,1,3,2] => {{1,2,4},{3}}
=> [2,4,3,1] => 3
[4,2,1,3] => {{1,3,4},{2}}
=> [3,2,4,1] => 3
[4,2,3,1] => {{1,4},{2},{3}}
=> [4,2,3,1] => 3
[4,3,1,2] => {{1,2,3,4}}
=> [2,3,4,1] => 3
[4,3,2,1] => {{1,4},{2,3}}
=> [4,3,2,1] => 3
[1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> [1,2,3,4,5] => 0
[1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> [1,2,3,5,4] => 1
[1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> [1,2,4,3,5] => 1
[1,2,4,5,3] => {{1},{2},{3,4,5}}
=> [1,2,4,5,3] => 2
[1,2,5,3,4] => {{1},{2},{3,4,5}}
=> [1,2,4,5,3] => 2
[1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> [1,2,5,4,3] => 2
[1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> [1,3,2,4,5] => 1
[1,3,2,5,4] => {{1},{2,3},{4,5}}
=> [1,3,2,5,4] => 1
[1,3,4,2,5] => {{1},{2,3,4},{5}}
=> [1,3,4,2,5] => 2
[1,3,4,5,2] => {{1},{2,3,4,5}}
=> [1,3,4,5,2] => 3
[1,3,5,2,4] => {{1},{2,3,4,5}}
=> [1,3,4,5,2] => 3
[1,3,5,4,2] => {{1},{2,3,5},{4}}
=> [1,3,5,4,2] => 3
[1,4,2,3,5] => {{1},{2,3,4},{5}}
=> [1,3,4,2,5] => 2
[1,4,2,5,3] => {{1},{2,3,4,5}}
=> [1,3,4,5,2] => 3
[1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> [1,4,3,2,5] => 2
[1,4,3,5,2] => {{1},{2,4,5},{3}}
=> [1,4,3,5,2] => 3
[1,4,5,2,3] => {{1},{2,4},{3,5}}
=> [1,4,5,2,3] => 2
[1,4,5,3,2] => {{1},{2,3,4,5}}
=> [1,3,4,5,2] => 3
[1,4,6,5,7,3,2] => {{1},{2,4,5,7},{3,6}}
=> [1,4,6,5,7,3,2] => ? = 5
[1,4,6,7,2,3,5] => {{1},{2,4,5,7},{3,6}}
=> [1,4,6,5,7,3,2] => ? = 5
[1,4,6,7,5,3,2] => {{1},{2,4,7},{3,6},{5}}
=> [1,4,6,7,5,3,2] => ? = 5
[1,4,7,2,5,6,3] => {{1},{2,4},{3,7},{5},{6}}
=> [1,4,7,2,5,6,3] => ? = 4
[1,4,7,2,6,5,3] => {{1},{2,4},{3,7},{5,6}}
=> [1,4,7,2,6,5,3] => ? = 4
[1,4,7,5,2,6,3] => {{1},{2,4,5},{3,7},{6}}
=> [1,4,7,5,2,6,3] => ? = 4
[1,4,7,5,6,2,3] => {{1},{2,4,5,6},{3,7}}
=> [1,4,7,5,6,2,3] => ? = 4
[1,4,7,6,2,5,3] => {{1},{2,4,5,6},{3,7}}
=> [1,4,7,5,6,2,3] => ? = 4
[1,4,7,6,5,2,3] => {{1},{2,4,6},{3,7},{5}}
=> [1,4,7,6,5,2,3] => ? = 4
[1,5,3,4,2,6,7] => {{1},{2,5},{3},{4},{6},{7}}
=> [1,5,3,4,2,6,7] => ? = 3
[1,5,3,4,2,7,6] => {{1},{2,5},{3},{4},{6,7}}
=> [1,5,3,4,2,7,6] => ? = 3
[1,5,3,4,6,2,7] => {{1},{2,5,6},{3},{4},{7}}
=> [1,5,3,4,6,2,7] => ? = 4
[1,5,3,4,6,7,2] => {{1},{2,5,6,7},{3},{4}}
=> [1,5,3,4,6,7,2] => ? = 5
[1,5,3,4,7,2,6] => {{1},{2,5,6,7},{3},{4}}
=> [1,5,3,4,6,7,2] => ? = 5
[1,5,3,4,7,6,2] => {{1},{2,5,7},{3},{4},{6}}
=> [1,5,3,4,7,6,2] => ? = 5
[1,5,3,6,2,4,7] => {{1},{2,5},{3},{4,6},{7}}
=> [1,5,3,6,2,4,7] => ? = 3
[1,5,3,6,2,7,4] => {{1},{2,5},{3},{4,6,7}}
=> [1,5,3,6,2,7,4] => ? = 3
[1,5,3,6,7,4,2] => {{1},{2,5,7},{3},{4,6}}
=> [1,5,3,6,7,4,2] => ? = 5
[1,5,3,7,2,4,6] => {{1},{2,5},{3},{4,6,7}}
=> [1,5,3,6,2,7,4] => ? = 3
[1,5,3,7,2,6,4] => {{1},{2,5},{3},{4,7},{6}}
=> [1,5,3,7,2,6,4] => ? = 3
[1,5,3,7,6,2,4] => {{1},{2,5,6},{3},{4,7}}
=> [1,5,3,7,6,2,4] => ? = 4
[1,5,4,3,2,6,7] => {{1},{2,5},{3,4},{6},{7}}
=> [1,5,4,3,2,6,7] => ? = 3
[1,5,4,3,2,7,6] => {{1},{2,5},{3,4},{6,7}}
=> [1,5,4,3,2,7,6] => ? = 3
[1,5,4,3,6,2,7] => {{1},{2,5,6},{3,4},{7}}
=> [1,5,4,3,6,2,7] => ? = 4
[1,5,4,3,6,7,2] => {{1},{2,5,6,7},{3,4}}
=> [1,5,4,3,6,7,2] => ? = 5
[1,5,4,3,7,2,6] => {{1},{2,5,6,7},{3,4}}
=> [1,5,4,3,6,7,2] => ? = 5
[1,5,4,3,7,6,2] => {{1},{2,5,7},{3,4},{6}}
=> [1,5,4,3,7,6,2] => ? = 5
[1,5,4,6,2,3,7] => {{1},{2,5},{3,4,6},{7}}
=> [1,5,4,6,2,3,7] => ? = 3
[1,5,4,6,2,7,3] => {{1},{2,5},{3,4,6,7}}
=> [1,5,4,6,2,7,3] => ? = 4
[1,5,4,6,7,3,2] => {{1},{2,5,7},{3,4,6}}
=> [1,5,4,6,7,3,2] => ? = 5
[1,5,4,7,2,3,6] => {{1},{2,5},{3,4,6,7}}
=> [1,5,4,6,2,7,3] => ? = 4
[1,5,4,7,2,6,3] => {{1},{2,5},{3,4,7},{6}}
=> [1,5,4,7,2,6,3] => ? = 4
[1,5,4,7,6,2,3] => {{1},{2,5,6},{3,4,7}}
=> [1,5,4,7,6,2,3] => ? = 4
[1,5,6,2,7,3,4] => {{1},{2,4,5,7},{3,6}}
=> [1,4,6,5,7,3,2] => ? = 5
[1,5,6,3,2,4,7] => {{1},{2,5},{3,4,6},{7}}
=> [1,5,4,6,2,3,7] => ? = 3
[1,5,6,3,2,7,4] => {{1},{2,5},{3,4,6,7}}
=> [1,5,4,6,2,7,3] => ? = 4
[1,5,6,3,7,4,2] => {{1},{2,5,7},{3,4,6}}
=> [1,5,4,6,7,3,2] => ? = 5
[1,5,6,4,2,3,7] => {{1},{2,5},{3,6},{4},{7}}
=> [1,5,6,4,2,3,7] => ? = 3
[1,5,6,4,2,7,3] => {{1},{2,5},{3,6,7},{4}}
=> [1,5,6,4,2,7,3] => ? = 4
[1,5,6,4,7,3,2] => {{1},{2,5,7},{3,6},{4}}
=> [1,5,6,4,7,3,2] => ? = 5
[1,5,6,7,2,3,4] => {{1},{2,5},{3,6},{4,7}}
=> [1,5,6,7,2,3,4] => ? = 3
[1,5,6,7,2,4,3] => {{1},{2,5},{3,4,6,7}}
=> [1,5,4,6,2,7,3] => ? = 4
[1,5,6,7,4,3,2] => {{1},{2,4,5,7},{3,6}}
=> [1,4,6,5,7,3,2] => ? = 5
[1,5,7,2,4,6,3] => {{1},{2,4,5},{3,7},{6}}
=> [1,4,7,5,2,6,3] => ? = 4
[1,5,7,2,6,4,3] => {{1},{2,4,5,6},{3,7}}
=> [1,4,7,5,6,2,3] => ? = 4
[1,5,7,3,2,4,6] => {{1},{2,5},{3,4,6,7}}
=> [1,5,4,6,2,7,3] => ? = 4
[1,5,7,3,2,6,4] => {{1},{2,5},{3,4,7},{6}}
=> [1,5,4,7,2,6,3] => ? = 4
[1,5,7,3,6,2,4] => {{1},{2,5,6},{3,4,7}}
=> [1,5,4,7,6,2,3] => ? = 4
[1,5,7,4,2,3,6] => {{1},{2,5},{3,6,7},{4}}
=> [1,5,6,4,2,7,3] => ? = 4
[1,5,7,4,2,6,3] => {{1},{2,5},{3,7},{4},{6}}
=> [1,5,7,4,2,6,3] => ? = 4
Description
The maximal displacement of a permutation. This is $\max\{ |\pi(i)-i| \mid 1 \leq i \leq n\}$ for a permutation $\pi$ of $\{1,\ldots,n\}$. This statistic without the absolute value is the maximal drop size [[St000141]].
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00065: Permutations permutation posetPosets
St001879: Posets ⟶ ℤResult quality: 6% values known / values provided: 6%distinct values known / distinct values provided: 62%
Values
[1,2] => [1,0,1,0]
=> [2,1] => ([],2)
=> ? = 0
[2,1] => [1,1,0,0]
=> [1,2] => ([(0,1)],2)
=> ? = 1
[1,2,3] => [1,0,1,0,1,0]
=> [3,2,1] => ([],3)
=> ? = 0
[1,3,2] => [1,0,1,1,0,0]
=> [2,3,1] => ([(1,2)],3)
=> ? = 1
[2,1,3] => [1,1,0,0,1,0]
=> [3,1,2] => ([(1,2)],3)
=> ? = 1
[2,3,1] => [1,1,0,1,0,0]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ? = 2
[3,1,2] => [1,1,1,0,0,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 2
[3,2,1] => [1,1,1,0,0,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 2
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => ([],4)
=> ? = 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => ([(2,3)],4)
=> ? = 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => ([(2,3)],4)
=> ? = 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> ? = 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ? = 2
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ? = 2
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => ([(2,3)],4)
=> ? = 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ? = 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => ([(1,3),(2,3)],4)
=> ? = 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ? = 3
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ? = 3
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ? = 3
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ? = 2
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ? = 3
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ? = 2
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ? = 3
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ? = 2
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ? = 3
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 3
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => ([],5)
=> ? = 0
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => ([(3,4)],5)
=> ? = 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => ([(3,4)],5)
=> ? = 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> ? = 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ? = 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ? = 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => ([(3,4)],5)
=> ? = 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ? = 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> ? = 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ? = 3
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ? = 3
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ? = 3
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ? = 2
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ? = 3
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ? = 2
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ? = 3
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ? = 2
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ? = 3
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 3
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 3
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 3
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 3
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 3
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 3
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => ([(3,4)],5)
=> ? = 1
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ? = 1
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4
[6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[6,1,2,3,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[6,1,2,4,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[6,1,2,4,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[6,1,2,5,4,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[6,1,3,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[6,1,3,2,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[6,1,3,4,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[6,1,3,4,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[6,1,3,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[6,1,3,5,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[6,1,4,2,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[6,1,4,3,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[6,1,4,3,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[6,1,4,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
[6,1,4,5,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5
Description
The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice.
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00065: Permutations permutation posetPosets
St001880: Posets ⟶ ℤResult quality: 6% values known / values provided: 6%distinct values known / distinct values provided: 62%
Values
[1,2] => [1,0,1,0]
=> [2,1] => ([],2)
=> ? = 0 + 1
[2,1] => [1,1,0,0]
=> [1,2] => ([(0,1)],2)
=> ? = 1 + 1
[1,2,3] => [1,0,1,0,1,0]
=> [3,2,1] => ([],3)
=> ? = 0 + 1
[1,3,2] => [1,0,1,1,0,0]
=> [2,3,1] => ([(1,2)],3)
=> ? = 1 + 1
[2,1,3] => [1,1,0,0,1,0]
=> [3,1,2] => ([(1,2)],3)
=> ? = 1 + 1
[2,3,1] => [1,1,0,1,0,0]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ? = 2 + 1
[3,1,2] => [1,1,1,0,0,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 3 = 2 + 1
[3,2,1] => [1,1,1,0,0,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 3 = 2 + 1
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => ([],4)
=> ? = 0 + 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => ([(2,3)],4)
=> ? = 1 + 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => ([(2,3)],4)
=> ? = 1 + 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> ? = 2 + 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ? = 2 + 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ? = 2 + 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => ([(2,3)],4)
=> ? = 1 + 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ? = 1 + 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => ([(1,3),(2,3)],4)
=> ? = 2 + 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ? = 3 + 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ? = 3 + 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ? = 3 + 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ? = 2 + 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ? = 3 + 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ? = 2 + 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ? = 3 + 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ? = 2 + 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ? = 3 + 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => ([],5)
=> ? = 0 + 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => ([(3,4)],5)
=> ? = 1 + 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => ([(3,4)],5)
=> ? = 1 + 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> ? = 2 + 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ? = 2 + 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ? = 2 + 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => ([(3,4)],5)
=> ? = 1 + 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ? = 1 + 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> ? = 2 + 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ? = 3 + 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ? = 3 + 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ? = 3 + 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ? = 2 + 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ? = 3 + 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ? = 2 + 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ? = 3 + 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ? = 2 + 1
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ? = 3 + 1
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 3 + 1
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 3 + 1
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 3 + 1
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 3 + 1
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 3 + 1
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ? = 3 + 1
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => ([(3,4)],5)
=> ? = 1 + 1
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ? = 1 + 1
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 4 + 1
[6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[6,1,2,3,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[6,1,2,4,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[6,1,2,4,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[6,1,2,5,4,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[6,1,3,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[6,1,3,2,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[6,1,3,4,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[6,1,3,4,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[6,1,3,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[6,1,3,5,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[6,1,4,2,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[6,1,4,3,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[6,1,4,3,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[6,1,4,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
[6,1,4,5,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 5 + 1
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Matching statistic: St001232
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00222: Dyck paths peaks-to-valleysDyck paths
St001232: Dyck paths ⟶ ℤResult quality: 1% values known / values provided: 1%distinct values known / distinct values provided: 62%
Values
[1,2] => [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> ? = 0 + 1
[2,1] => [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> ? = 0 + 1
[1,3,2] => [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> ? = 1 + 1
[2,1,3] => [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> ? = 1 + 1
[2,3,1] => [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ? = 2 + 1
[3,1,2] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[3,2,1] => [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ? = 1 + 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ? = 1 + 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ? = 2 + 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? = 2 + 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ? = 2 + 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ? = 1 + 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> ? = 2 + 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ? = 3 + 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ? = 3 + 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ? = 3 + 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? = 2 + 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ? = 3 + 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> ? = 2 + 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ? = 3 + 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ? = 3 + 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 3 + 1
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 3 + 1
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 3 + 1
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 3 + 1
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 3 + 1
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4 = 3 + 1
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0 + 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 1 + 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 1 + 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 2 + 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 2 + 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 2 + 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 1 + 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> ? = 1 + 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 2 + 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 3 + 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> ? = 3 + 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> ? = 3 + 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 2 + 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> ? = 3 + 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 2 + 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> ? = 3 + 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> ? = 3 + 1
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3 + 1
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3 + 1
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3 + 1
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3 + 1
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3 + 1
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3 + 1
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 1 + 1
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> ? = 1 + 1
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 5 = 4 + 1
[6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[6,1,2,3,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[6,1,2,4,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[6,1,2,4,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[6,1,2,5,4,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[6,1,3,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[6,1,3,2,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[6,1,3,4,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[6,1,3,4,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[6,1,3,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[6,1,3,5,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[6,1,4,2,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[6,1,4,3,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[6,1,4,3,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 5 + 1
[6,1,4,5,2,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 6 = 5 + 1
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Matching statistic: St001207
Mp00241: Permutations invert Laguerre heapPermutations
Mp00159: Permutations Demazure product with inversePermutations
Mp00087: Permutations inverse first fundamental transformationPermutations
St001207: Permutations ⟶ ℤResult quality: 0% values known / values provided: 0%distinct values known / distinct values provided: 50%
Values
[1,2] => [1,2] => [1,2] => [1,2] => 0
[2,1] => [2,1] => [2,1] => [2,1] => 1
[1,2,3] => [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,3,2] => [1,3,2] => [1,3,2] => [1,3,2] => 1
[2,1,3] => [2,1,3] => [2,1,3] => [2,1,3] => 1
[2,3,1] => [3,1,2] => [3,2,1] => [2,3,1] => 2
[3,1,2] => [2,3,1] => [3,2,1] => [2,3,1] => 2
[3,2,1] => [3,2,1] => [3,2,1] => [2,3,1] => 2
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 1
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 1
[1,3,4,2] => [1,4,2,3] => [1,4,3,2] => [1,3,4,2] => 2
[1,4,2,3] => [1,3,4,2] => [1,4,3,2] => [1,3,4,2] => 2
[1,4,3,2] => [1,4,3,2] => [1,4,3,2] => [1,3,4,2] => 2
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 1
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 1
[2,3,1,4] => [3,1,2,4] => [3,2,1,4] => [2,3,1,4] => 2
[2,3,4,1] => [4,1,2,3] => [4,2,3,1] => [2,3,4,1] => 3
[2,4,1,3] => [3,4,1,2] => [4,3,2,1] => [3,2,4,1] => 3
[2,4,3,1] => [4,3,1,2] => [4,3,2,1] => [3,2,4,1] => 3
[3,1,2,4] => [2,3,1,4] => [3,2,1,4] => [2,3,1,4] => 2
[3,1,4,2] => [4,2,3,1] => [4,3,2,1] => [3,2,4,1] => 3
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => [2,3,1,4] => 2
[3,2,4,1] => [4,1,3,2] => [4,2,3,1] => [2,3,4,1] => 3
[3,4,1,2] => [2,4,1,3] => [3,4,1,2] => [3,1,4,2] => 2
[3,4,2,1] => [4,2,1,3] => [4,3,2,1] => [3,2,4,1] => 3
[4,1,2,3] => [2,3,4,1] => [4,2,3,1] => [2,3,4,1] => 3
[4,1,3,2] => [3,2,4,1] => [4,2,3,1] => [2,3,4,1] => 3
[4,2,1,3] => [3,4,2,1] => [4,3,2,1] => [3,2,4,1] => 3
[4,2,3,1] => [3,1,4,2] => [4,2,3,1] => [2,3,4,1] => 3
[4,3,1,2] => [2,4,3,1] => [4,3,2,1] => [3,2,4,1] => 3
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => [3,2,4,1] => 3
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ? = 0
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => ? = 1
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => ? = 1
[1,2,4,5,3] => [1,2,5,3,4] => [1,2,5,4,3] => [1,2,4,5,3] => ? = 2
[1,2,5,3,4] => [1,2,4,5,3] => [1,2,5,4,3] => [1,2,4,5,3] => ? = 2
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => ? = 2
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => ? = 1
[1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => ? = 1
[1,3,4,2,5] => [1,4,2,3,5] => [1,4,3,2,5] => [1,3,4,2,5] => ? = 2
[1,3,4,5,2] => [1,5,2,3,4] => [1,5,3,4,2] => [1,3,4,5,2] => ? = 3
[1,3,5,2,4] => [1,4,5,2,3] => [1,5,4,3,2] => [1,4,3,5,2] => ? = 3
[1,3,5,4,2] => [1,5,4,2,3] => [1,5,4,3,2] => [1,4,3,5,2] => ? = 3
[1,4,2,3,5] => [1,3,4,2,5] => [1,4,3,2,5] => [1,3,4,2,5] => ? = 2
[1,4,2,5,3] => [1,5,3,4,2] => [1,5,4,3,2] => [1,4,3,5,2] => ? = 3
[1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => [1,3,4,2,5] => ? = 2
[1,4,3,5,2] => [1,5,2,4,3] => [1,5,3,4,2] => [1,3,4,5,2] => ? = 3
[1,4,5,2,3] => [1,3,5,2,4] => [1,4,5,2,3] => [1,4,2,5,3] => ? = 2
[1,4,5,3,2] => [1,5,3,2,4] => [1,5,4,3,2] => [1,4,3,5,2] => ? = 3
[1,5,2,3,4] => [1,3,4,5,2] => [1,5,3,4,2] => [1,3,4,5,2] => ? = 3
[1,5,2,4,3] => [1,4,3,5,2] => [1,5,3,4,2] => [1,3,4,5,2] => ? = 3
[1,5,3,2,4] => [1,4,5,3,2] => [1,5,4,3,2] => [1,4,3,5,2] => ? = 3
[1,5,3,4,2] => [1,4,2,5,3] => [1,5,3,4,2] => [1,3,4,5,2] => ? = 3
[1,5,4,2,3] => [1,3,5,4,2] => [1,5,4,3,2] => [1,4,3,5,2] => ? = 3
[1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => [1,4,3,5,2] => ? = 3
[2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => ? = 1
[2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => ? = 1
[2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => ? = 1
[2,1,4,5,3] => [2,1,5,3,4] => [2,1,5,4,3] => [2,1,4,5,3] => ? = 2
[2,1,5,3,4] => [2,1,4,5,3] => [2,1,5,4,3] => [2,1,4,5,3] => ? = 2
[2,1,5,4,3] => [2,1,5,4,3] => [2,1,5,4,3] => [2,1,4,5,3] => ? = 2
[2,3,1,4,5] => [3,1,2,4,5] => [3,2,1,4,5] => [2,3,1,4,5] => ? = 2
[2,3,1,5,4] => [3,1,2,5,4] => [3,2,1,5,4] => [2,3,1,5,4] => ? = 2
[2,3,4,1,5] => [4,1,2,3,5] => [4,2,3,1,5] => [2,3,4,1,5] => ? = 3
[2,3,4,5,1] => [5,1,2,3,4] => [5,2,3,4,1] => [2,3,4,5,1] => ? = 4
[2,3,5,1,4] => [4,5,1,2,3] => [5,4,3,2,1] => [3,4,2,5,1] => ? = 4
[2,3,5,4,1] => [5,4,1,2,3] => [5,4,3,2,1] => [3,4,2,5,1] => ? = 4
[2,4,1,3,5] => [3,4,1,2,5] => [4,3,2,1,5] => [3,2,4,1,5] => ? = 3
[2,4,1,5,3] => [5,3,4,1,2] => [5,4,3,2,1] => [3,4,2,5,1] => ? = 4
[2,4,3,1,5] => [4,3,1,2,5] => [4,3,2,1,5] => [3,2,4,1,5] => ? = 3
[2,4,3,5,1] => [5,1,2,4,3] => [5,2,3,4,1] => [2,3,4,5,1] => ? = 4
[2,4,5,1,3] => [3,5,1,2,4] => [4,5,3,1,2] => [3,4,1,5,2] => ? = 3
[2,4,5,3,1] => [5,3,1,2,4] => [5,4,3,2,1] => [3,4,2,5,1] => ? = 4
[2,5,1,3,4] => [3,4,5,1,2] => [5,4,3,2,1] => [3,4,2,5,1] => ? = 4
[2,5,1,4,3] => [4,3,5,1,2] => [5,4,3,2,1] => [3,4,2,5,1] => ? = 4
[2,5,3,1,4] => [4,5,3,1,2] => [5,4,3,2,1] => [3,4,2,5,1] => ? = 4
[2,5,3,4,1] => [4,1,2,5,3] => [5,2,3,4,1] => [2,3,4,5,1] => ? = 4
[2,5,4,1,3] => [3,5,4,1,2] => [5,4,3,2,1] => [3,4,2,5,1] => ? = 4
[2,5,4,3,1] => [5,4,3,1,2] => [5,4,3,2,1] => [3,4,2,5,1] => ? = 4
[3,1,2,4,5] => [2,3,1,4,5] => [3,2,1,4,5] => [2,3,1,4,5] => ? = 2
[3,1,2,5,4] => [2,3,1,5,4] => [3,2,1,5,4] => [2,3,1,5,4] => ? = 2
Description
The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.