Processing math: 81%

Your data matches 72 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00071: Permutations descent compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000476: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => [2] => [1,1,0,0]
=> 0
[2,1] => [1,1] => [1,0,1,0]
=> 1
[1,2,3] => [3] => [1,1,1,0,0,0]
=> 0
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> 2
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> 1
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> 2
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 2
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 3
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 3
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 3
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 3
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 3
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 3
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 3
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 3
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 3
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 3
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 4
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 4
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 4
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 4
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 4
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 3
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 4
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,4,5,3,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 4
Description
The sum of the semi-lengths of tunnels before a valley of a Dyck path. For each valley v in a Dyck path D there is a corresponding tunnel, which is the factor Tv=sisj of D where si is the step after the first intersection of D with the line y=ht(v) to the left of sj. This statistic is v(jviv)/2.
Matching statistic: St000319
Mp00071: Permutations descent compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St000319: Integer partitions ⟶ ℤResult quality: 89% values known / values provided: 89%distinct values known / distinct values provided: 100%
Values
[1,2] => [2] => ([],2)
=> [1,1]
=> 0
[2,1] => [1,1] => ([(0,1)],2)
=> [2]
=> 1
[1,2,3] => [3] => ([],3)
=> [1,1,1]
=> 0
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> [3]
=> 2
[2,1,3] => [1,2] => ([(1,2)],3)
=> [2,1]
=> 1
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> [3]
=> 2
[3,1,2] => [1,2] => ([(1,2)],3)
=> [2,1]
=> 1
[3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 2
[1,2,3,4] => [4] => ([],4)
=> [1,1,1,1]
=> 0
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 3
[1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 2
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 3
[1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 2
[1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[2,1,3,4] => [1,3] => ([(2,3)],4)
=> [2,1,1]
=> 1
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 2
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 3
[2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 2
[2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[3,1,2,4] => [1,3] => ([(2,3)],4)
=> [2,1,1]
=> 1
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 2
[3,4,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[4,1,2,3] => [1,3] => ([(2,3)],4)
=> [2,1,1]
=> 1
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
[4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[1,2,3,4,5] => [5] => ([],5)
=> [1,1,1,1,1]
=> 0
[1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 4
[1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 3
[1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 4
[1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 3
[1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 4
[1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> 2
[1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 4
[1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 3
[1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 4
[1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 3
[1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 4
[1,4,2,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> 2
[1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 4
[1,4,3,2,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 3
[1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 4
[1,4,5,2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 3
[1,4,5,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 4
[7,8,6,5,4,3,2,1] => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,5,6,7,4,3,2,1] => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,5,6,8,4,3,2,1] => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[6,5,7,8,4,3,2,1] => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,6,3,4,5,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,5,3,4,6,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,4,3,5,6,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,3,4,5,6,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,6,4,3,5,7,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,6,3,4,5,7,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,5,4,3,6,7,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,5,3,4,6,7,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,4,3,5,6,7,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,3,4,5,6,7,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,6,5,3,4,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,6,4,3,5,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,6,3,4,5,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,5,4,3,6,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,5,3,4,6,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,3,4,5,6,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[6,5,4,3,7,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[6,5,3,4,7,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[6,4,3,5,7,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[6,3,4,5,7,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[5,4,3,6,7,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[5,3,4,6,7,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[4,3,5,6,7,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,6,5,2,3,4,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,6,4,2,3,5,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,6,3,2,4,5,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,6,2,3,4,5,1] => [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,8,6,2,3,4,5,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,6,7,2,3,4,5,1] => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,6,8,2,3,4,5,1] => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,5,4,2,3,6,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,5,3,2,4,6,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,8,5,2,3,4,6,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,4,3,2,5,6,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,8,4,2,3,5,6,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,8,3,2,4,5,6,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,2,3,4,5,6,1] => [1,1,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,8,2,3,4,5,6,1] => [2,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,6,5,4,2,3,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,6,5,3,2,4,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,6,4,3,2,5,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,6,4,2,3,5,7,1] => [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,6,2,3,4,5,7,1] => [1,1,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,5,4,3,2,6,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,5,4,2,3,6,7,1] => [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,4,5,2,3,6,7,1] => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
Description
The spin of an integer partition. The Ferrers shape of an integer partition λ can be decomposed into border strips. The spin is then defined to be the total number of crossings of border strips of λ with the vertical lines in the Ferrers shape. The following example is taken from Appendix B in [1]: Let λ=(5,5,4,4,2,1). Removing the border strips successively yields the sequence of partitions (5,5,4,4,2,1),(4,3,3,1),(2,2),(1),(). The first strip (5,5,4,4,2,1)(4,3,3,1) crosses 4 times, the second strip (4,3,3,1)(2,2) crosses 3 times, the strip (2,2)(1) crosses 1 time, and the remaining strip (1)() does not cross. This yields the spin of (5,5,4,4,2,1) to be 4+3+1=8.
Matching statistic: St000320
Mp00071: Permutations descent compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St000320: Integer partitions ⟶ ℤResult quality: 89% values known / values provided: 89%distinct values known / distinct values provided: 100%
Values
[1,2] => [2] => ([],2)
=> [1,1]
=> 0
[2,1] => [1,1] => ([(0,1)],2)
=> [2]
=> 1
[1,2,3] => [3] => ([],3)
=> [1,1,1]
=> 0
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> [3]
=> 2
[2,1,3] => [1,2] => ([(1,2)],3)
=> [2,1]
=> 1
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> [3]
=> 2
[3,1,2] => [1,2] => ([(1,2)],3)
=> [2,1]
=> 1
[3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 2
[1,2,3,4] => [4] => ([],4)
=> [1,1,1,1]
=> 0
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 3
[1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 2
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 3
[1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 2
[1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[2,1,3,4] => [1,3] => ([(2,3)],4)
=> [2,1,1]
=> 1
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 2
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 3
[2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 2
[2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[3,1,2,4] => [1,3] => ([(2,3)],4)
=> [2,1,1]
=> 1
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 2
[3,4,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[4,1,2,3] => [1,3] => ([(2,3)],4)
=> [2,1,1]
=> 1
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
[4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[1,2,3,4,5] => [5] => ([],5)
=> [1,1,1,1,1]
=> 0
[1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 4
[1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 3
[1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 4
[1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 3
[1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 4
[1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> 2
[1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 4
[1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 3
[1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 4
[1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 3
[1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 4
[1,4,2,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> 2
[1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 4
[1,4,3,2,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 3
[1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 4
[1,4,5,2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 3
[1,4,5,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 4
[7,8,6,5,4,3,2,1] => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,5,6,7,4,3,2,1] => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,5,6,8,4,3,2,1] => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[6,5,7,8,4,3,2,1] => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,6,3,4,5,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,5,3,4,6,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,4,3,5,6,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,3,4,5,6,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,6,4,3,5,7,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,6,3,4,5,7,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,5,4,3,6,7,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,5,3,4,6,7,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,4,3,5,6,7,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,3,4,5,6,7,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,6,5,3,4,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,6,4,3,5,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,6,3,4,5,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,5,4,3,6,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,5,3,4,6,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,3,4,5,6,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[6,5,4,3,7,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[6,5,3,4,7,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[6,4,3,5,7,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[6,3,4,5,7,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[5,4,3,6,7,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[5,3,4,6,7,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[4,3,5,6,7,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,6,5,2,3,4,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,6,4,2,3,5,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,6,3,2,4,5,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,6,2,3,4,5,1] => [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,8,6,2,3,4,5,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,6,7,2,3,4,5,1] => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,6,8,2,3,4,5,1] => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,5,4,2,3,6,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,5,3,2,4,6,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,8,5,2,3,4,6,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,4,3,2,5,6,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,8,4,2,3,5,6,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,8,3,2,4,5,6,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,2,3,4,5,6,1] => [1,1,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,8,2,3,4,5,6,1] => [2,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,6,5,4,2,3,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,6,5,3,2,4,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,6,4,3,2,5,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,6,4,2,3,5,7,1] => [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,6,2,3,4,5,7,1] => [1,1,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,5,4,3,2,6,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,5,4,2,3,6,7,1] => [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,4,5,2,3,6,7,1] => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
Description
The dinv adjustment of an integer partition. The Ferrers shape of an integer partition λ=(λ1,,λk) can be decomposed into border strips. For 0j<λ1 let nj be the length of the border strip starting at (λ1j,0). The dinv adjustment is then defined by j:nj>0(λ11j). The following example is taken from Appendix B in [2]: Let λ=(5,5,4,4,2,1). Removing the border strips successively yields the sequence of partitions (5,5,4,4,2,1),(4,3,3,1),(2,2),(1),(), and we obtain (n0,,n4)=(10,7,0,3,1). The dinv adjustment is thus 4+3+1+0=8.
Matching statistic: St001918
Mp00071: Permutations descent compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St001918: Integer partitions ⟶ ℤResult quality: 89% values known / values provided: 89%distinct values known / distinct values provided: 100%
Values
[1,2] => [2] => ([],2)
=> [1,1]
=> 0
[2,1] => [1,1] => ([(0,1)],2)
=> [2]
=> 1
[1,2,3] => [3] => ([],3)
=> [1,1,1]
=> 0
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> [3]
=> 2
[2,1,3] => [1,2] => ([(1,2)],3)
=> [2,1]
=> 1
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> [3]
=> 2
[3,1,2] => [1,2] => ([(1,2)],3)
=> [2,1]
=> 1
[3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 2
[1,2,3,4] => [4] => ([],4)
=> [1,1,1,1]
=> 0
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 3
[1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 2
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 3
[1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 2
[1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[2,1,3,4] => [1,3] => ([(2,3)],4)
=> [2,1,1]
=> 1
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 2
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 3
[2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 2
[2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[3,1,2,4] => [1,3] => ([(2,3)],4)
=> [2,1,1]
=> 1
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 2
[3,4,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[4,1,2,3] => [1,3] => ([(2,3)],4)
=> [2,1,1]
=> 1
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 2
[4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 3
[1,2,3,4,5] => [5] => ([],5)
=> [1,1,1,1,1]
=> 0
[1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 4
[1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 3
[1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 4
[1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 3
[1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 4
[1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> 2
[1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 4
[1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 3
[1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 4
[1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 3
[1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 4
[1,4,2,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> 2
[1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 4
[1,4,3,2,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 3
[1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 4
[1,4,5,2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 3
[1,4,5,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 4
[7,8,6,5,4,3,2,1] => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,5,6,7,4,3,2,1] => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,5,6,8,4,3,2,1] => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[6,5,7,8,4,3,2,1] => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,6,3,4,5,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,5,3,4,6,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,4,3,5,6,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,3,4,5,6,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,6,4,3,5,7,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,6,3,4,5,7,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,5,4,3,6,7,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,5,3,4,6,7,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,4,3,5,6,7,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,3,4,5,6,7,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,6,5,3,4,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,6,4,3,5,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,6,3,4,5,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,5,4,3,6,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,5,3,4,6,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,3,4,5,6,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[6,5,4,3,7,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[6,5,3,4,7,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[6,4,3,5,7,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[6,3,4,5,7,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[5,4,3,6,7,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[5,3,4,6,7,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[4,3,5,6,7,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,6,5,2,3,4,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,6,4,2,3,5,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,6,3,2,4,5,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,6,2,3,4,5,1] => [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,8,6,2,3,4,5,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,6,7,2,3,4,5,1] => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,6,8,2,3,4,5,1] => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,5,4,2,3,6,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,5,3,2,4,6,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,8,5,2,3,4,6,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,4,3,2,5,6,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,8,4,2,3,5,6,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,8,3,2,4,5,6,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,7,2,3,4,5,6,1] => [1,1,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[7,8,2,3,4,5,6,1] => [2,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,6,5,4,2,3,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,6,5,3,2,4,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,6,4,3,2,5,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,6,4,2,3,5,7,1] => [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,6,2,3,4,5,7,1] => [1,1,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,5,4,3,2,6,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,5,4,2,3,6,7,1] => [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
[8,4,5,2,3,6,7,1] => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7
Description
The degree of the cyclic sieving polynomial corresponding to an integer partition. Let λ be an integer partition of n and let N be the least common multiple of the parts of λ. Fix an arbitrary permutation π of cycle type λ. Then π induces a cyclic action of order N on {1,,n}. The corresponding character can be identified with the cyclic sieving polynomial Cλ(q) of this action, modulo qN1. Explicitly, it is pλ[p]qN/p, where [p]q=1++qp1 is the q-integer. This statistic records the degree of Cλ(q). Equivalently, it equals (11λ1)N, where λ1 is the largest part of λ. The statistic is undefined for the empty partition.
Mp00071: Permutations descent compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St000147: Integer partitions ⟶ ℤResult quality: 89% values known / values provided: 89%distinct values known / distinct values provided: 100%
Values
[1,2] => [2] => ([],2)
=> [1,1]
=> 1 = 0 + 1
[2,1] => [1,1] => ([(0,1)],2)
=> [2]
=> 2 = 1 + 1
[1,2,3] => [3] => ([],3)
=> [1,1,1]
=> 1 = 0 + 1
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> [3]
=> 3 = 2 + 1
[2,1,3] => [1,2] => ([(1,2)],3)
=> [2,1]
=> 2 = 1 + 1
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> [3]
=> 3 = 2 + 1
[3,1,2] => [1,2] => ([(1,2)],3)
=> [2,1]
=> 2 = 1 + 1
[3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 3 = 2 + 1
[1,2,3,4] => [4] => ([],4)
=> [1,1,1,1]
=> 1 = 0 + 1
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[2,1,3,4] => [1,3] => ([(2,3)],4)
=> [2,1,1]
=> 2 = 1 + 1
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[3,1,2,4] => [1,3] => ([(2,3)],4)
=> [2,1,1]
=> 2 = 1 + 1
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[3,4,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[4,1,2,3] => [1,3] => ([(2,3)],4)
=> [2,1,1]
=> 2 = 1 + 1
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[1,2,3,4,5] => [5] => ([],5)
=> [1,1,1,1,1]
=> 1 = 0 + 1
[1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> 3 = 2 + 1
[1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,4,2,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> 3 = 2 + 1
[1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,4,3,2,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,4,5,2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,4,5,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[7,8,6,5,4,3,2,1] => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,5,6,7,4,3,2,1] => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,5,6,8,4,3,2,1] => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[6,5,7,8,4,3,2,1] => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,6,3,4,5,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,5,3,4,6,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,4,3,5,6,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,3,4,5,6,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,4,3,5,7,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,3,4,5,7,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,5,4,3,6,7,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,5,3,4,6,7,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,4,3,5,6,7,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,3,4,5,6,7,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,6,5,3,4,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,6,4,3,5,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,6,3,4,5,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,5,4,3,6,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,5,3,4,6,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,3,4,5,6,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[6,5,4,3,7,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[6,5,3,4,7,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[6,4,3,5,7,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[6,3,4,5,7,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[5,4,3,6,7,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[5,3,4,6,7,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[4,3,5,6,7,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,6,5,2,3,4,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,6,4,2,3,5,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,6,3,2,4,5,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,6,2,3,4,5,1] => [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,8,6,2,3,4,5,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,7,2,3,4,5,1] => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,6,8,2,3,4,5,1] => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,5,4,2,3,6,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,5,3,2,4,6,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,8,5,2,3,4,6,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,4,3,2,5,6,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,8,4,2,3,5,6,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,8,3,2,4,5,6,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,2,3,4,5,6,1] => [1,1,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,8,2,3,4,5,6,1] => [2,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,5,4,2,3,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,5,3,2,4,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,4,3,2,5,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,4,2,3,5,7,1] => [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,2,3,4,5,7,1] => [1,1,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,5,4,3,2,6,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,5,4,2,3,6,7,1] => [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,4,5,2,3,6,7,1] => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
Description
The largest part of an integer partition.
Matching statistic: St000668
Mp00071: Permutations descent compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St000668: Integer partitions ⟶ ℤResult quality: 89% values known / values provided: 89%distinct values known / distinct values provided: 100%
Values
[1,2] => [2] => ([],2)
=> [1,1]
=> 1 = 0 + 1
[2,1] => [1,1] => ([(0,1)],2)
=> [2]
=> 2 = 1 + 1
[1,2,3] => [3] => ([],3)
=> [1,1,1]
=> 1 = 0 + 1
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> [3]
=> 3 = 2 + 1
[2,1,3] => [1,2] => ([(1,2)],3)
=> [2,1]
=> 2 = 1 + 1
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> [3]
=> 3 = 2 + 1
[3,1,2] => [1,2] => ([(1,2)],3)
=> [2,1]
=> 2 = 1 + 1
[3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 3 = 2 + 1
[1,2,3,4] => [4] => ([],4)
=> [1,1,1,1]
=> 1 = 0 + 1
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[2,1,3,4] => [1,3] => ([(2,3)],4)
=> [2,1,1]
=> 2 = 1 + 1
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[3,1,2,4] => [1,3] => ([(2,3)],4)
=> [2,1,1]
=> 2 = 1 + 1
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[3,4,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[4,1,2,3] => [1,3] => ([(2,3)],4)
=> [2,1,1]
=> 2 = 1 + 1
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[1,2,3,4,5] => [5] => ([],5)
=> [1,1,1,1,1]
=> 1 = 0 + 1
[1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> 3 = 2 + 1
[1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,4,2,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> 3 = 2 + 1
[1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,4,3,2,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,4,5,2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,4,5,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[7,8,6,5,4,3,2,1] => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,5,6,7,4,3,2,1] => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,5,6,8,4,3,2,1] => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[6,5,7,8,4,3,2,1] => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,6,3,4,5,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,5,3,4,6,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,4,3,5,6,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,3,4,5,6,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,4,3,5,7,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,3,4,5,7,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,5,4,3,6,7,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,5,3,4,6,7,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,4,3,5,6,7,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,3,4,5,6,7,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,6,5,3,4,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,6,4,3,5,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,6,3,4,5,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,5,4,3,6,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,5,3,4,6,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,3,4,5,6,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[6,5,4,3,7,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[6,5,3,4,7,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[6,4,3,5,7,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[6,3,4,5,7,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[5,4,3,6,7,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[5,3,4,6,7,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[4,3,5,6,7,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,6,5,2,3,4,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,6,4,2,3,5,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,6,3,2,4,5,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,6,2,3,4,5,1] => [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,8,6,2,3,4,5,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,7,2,3,4,5,1] => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,6,8,2,3,4,5,1] => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,5,4,2,3,6,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,5,3,2,4,6,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,8,5,2,3,4,6,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,4,3,2,5,6,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,8,4,2,3,5,6,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,8,3,2,4,5,6,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,2,3,4,5,6,1] => [1,1,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,8,2,3,4,5,6,1] => [2,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,5,4,2,3,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,5,3,2,4,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,4,3,2,5,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,4,2,3,5,7,1] => [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,2,3,4,5,7,1] => [1,1,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,5,4,3,2,6,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,5,4,2,3,6,7,1] => [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,4,5,2,3,6,7,1] => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
Description
The least common multiple of the parts of the partition.
Matching statistic: St000708
Mp00071: Permutations descent compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St000708: Integer partitions ⟶ ℤResult quality: 89% values known / values provided: 89%distinct values known / distinct values provided: 100%
Values
[1,2] => [2] => ([],2)
=> [1,1]
=> 1 = 0 + 1
[2,1] => [1,1] => ([(0,1)],2)
=> [2]
=> 2 = 1 + 1
[1,2,3] => [3] => ([],3)
=> [1,1,1]
=> 1 = 0 + 1
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> [3]
=> 3 = 2 + 1
[2,1,3] => [1,2] => ([(1,2)],3)
=> [2,1]
=> 2 = 1 + 1
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> [3]
=> 3 = 2 + 1
[3,1,2] => [1,2] => ([(1,2)],3)
=> [2,1]
=> 2 = 1 + 1
[3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 3 = 2 + 1
[1,2,3,4] => [4] => ([],4)
=> [1,1,1,1]
=> 1 = 0 + 1
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[2,1,3,4] => [1,3] => ([(2,3)],4)
=> [2,1,1]
=> 2 = 1 + 1
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[3,1,2,4] => [1,3] => ([(2,3)],4)
=> [2,1,1]
=> 2 = 1 + 1
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[3,4,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[4,1,2,3] => [1,3] => ([(2,3)],4)
=> [2,1,1]
=> 2 = 1 + 1
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[1,2,3,4,5] => [5] => ([],5)
=> [1,1,1,1,1]
=> 1 = 0 + 1
[1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> 3 = 2 + 1
[1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,4,2,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> 3 = 2 + 1
[1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,4,3,2,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,4,5,2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,4,5,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[7,8,6,5,4,3,2,1] => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,5,6,7,4,3,2,1] => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,5,6,8,4,3,2,1] => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[6,5,7,8,4,3,2,1] => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,6,3,4,5,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,5,3,4,6,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,4,3,5,6,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,3,4,5,6,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,4,3,5,7,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,3,4,5,7,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,5,4,3,6,7,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,5,3,4,6,7,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,4,3,5,6,7,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,3,4,5,6,7,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,6,5,3,4,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,6,4,3,5,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,6,3,4,5,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,5,4,3,6,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,5,3,4,6,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,3,4,5,6,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[6,5,4,3,7,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[6,5,3,4,7,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[6,4,3,5,7,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[6,3,4,5,7,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[5,4,3,6,7,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[5,3,4,6,7,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[4,3,5,6,7,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,6,5,2,3,4,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,6,4,2,3,5,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,6,3,2,4,5,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,6,2,3,4,5,1] => [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,8,6,2,3,4,5,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,7,2,3,4,5,1] => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,6,8,2,3,4,5,1] => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,5,4,2,3,6,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,5,3,2,4,6,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,8,5,2,3,4,6,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,4,3,2,5,6,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,8,4,2,3,5,6,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,8,3,2,4,5,6,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,2,3,4,5,6,1] => [1,1,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,8,2,3,4,5,6,1] => [2,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,5,4,2,3,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,5,3,2,4,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,4,3,2,5,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,4,2,3,5,7,1] => [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,2,3,4,5,7,1] => [1,1,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,5,4,3,2,6,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,5,4,2,3,6,7,1] => [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,4,5,2,3,6,7,1] => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
Description
The product of the parts of an integer partition.
Matching statistic: St001389
Mp00071: Permutations descent compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St001389: Integer partitions ⟶ ℤResult quality: 89% values known / values provided: 89%distinct values known / distinct values provided: 100%
Values
[1,2] => [2] => ([],2)
=> [1,1]
=> 1 = 0 + 1
[2,1] => [1,1] => ([(0,1)],2)
=> [2]
=> 2 = 1 + 1
[1,2,3] => [3] => ([],3)
=> [1,1,1]
=> 1 = 0 + 1
[1,3,2] => [2,1] => ([(0,2),(1,2)],3)
=> [3]
=> 3 = 2 + 1
[2,1,3] => [1,2] => ([(1,2)],3)
=> [2,1]
=> 2 = 1 + 1
[2,3,1] => [2,1] => ([(0,2),(1,2)],3)
=> [3]
=> 3 = 2 + 1
[3,1,2] => [1,2] => ([(1,2)],3)
=> [2,1]
=> 2 = 1 + 1
[3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 3 = 2 + 1
[1,2,3,4] => [4] => ([],4)
=> [1,1,1,1]
=> 1 = 0 + 1
[1,2,4,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[1,3,4,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[1,4,3,2] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[2,1,3,4] => [1,3] => ([(2,3)],4)
=> [2,1,1]
=> 2 = 1 + 1
[2,1,4,3] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[2,3,4,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[2,4,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[3,1,2,4] => [1,3] => ([(2,3)],4)
=> [2,1,1]
=> 2 = 1 + 1
[3,1,4,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[3,2,4,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[3,4,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[4,1,2,3] => [1,3] => ([(2,3)],4)
=> [2,1,1]
=> 2 = 1 + 1
[4,1,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[4,2,3,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[4,3,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[1,2,3,4,5] => [5] => ([],5)
=> [1,1,1,1,1]
=> 1 = 0 + 1
[1,2,3,5,4] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,2,4,5,3] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,2,5,4,3] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,3,2,4,5] => [2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> 3 = 2 + 1
[1,3,2,5,4] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,3,4,5,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,3,5,4,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,4,2,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> 3 = 2 + 1
[1,4,2,5,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,4,3,2,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,4,3,5,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[1,4,5,2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,4,5,3,2] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [5]
=> 5 = 4 + 1
[7,8,6,5,4,3,2,1] => [2,1,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,5,6,7,4,3,2,1] => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,5,6,8,4,3,2,1] => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[6,5,7,8,4,3,2,1] => [1,3,1,1,1,1] => ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,6,3,4,5,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,5,3,4,6,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,4,3,5,6,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,3,4,5,6,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,4,3,5,7,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,3,4,5,7,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,5,4,3,6,7,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,5,3,4,6,7,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,4,3,5,6,7,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,3,4,5,6,7,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,6,5,3,4,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,6,4,3,5,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,6,3,4,5,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,5,4,3,6,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,5,3,4,6,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,3,4,5,6,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[6,5,4,3,7,8,2,1] => [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[6,5,3,4,7,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[6,4,3,5,7,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[6,3,4,5,7,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[5,4,3,6,7,8,2,1] => [1,1,4,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[5,3,4,6,7,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[4,3,5,6,7,8,2,1] => [1,5,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,6,5,2,3,4,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,6,4,2,3,5,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,6,3,2,4,5,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,6,2,3,4,5,1] => [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,8,6,2,3,4,5,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,7,2,3,4,5,1] => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,6,8,2,3,4,5,1] => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,5,4,2,3,6,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,5,3,2,4,6,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,8,5,2,3,4,6,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,4,3,2,5,6,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,8,4,2,3,5,6,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,8,3,2,4,5,6,1] => [2,1,4,1] => ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,7,2,3,4,5,6,1] => [1,1,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[7,8,2,3,4,5,6,1] => [2,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,5,4,2,3,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,5,3,2,4,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,4,3,2,5,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,4,2,3,5,7,1] => [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,6,2,3,4,5,7,1] => [1,1,5,1] => ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,5,4,3,2,6,7,1] => [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,5,4,2,3,6,7,1] => [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
[8,4,5,2,3,6,7,1] => [1,2,4,1] => ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ?
=> ? = 7 + 1
Description
The number of partitions of the same length below the given integer partition. For a partition λ1λk>0, this number is \det\left( \binom{\lambda_{k+1-i}}{j-i+1} \right)_{1 \le i,j \le k}.
Matching statistic: St001721
Mp00064: Permutations reversePermutations
Mp00068: Permutations Simion-Schmidt mapPermutations
Mp00109: Permutations descent wordBinary words
St001721: Binary words ⟶ ℤResult quality: 74% values known / values provided: 74%distinct values known / distinct values provided: 100%
Values
[1,2] => [2,1] => [2,1] => 1 => 0
[2,1] => [1,2] => [1,2] => 0 => 1
[1,2,3] => [3,2,1] => [3,2,1] => 11 => 0
[1,3,2] => [2,3,1] => [2,3,1] => 01 => 2
[2,1,3] => [3,1,2] => [3,1,2] => 10 => 1
[2,3,1] => [1,3,2] => [1,3,2] => 01 => 2
[3,1,2] => [2,1,3] => [2,1,3] => 10 => 1
[3,2,1] => [1,2,3] => [1,3,2] => 01 => 2
[1,2,3,4] => [4,3,2,1] => [4,3,2,1] => 111 => 0
[1,2,4,3] => [3,4,2,1] => [3,4,2,1] => 011 => 3
[1,3,2,4] => [4,2,3,1] => [4,2,3,1] => 101 => 2
[1,3,4,2] => [2,4,3,1] => [2,4,3,1] => 011 => 3
[1,4,2,3] => [3,2,4,1] => [3,2,4,1] => 101 => 2
[1,4,3,2] => [2,3,4,1] => [2,4,3,1] => 011 => 3
[2,1,3,4] => [4,3,1,2] => [4,3,1,2] => 110 => 1
[2,1,4,3] => [3,4,1,2] => [3,4,1,2] => 010 => 3
[2,3,1,4] => [4,1,3,2] => [4,1,3,2] => 101 => 2
[2,3,4,1] => [1,4,3,2] => [1,4,3,2] => 011 => 3
[2,4,1,3] => [3,1,4,2] => [3,1,4,2] => 101 => 2
[2,4,3,1] => [1,3,4,2] => [1,4,3,2] => 011 => 3
[3,1,2,4] => [4,2,1,3] => [4,2,1,3] => 110 => 1
[3,1,4,2] => [2,4,1,3] => [2,4,1,3] => 010 => 3
[3,2,1,4] => [4,1,2,3] => [4,1,3,2] => 101 => 2
[3,2,4,1] => [1,4,2,3] => [1,4,3,2] => 011 => 3
[3,4,1,2] => [2,1,4,3] => [2,1,4,3] => 101 => 2
[3,4,2,1] => [1,2,4,3] => [1,4,3,2] => 011 => 3
[4,1,2,3] => [3,2,1,4] => [3,2,1,4] => 110 => 1
[4,1,3,2] => [2,3,1,4] => [2,4,1,3] => 010 => 3
[4,2,1,3] => [3,1,2,4] => [3,1,4,2] => 101 => 2
[4,2,3,1] => [1,3,2,4] => [1,4,3,2] => 011 => 3
[4,3,1,2] => [2,1,3,4] => [2,1,4,3] => 101 => 2
[4,3,2,1] => [1,2,3,4] => [1,4,3,2] => 011 => 3
[1,2,3,4,5] => [5,4,3,2,1] => [5,4,3,2,1] => 1111 => 0
[1,2,3,5,4] => [4,5,3,2,1] => [4,5,3,2,1] => 0111 => 4
[1,2,4,3,5] => [5,3,4,2,1] => [5,3,4,2,1] => 1011 => 3
[1,2,4,5,3] => [3,5,4,2,1] => [3,5,4,2,1] => 0111 => 4
[1,2,5,3,4] => [4,3,5,2,1] => [4,3,5,2,1] => 1011 => 3
[1,2,5,4,3] => [3,4,5,2,1] => [3,5,4,2,1] => 0111 => 4
[1,3,2,4,5] => [5,4,2,3,1] => [5,4,2,3,1] => 1101 => 2
[1,3,2,5,4] => [4,5,2,3,1] => [4,5,2,3,1] => 0101 => 4
[1,3,4,2,5] => [5,2,4,3,1] => [5,2,4,3,1] => 1011 => 3
[1,3,4,5,2] => [2,5,4,3,1] => [2,5,4,3,1] => 0111 => 4
[1,3,5,2,4] => [4,2,5,3,1] => [4,2,5,3,1] => 1011 => 3
[1,3,5,4,2] => [2,4,5,3,1] => [2,5,4,3,1] => 0111 => 4
[1,4,2,3,5] => [5,3,2,4,1] => [5,3,2,4,1] => 1101 => 2
[1,4,2,5,3] => [3,5,2,4,1] => [3,5,2,4,1] => 0101 => 4
[1,4,3,2,5] => [5,2,3,4,1] => [5,2,4,3,1] => 1011 => 3
[1,4,3,5,2] => [2,5,3,4,1] => [2,5,4,3,1] => 0111 => 4
[1,4,5,2,3] => [3,2,5,4,1] => [3,2,5,4,1] => 1011 => 3
[1,4,5,3,2] => [2,3,5,4,1] => [2,5,4,3,1] => 0111 => 4
[8,7,4,5,6,3,2,1] => [1,2,3,6,5,4,7,8] => ? => ? => ? = 7
[8,5,6,7,3,4,2,1] => [1,2,4,3,7,6,5,8] => ? => ? => ? = 7
[8,6,7,4,3,5,2,1] => [1,2,5,3,4,7,6,8] => ? => ? => ? = 7
[7,6,8,4,3,5,2,1] => [1,2,5,3,4,8,6,7] => ? => ? => ? = 7
[7,8,6,3,4,5,2,1] => [1,2,5,4,3,6,8,7] => ? => ? => ? = 7
[8,6,7,3,4,5,2,1] => [1,2,5,4,3,7,6,8] => ? => ? => ? = 7
[7,8,5,4,3,6,2,1] => [1,2,6,3,4,5,8,7] => ? => ? => ? = 7
[8,7,5,3,4,6,2,1] => [1,2,6,4,3,5,7,8] => ? => ? => ? = 7
[7,8,5,3,4,6,2,1] => [1,2,6,4,3,5,8,7] => ? => ? => ? = 7
[7,8,4,3,5,6,2,1] => [1,2,6,5,3,4,8,7] => ? => ? => ? = 7
[7,8,3,4,5,6,2,1] => [1,2,6,5,4,3,8,7] => ? => ? => ? = 7
[8,5,6,3,4,7,2,1] => [1,2,7,4,3,6,5,8] => ? => ? => ? = 7
[8,6,3,4,5,7,2,1] => [1,2,7,5,4,3,6,8] => ? => ? => ? = 7
[8,5,3,4,6,7,2,1] => [1,2,7,6,4,3,5,8] => ? => ? => ? = 7
[8,4,3,5,6,7,2,1] => [1,2,7,6,5,3,4,8] => ? => ? => ? = 7
[6,5,7,4,3,8,2,1] => [1,2,8,3,4,7,5,6] => ? => ? => ? = 7
[7,5,4,6,3,8,2,1] => [1,2,8,3,6,4,5,7] => ? => ? => ? = 7
[7,4,5,6,3,8,2,1] => [1,2,8,3,6,5,4,7] => ? => ? => ? = 7
[5,6,4,7,3,8,2,1] => [1,2,8,3,7,4,6,5] => ? => ? => ? = 7
[5,4,6,3,7,8,2,1] => [1,2,8,7,3,6,4,5] => ? => ? => ? = 7
[6,5,3,4,7,8,2,1] => [1,2,8,7,4,3,5,6] => ? => ? => ? = 7
[6,4,3,5,7,8,2,1] => [1,2,8,7,5,3,4,6] => ? => ? => ? = 7
[8,6,5,7,4,2,3,1] => [1,3,2,4,7,5,6,8] => ? => ? => ? = 7
[8,5,6,7,4,2,3,1] => [1,3,2,4,7,6,5,8] => ? => ? => ? = 7
[6,5,7,8,4,2,3,1] => [1,3,2,4,8,7,5,6] => ? => ? => ? = 7
[7,8,6,4,5,2,3,1] => [1,3,2,5,4,6,8,7] => ? => ? => ? = 7
[8,7,5,4,6,2,3,1] => [1,3,2,6,4,5,7,8] => ? => ? => ? = 7
[8,7,4,5,6,2,3,1] => [1,3,2,6,5,4,7,8] => ? => ? => ? = 7
[8,6,5,4,7,2,3,1] => [1,3,2,7,4,5,6,8] => ? => ? => ? = 7
[8,4,5,6,7,2,3,1] => [1,3,2,7,6,5,4,8] => ? => ? => ? = 7
[6,7,5,4,8,2,3,1] => [1,3,2,8,4,5,7,6] => ? => ? => ? = 7
[7,5,4,6,8,2,3,1] => [1,3,2,8,6,4,5,7] => ? => ? => ? = 7
[6,4,5,7,8,2,3,1] => [1,3,2,8,7,5,4,6] => ? => ? => ? = 7
[7,8,6,5,3,2,4,1] => [1,4,2,3,5,6,8,7] => ? => ? => ? = 7
[8,6,7,5,3,2,4,1] => [1,4,2,3,5,7,6,8] => ? => ? => ? = 7
[8,7,5,6,3,2,4,1] => [1,4,2,3,6,5,7,8] => ? => ? => ? = 7
[8,5,6,7,3,2,4,1] => [1,4,2,3,7,6,5,8] => ? => ? => ? = 7
[8,6,7,5,2,3,4,1] => [1,4,3,2,5,7,6,8] => ? => ? => ? = 7
[8,7,5,6,2,3,4,1] => [1,4,3,2,6,5,7,8] => ? => ? => ? = 7
[7,8,5,6,2,3,4,1] => [1,4,3,2,6,5,8,7] => ? => ? => ? = 7
[8,6,5,7,2,3,4,1] => [1,4,3,2,7,5,6,8] => ? => ? => ? = 7
[6,7,5,8,2,3,4,1] => [1,4,3,2,8,5,7,6] => ? => ? => ? = 7
[6,5,7,8,2,3,4,1] => [1,4,3,2,8,7,5,6] => ? => ? => ? = 7
[7,8,6,4,3,2,5,1] => [1,5,2,3,4,6,8,7] => ? => ? => ? = 7
[8,7,6,3,4,2,5,1] => [1,5,2,4,3,6,7,8] => ? => ? => ? = 7
[7,8,6,3,4,2,5,1] => [1,5,2,4,3,6,8,7] => ? => ? => ? = 7
[8,7,6,4,2,3,5,1] => [1,5,3,2,4,6,7,8] => ? => ? => ? = 7
[7,8,6,4,2,3,5,1] => [1,5,3,2,4,6,8,7] => ? => ? => ? = 7
[7,8,6,3,2,4,5,1] => [1,5,4,2,3,6,8,7] => ? => ? => ? = 7
[8,6,7,3,2,4,5,1] => [1,5,4,2,3,7,6,8] => ? => ? => ? = 7
Description
The degree of a binary word. A valley in a binary word is a letter 0 which is not immediately followed by a 1. A peak is a letter 1 which is not immediately followed by a 0. Let f be the map that replaces every valley with a peak. The degree of a binary word w is the number of times f has to be applied to obtain a binary word without zeros.
Matching statistic: St000734
Mp00061: Permutations to increasing treeBinary trees
Mp00017: Binary trees to 312-avoiding permutationPermutations
Mp00059: Permutations Robinson-Schensted insertion tableauStandard tableaux
St000734: Standard tableaux ⟶ ℤResult quality: 57% values known / values provided: 57%distinct values known / distinct values provided: 100%
Values
[1,2] => [.,[.,.]]
=> [2,1] => [[1],[2]]
=> 1 = 0 + 1
[2,1] => [[.,.],.]
=> [1,2] => [[1,2]]
=> 2 = 1 + 1
[1,2,3] => [.,[.,[.,.]]]
=> [3,2,1] => [[1],[2],[3]]
=> 1 = 0 + 1
[1,3,2] => [.,[[.,.],.]]
=> [2,3,1] => [[1,3],[2]]
=> 3 = 2 + 1
[2,1,3] => [[.,.],[.,.]]
=> [1,3,2] => [[1,2],[3]]
=> 2 = 1 + 1
[2,3,1] => [[.,[.,.]],.]
=> [2,1,3] => [[1,3],[2]]
=> 3 = 2 + 1
[3,1,2] => [[.,.],[.,.]]
=> [1,3,2] => [[1,2],[3]]
=> 2 = 1 + 1
[3,2,1] => [[[.,.],.],.]
=> [1,2,3] => [[1,2,3]]
=> 3 = 2 + 1
[1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [[1],[2],[3],[4]]
=> 1 = 0 + 1
[1,2,4,3] => [.,[.,[[.,.],.]]]
=> [3,4,2,1] => [[1,4],[2],[3]]
=> 4 = 3 + 1
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> [2,4,3,1] => [[1,3],[2],[4]]
=> 3 = 2 + 1
[1,3,4,2] => [.,[[.,[.,.]],.]]
=> [3,2,4,1] => [[1,4],[2],[3]]
=> 4 = 3 + 1
[1,4,2,3] => [.,[[.,.],[.,.]]]
=> [2,4,3,1] => [[1,3],[2],[4]]
=> 3 = 2 + 1
[1,4,3,2] => [.,[[[.,.],.],.]]
=> [2,3,4,1] => [[1,3,4],[2]]
=> 4 = 3 + 1
[2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,4,3,2] => [[1,2],[3],[4]]
=> 2 = 1 + 1
[2,1,4,3] => [[.,.],[[.,.],.]]
=> [1,3,4,2] => [[1,2,4],[3]]
=> 4 = 3 + 1
[2,3,1,4] => [[.,[.,.]],[.,.]]
=> [2,1,4,3] => [[1,3],[2,4]]
=> 3 = 2 + 1
[2,3,4,1] => [[.,[.,[.,.]]],.]
=> [3,2,1,4] => [[1,4],[2],[3]]
=> 4 = 3 + 1
[2,4,1,3] => [[.,[.,.]],[.,.]]
=> [2,1,4,3] => [[1,3],[2,4]]
=> 3 = 2 + 1
[2,4,3,1] => [[.,[[.,.],.]],.]
=> [2,3,1,4] => [[1,3,4],[2]]
=> 4 = 3 + 1
[3,1,2,4] => [[.,.],[.,[.,.]]]
=> [1,4,3,2] => [[1,2],[3],[4]]
=> 2 = 1 + 1
[3,1,4,2] => [[.,.],[[.,.],.]]
=> [1,3,4,2] => [[1,2,4],[3]]
=> 4 = 3 + 1
[3,2,1,4] => [[[.,.],.],[.,.]]
=> [1,2,4,3] => [[1,2,3],[4]]
=> 3 = 2 + 1
[3,2,4,1] => [[[.,.],[.,.]],.]
=> [1,3,2,4] => [[1,2,4],[3]]
=> 4 = 3 + 1
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> [2,1,4,3] => [[1,3],[2,4]]
=> 3 = 2 + 1
[3,4,2,1] => [[[.,[.,.]],.],.]
=> [2,1,3,4] => [[1,3,4],[2]]
=> 4 = 3 + 1
[4,1,2,3] => [[.,.],[.,[.,.]]]
=> [1,4,3,2] => [[1,2],[3],[4]]
=> 2 = 1 + 1
[4,1,3,2] => [[.,.],[[.,.],.]]
=> [1,3,4,2] => [[1,2,4],[3]]
=> 4 = 3 + 1
[4,2,1,3] => [[[.,.],.],[.,.]]
=> [1,2,4,3] => [[1,2,3],[4]]
=> 3 = 2 + 1
[4,2,3,1] => [[[.,.],[.,.]],.]
=> [1,3,2,4] => [[1,2,4],[3]]
=> 4 = 3 + 1
[4,3,1,2] => [[[.,.],.],[.,.]]
=> [1,2,4,3] => [[1,2,3],[4]]
=> 3 = 2 + 1
[4,3,2,1] => [[[[.,.],.],.],.]
=> [1,2,3,4] => [[1,2,3,4]]
=> 4 = 3 + 1
[1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [[1],[2],[3],[4],[5]]
=> 1 = 0 + 1
[1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [[1,5],[2],[3],[4]]
=> 5 = 4 + 1
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [[1,4],[2],[3],[5]]
=> 4 = 3 + 1
[1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [[1,5],[2],[3],[4]]
=> 5 = 4 + 1
[1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [[1,4],[2],[3],[5]]
=> 4 = 3 + 1
[1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [[1,4,5],[2],[3]]
=> 5 = 4 + 1
[1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [[1,3],[2],[4],[5]]
=> 3 = 2 + 1
[1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [[1,3,5],[2],[4]]
=> 5 = 4 + 1
[1,3,4,2,5] => [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [[1,4],[2,5],[3]]
=> 4 = 3 + 1
[1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [[1,5],[2],[3],[4]]
=> 5 = 4 + 1
[1,3,5,2,4] => [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [[1,4],[2,5],[3]]
=> 4 = 3 + 1
[1,3,5,4,2] => [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [[1,4,5],[2],[3]]
=> 5 = 4 + 1
[1,4,2,3,5] => [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [[1,3],[2],[4],[5]]
=> 3 = 2 + 1
[1,4,2,5,3] => [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [[1,3,5],[2],[4]]
=> 5 = 4 + 1
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [[1,3,4],[2],[5]]
=> 4 = 3 + 1
[1,4,3,5,2] => [.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [[1,3,5],[2],[4]]
=> 5 = 4 + 1
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [[1,4],[2,5],[3]]
=> 4 = 3 + 1
[1,4,5,3,2] => [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [[1,4,5],[2],[3]]
=> 5 = 4 + 1
[7,8,6,4,5,3,2,1] => [[[[[[.,[.,.]],.],[.,.]],.],.],.]
=> [2,1,3,5,4,6,7,8] => ?
=> ? = 7 + 1
[7,6,8,4,5,3,2,1] => ?
=> ? => ?
=> ? = 7 + 1
[7,8,5,4,6,3,2,1] => ?
=> ? => ?
=> ? = 7 + 1
[7,8,4,5,6,3,2,1] => ?
=> ? => ?
=> ? = 7 + 1
[8,6,5,4,7,3,2,1] => ?
=> ? => ?
=> ? = 7 + 1
[8,5,4,6,7,3,2,1] => ?
=> ? => ?
=> ? = 7 + 1
[6,7,5,4,8,3,2,1] => [[[[[[.,[.,.]],.],[.,.]],.],.],.]
=> [2,1,3,5,4,6,7,8] => ?
=> ? = 7 + 1
[8,6,5,7,3,4,2,1] => ?
=> ? => ?
=> ? = 7 + 1
[8,5,6,7,3,4,2,1] => [[[[[.,.],[.,[.,.]]],[.,.]],.],.]
=> [1,4,3,2,6,5,7,8] => ?
=> ? = 7 + 1
[6,5,7,8,3,4,2,1] => [[[[[.,.],[.,[.,.]]],[.,.]],.],.]
=> [1,4,3,2,6,5,7,8] => ?
=> ? = 7 + 1
[8,6,7,4,3,5,2,1] => ?
=> ? => ?
=> ? = 7 + 1
[7,8,6,3,4,5,2,1] => [[[[[.,[.,.]],.],[.,[.,.]]],.],.]
=> [2,1,3,6,5,4,7,8] => ?
=> ? = 7 + 1
[8,7,4,5,3,6,2,1] => ?
=> ? => ?
=> ? = 7 + 1
[7,8,5,3,4,6,2,1] => [[[[[.,[.,.]],.],[.,[.,.]]],.],.]
=> [2,1,3,6,5,4,7,8] => ?
=> ? = 7 + 1
[7,8,4,3,5,6,2,1] => ?
=> ? => ?
=> ? = 7 + 1
[7,8,3,4,5,6,2,1] => [[[[.,[.,.]],[.,[.,[.,.]]]],.],.]
=> [2,1,6,5,4,3,7,8] => ?
=> ? = 7 + 1
[8,5,6,4,3,7,2,1] => ?
=> ? => ?
=> ? = 7 + 1
[8,6,4,5,3,7,2,1] => ?
=> ? => ?
=> ? = 7 + 1
[8,5,6,3,4,7,2,1] => ?
=> ? => ?
=> ? = 7 + 1
[8,6,3,4,5,7,2,1] => ?
=> ? => ?
=> ? = 7 + 1
[8,5,4,3,6,7,2,1] => ?
=> ? => ?
=> ? = 7 + 1
[6,5,7,4,3,8,2,1] => ?
=> ? => ?
=> ? = 7 + 1
[7,4,5,6,3,8,2,1] => [[[[[.,.],[.,[.,.]]],[.,.]],.],.]
=> [1,4,3,2,6,5,7,8] => ?
=> ? = 7 + 1
[5,6,4,7,3,8,2,1] => ?
=> ? => ?
=> ? = 7 + 1
[6,4,5,7,3,8,2,1] => [[[[[.,.],[.,[.,.]]],[.,.]],.],.]
=> [1,4,3,2,6,5,7,8] => ?
=> ? = 7 + 1
[5,4,6,7,3,8,2,1] => [[[[[.,.],[.,[.,.]]],[.,.]],.],.]
=> [1,4,3,2,6,5,7,8] => ?
=> ? = 7 + 1
[6,7,5,3,4,8,2,1] => ?
=> ? => ?
=> ? = 7 + 1
[6,5,7,3,4,8,2,1] => ?
=> ? => ?
=> ? = 7 + 1
[5,6,4,3,7,8,2,1] => ?
=> ? => ?
=> ? = 7 + 1
[5,4,6,3,7,8,2,1] => ?
=> ? => ?
=> ? = 7 + 1
[6,4,3,5,7,8,2,1] => ?
=> ? => ?
=> ? = 7 + 1
[4,5,3,6,7,8,2,1] => ?
=> ? => ?
=> ? = 7 + 1
[6,7,5,8,4,2,3,1] => [[[[[.,[.,.]],[.,.]],.],[.,.]],.]
=> [2,1,4,3,5,7,6,8] => ?
=> ? = 7 + 1
[6,5,7,8,4,2,3,1] => ?
=> ? => ?
=> ? = 7 + 1
[7,8,6,4,5,2,3,1] => ?
=> ? => ?
=> ? = 7 + 1
[8,7,5,4,6,2,3,1] => ?
=> ? => ?
=> ? = 7 + 1
[8,7,4,5,6,2,3,1] => [[[[[.,.],.],[.,[.,.]]],[.,.]],.]
=> [1,2,5,4,3,7,6,8] => ?
=> ? = 7 + 1
[8,6,5,4,7,2,3,1] => ?
=> ? => ?
=> ? = 7 + 1
[8,6,4,5,7,2,3,1] => [[[[[.,.],.],[.,[.,.]]],[.,.]],.]
=> [1,2,5,4,3,7,6,8] => ?
=> ? = 7 + 1
[7,6,5,4,8,2,3,1] => ?
=> ? => ?
=> ? = 7 + 1
[6,7,5,4,8,2,3,1] => ?
=> ? => ?
=> ? = 7 + 1
[7,6,4,5,8,2,3,1] => [[[[[.,.],.],[.,[.,.]]],[.,.]],.]
=> [1,2,5,4,3,7,6,8] => ?
=> ? = 7 + 1
[7,5,4,6,8,2,3,1] => ?
=> ? => ?
=> ? = 7 + 1
[7,4,5,6,8,2,3,1] => ?
=> ? => ?
=> ? = 7 + 1
[6,5,4,7,8,2,3,1] => ?
=> ? => ?
=> ? = 7 + 1
[5,6,4,7,8,2,3,1] => ?
=> ? => ?
=> ? = 7 + 1
[6,4,5,7,8,2,3,1] => ?
=> ? => ?
=> ? = 7 + 1
[5,4,6,7,8,2,3,1] => ?
=> ? => ?
=> ? = 7 + 1
[7,8,5,6,3,2,4,1] => ?
=> ? => ?
=> ? = 7 + 1
[6,7,5,8,3,2,4,1] => [[[[[.,[.,.]],[.,.]],.],[.,.]],.]
=> [2,1,4,3,5,7,6,8] => ?
=> ? = 7 + 1
Description
The last entry in the first row of a standard tableau.
The following 62 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000645The sum of the areas of the rectangles formed by two consecutive peaks and the valley in between. St000141The maximum drop size of a permutation. St000054The first entry of the permutation. St000839The largest opener of a set partition. St000987The number of positive eigenvalues of the Laplacian matrix of the graph. St000171The degree of the graph. St000272The treewidth of a graph. St000362The size of a minimal vertex cover of a graph. St000454The largest eigenvalue of a graph if it is integral. St000536The pathwidth of a graph. St001120The length of a longest path in a graph. St001644The dimension of a graph. St001971The number of negative eigenvalues of the adjacency matrix of the graph. St000026The position of the first return of a Dyck path. St000097The order of the largest clique of the graph. St000098The chromatic number of a graph. St000172The Grundy number of a graph. St000363The number of minimal vertex covers of a graph. St001029The size of the core of a graph. St001108The 2-dynamic chromatic number of a graph. St001110The 3-dynamic chromatic number of a graph. St001116The game chromatic number of a graph. St001494The Alon-Tarsi number of a graph. St001580The acyclic chromatic number of a graph. St001581The achromatic number of a graph. St001670The connected partition number of a graph. St001883The mutual visibility number of a graph. St001330The hat guessing number of a graph. St000653The last descent of a permutation. St000727The largest label of a leaf in the binary search tree associated with the permutation. St000740The last entry of a permutation. St001497The position of the largest weak excedence of a permutation. St001725The harmonious chromatic number of a graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001645The pebbling number of a connected graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000019The cardinality of the support of a permutation. St000844The size of the largest block in the direct sum decomposition of a permutation. St001270The bandwidth of a graph. St001277The degeneracy of a graph. St001358The largest degree of a regular subgraph of a graph. St001962The proper pathwidth of a graph. St001302The number of minimally dominating sets of vertices of a graph. St001304The number of maximally independent sets of vertices of a graph. St001963The tree-depth of a graph. St000501The size of the first part in the decomposition of a permutation. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St000051The size of the left subtree of a binary tree. St000316The number of non-left-to-right-maxima of a permutation. St001227The vector space dimension of the first extension group between the socle of the regular module and the Jacobson radical of the corresponding Nakayama algebra. St001480The number of simple summands of the module J^2/J^3. St000822The Hadwiger number of the graph. St001812The biclique partition number of a graph. St000840The number of closers smaller than the largest opener in a perfect matching. St001742The difference of the maximal and the minimal degree in a graph. St000199The column of the unique '1' in the last row of the alternating sign matrix. St000200The row of the unique '1' in the last column of the alternating sign matrix. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001207The Lowey length of the algebra A/T when T is the 1-tilting module corresponding to the permutation in the Auslander algebra of K[x]/(x^n). St001877Number of indecomposable injective modules with projective dimension 2.