Processing math: 9%

Your data matches 27 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000290
Mp00109: Permutations descent wordBinary words
Mp00136: Binary words rotate back-to-frontBinary words
St000290: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[2,1,3] => 10 => 01 => 0 = 1 - 1
[3,1,2] => 10 => 01 => 0 = 1 - 1
[1,3,2,4] => 010 => 001 => 0 = 1 - 1
[1,4,2,3] => 010 => 001 => 0 = 1 - 1
[2,3,1,4] => 010 => 001 => 0 = 1 - 1
[2,4,1,3] => 010 => 001 => 0 = 1 - 1
[3,2,1,4] => 110 => 011 => 0 = 1 - 1
[3,4,1,2] => 010 => 001 => 0 = 1 - 1
[4,2,1,3] => 110 => 011 => 0 = 1 - 1
[4,3,1,2] => 110 => 011 => 0 = 1 - 1
[1,2,4,3,5] => 0010 => 0001 => 0 = 1 - 1
[1,2,5,3,4] => 0010 => 0001 => 0 = 1 - 1
[1,3,4,2,5] => 0010 => 0001 => 0 = 1 - 1
[1,3,5,2,4] => 0010 => 0001 => 0 = 1 - 1
[1,4,3,2,5] => 0110 => 0011 => 0 = 1 - 1
[1,4,5,2,3] => 0010 => 0001 => 0 = 1 - 1
[1,5,3,2,4] => 0110 => 0011 => 0 = 1 - 1
[1,5,4,2,3] => 0110 => 0011 => 0 = 1 - 1
[2,1,4,3,5] => 1010 => 0101 => 2 = 3 - 1
[2,1,5,3,4] => 1010 => 0101 => 2 = 3 - 1
[2,3,4,1,5] => 0010 => 0001 => 0 = 1 - 1
[2,3,5,1,4] => 0010 => 0001 => 0 = 1 - 1
[2,4,3,1,5] => 0110 => 0011 => 0 = 1 - 1
[2,4,5,1,3] => 0010 => 0001 => 0 = 1 - 1
[2,5,3,1,4] => 0110 => 0011 => 0 = 1 - 1
[2,5,4,1,3] => 0110 => 0011 => 0 = 1 - 1
[3,1,4,2,5] => 1010 => 0101 => 2 = 3 - 1
[3,1,5,2,4] => 1010 => 0101 => 2 = 3 - 1
[3,2,4,1,5] => 1010 => 0101 => 2 = 3 - 1
[3,2,5,1,4] => 1010 => 0101 => 2 = 3 - 1
[3,4,2,1,5] => 0110 => 0011 => 0 = 1 - 1
[3,4,5,1,2] => 0010 => 0001 => 0 = 1 - 1
[3,5,2,1,4] => 0110 => 0011 => 0 = 1 - 1
[3,5,4,1,2] => 0110 => 0011 => 0 = 1 - 1
[4,1,3,2,5] => 1010 => 0101 => 2 = 3 - 1
[4,1,5,2,3] => 1010 => 0101 => 2 = 3 - 1
[4,2,3,1,5] => 1010 => 0101 => 2 = 3 - 1
[4,2,5,1,3] => 1010 => 0101 => 2 = 3 - 1
[4,3,2,1,5] => 1110 => 0111 => 0 = 1 - 1
[4,3,5,1,2] => 1010 => 0101 => 2 = 3 - 1
[4,5,2,1,3] => 0110 => 0011 => 0 = 1 - 1
[4,5,3,1,2] => 0110 => 0011 => 0 = 1 - 1
[5,1,3,2,4] => 1010 => 0101 => 2 = 3 - 1
[5,1,4,2,3] => 1010 => 0101 => 2 = 3 - 1
[5,2,3,1,4] => 1010 => 0101 => 2 = 3 - 1
[5,2,4,1,3] => 1010 => 0101 => 2 = 3 - 1
[5,3,2,1,4] => 1110 => 0111 => 0 = 1 - 1
[5,3,4,1,2] => 1010 => 0101 => 2 = 3 - 1
[5,4,2,1,3] => 1110 => 0111 => 0 = 1 - 1
[5,4,3,1,2] => 1110 => 0111 => 0 = 1 - 1
Description
The major index of a binary word. This is the sum of the positions of descents, i.e., a one followed by a zero. For words of length n with a zeros, the generating function for the major index is the q-binomial coefficient \binom{n}{a}_q.
Matching statistic: St000456
Mp00070: Permutations Robinson-Schensted recording tableauStandard tableaux
Mp00295: Standard tableaux valley compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000456: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[2,1,3] => [[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
[3,1,2] => [[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,3,2,4] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,4,2,3] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,3,1,4] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,4,1,3] => [[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[3,2,1,4] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[3,4,1,2] => [[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[4,2,1,3] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[4,3,1,2] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,2,4,3,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,2,5,3,4] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,3,4,2,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,3,5,2,4] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,4,3,2,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,4,5,2,3] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,5,3,2,4] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,5,4,2,3] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,1,4,3,5] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,1,5,3,4] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,3,4,1,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,3,5,1,4] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,4,3,1,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,4,5,1,3] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,5,3,1,4] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,5,4,1,3] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,1,4,2,5] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,1,5,2,4] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2,4,1,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2,5,1,4] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,4,2,1,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,4,5,1,2] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,5,2,1,4] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,5,4,1,2] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[4,1,3,2,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,1,5,2,3] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,2,3,1,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,2,5,1,3] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,3,2,1,5] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[4,3,5,1,2] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,5,2,1,3] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[4,5,3,1,2] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[5,1,3,2,4] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,1,4,2,3] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,2,3,1,4] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,2,4,1,3] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,3,2,1,4] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[5,3,4,1,2] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,4,2,1,3] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[5,4,3,1,2] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
Description
The monochromatic index of a connected graph. This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path. For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Matching statistic: St000293
Mp00109: Permutations descent wordBinary words
Mp00136: Binary words rotate back-to-frontBinary words
Mp00096: Binary words Foata bijectionBinary words
St000293: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[2,1,3] => 10 => 01 => 01 => 0 = 1 - 1
[3,1,2] => 10 => 01 => 01 => 0 = 1 - 1
[1,3,2,4] => 010 => 001 => 001 => 0 = 1 - 1
[1,4,2,3] => 010 => 001 => 001 => 0 = 1 - 1
[2,3,1,4] => 010 => 001 => 001 => 0 = 1 - 1
[2,4,1,3] => 010 => 001 => 001 => 0 = 1 - 1
[3,2,1,4] => 110 => 011 => 011 => 0 = 1 - 1
[3,4,1,2] => 010 => 001 => 001 => 0 = 1 - 1
[4,2,1,3] => 110 => 011 => 011 => 0 = 1 - 1
[4,3,1,2] => 110 => 011 => 011 => 0 = 1 - 1
[1,2,4,3,5] => 0010 => 0001 => 0001 => 0 = 1 - 1
[1,2,5,3,4] => 0010 => 0001 => 0001 => 0 = 1 - 1
[1,3,4,2,5] => 0010 => 0001 => 0001 => 0 = 1 - 1
[1,3,5,2,4] => 0010 => 0001 => 0001 => 0 = 1 - 1
[1,4,3,2,5] => 0110 => 0011 => 0011 => 0 = 1 - 1
[1,4,5,2,3] => 0010 => 0001 => 0001 => 0 = 1 - 1
[1,5,3,2,4] => 0110 => 0011 => 0011 => 0 = 1 - 1
[1,5,4,2,3] => 0110 => 0011 => 0011 => 0 = 1 - 1
[2,1,4,3,5] => 1010 => 0101 => 1001 => 2 = 3 - 1
[2,1,5,3,4] => 1010 => 0101 => 1001 => 2 = 3 - 1
[2,3,4,1,5] => 0010 => 0001 => 0001 => 0 = 1 - 1
[2,3,5,1,4] => 0010 => 0001 => 0001 => 0 = 1 - 1
[2,4,3,1,5] => 0110 => 0011 => 0011 => 0 = 1 - 1
[2,4,5,1,3] => 0010 => 0001 => 0001 => 0 = 1 - 1
[2,5,3,1,4] => 0110 => 0011 => 0011 => 0 = 1 - 1
[2,5,4,1,3] => 0110 => 0011 => 0011 => 0 = 1 - 1
[3,1,4,2,5] => 1010 => 0101 => 1001 => 2 = 3 - 1
[3,1,5,2,4] => 1010 => 0101 => 1001 => 2 = 3 - 1
[3,2,4,1,5] => 1010 => 0101 => 1001 => 2 = 3 - 1
[3,2,5,1,4] => 1010 => 0101 => 1001 => 2 = 3 - 1
[3,4,2,1,5] => 0110 => 0011 => 0011 => 0 = 1 - 1
[3,4,5,1,2] => 0010 => 0001 => 0001 => 0 = 1 - 1
[3,5,2,1,4] => 0110 => 0011 => 0011 => 0 = 1 - 1
[3,5,4,1,2] => 0110 => 0011 => 0011 => 0 = 1 - 1
[4,1,3,2,5] => 1010 => 0101 => 1001 => 2 = 3 - 1
[4,1,5,2,3] => 1010 => 0101 => 1001 => 2 = 3 - 1
[4,2,3,1,5] => 1010 => 0101 => 1001 => 2 = 3 - 1
[4,2,5,1,3] => 1010 => 0101 => 1001 => 2 = 3 - 1
[4,3,2,1,5] => 1110 => 0111 => 0111 => 0 = 1 - 1
[4,3,5,1,2] => 1010 => 0101 => 1001 => 2 = 3 - 1
[4,5,2,1,3] => 0110 => 0011 => 0011 => 0 = 1 - 1
[4,5,3,1,2] => 0110 => 0011 => 0011 => 0 = 1 - 1
[5,1,3,2,4] => 1010 => 0101 => 1001 => 2 = 3 - 1
[5,1,4,2,3] => 1010 => 0101 => 1001 => 2 = 3 - 1
[5,2,3,1,4] => 1010 => 0101 => 1001 => 2 = 3 - 1
[5,2,4,1,3] => 1010 => 0101 => 1001 => 2 = 3 - 1
[5,3,2,1,4] => 1110 => 0111 => 0111 => 0 = 1 - 1
[5,3,4,1,2] => 1010 => 0101 => 1001 => 2 = 3 - 1
[5,4,2,1,3] => 1110 => 0111 => 0111 => 0 = 1 - 1
[5,4,3,1,2] => 1110 => 0111 => 0111 => 0 = 1 - 1
Description
The number of inversions of a binary word.
Matching statistic: St001311
Mp00070: Permutations Robinson-Schensted recording tableauStandard tableaux
Mp00295: Standard tableaux valley compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001311: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[2,1,3] => [[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[3,1,2] => [[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[1,3,2,4] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,4,2,3] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[2,3,1,4] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[2,4,1,3] => [[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,2,1,4] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,4,1,2] => [[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[4,2,1,3] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[4,3,1,2] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,2,4,3,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,2,5,3,4] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,3,4,2,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,3,5,2,4] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,4,3,2,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,4,5,2,3] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,5,3,2,4] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,5,4,2,3] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,1,4,3,5] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,1,5,3,4] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,3,4,1,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,3,5,1,4] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,4,3,1,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,4,5,1,3] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,5,3,1,4] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,5,4,1,3] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,1,4,2,5] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,1,5,2,4] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,2,4,1,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,2,5,1,4] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,4,2,1,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,4,5,1,2] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,5,2,1,4] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,5,4,1,2] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[4,1,3,2,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,1,5,2,3] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,2,3,1,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,2,5,1,3] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,3,2,1,5] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[4,3,5,1,2] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,5,2,1,3] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[4,5,3,1,2] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[5,1,3,2,4] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[5,1,4,2,3] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[5,2,3,1,4] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[5,2,4,1,3] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[5,3,2,1,4] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[5,3,4,1,2] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[5,4,2,1,3] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[5,4,3,1,2] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
Description
The cyclomatic number of a graph. This is the minimum number of edges that must be removed from the graph so that the result is a forest. This is also the first Betti number of the graph. It can be computed as c + m - n, where c is the number of connected components, m is the number of edges and n is the number of vertices.
Mp00061: Permutations to increasing treeBinary trees
Mp00009: Binary trees left rotateBinary trees
Mp00011: Binary trees to graphGraphs
St000422: Graphs ⟶ ℤResult quality: 16% values known / values provided: 16%distinct values known / distinct values provided: 20%
Values
[2,1,3] => [[.,.],[.,.]]
=> [[[.,.],.],.]
=> ([(0,2),(1,2)],3)
=> ? = 1 + 4
[3,1,2] => [[.,.],[.,.]]
=> [[[.,.],.],.]
=> ([(0,2),(1,2)],3)
=> ? = 1 + 4
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 4
[1,4,2,3] => [.,[[.,.],[.,.]]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 4
[2,3,1,4] => [[.,[.,.]],[.,.]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 4
[2,4,1,3] => [[.,[.,.]],[.,.]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 4
[3,2,1,4] => [[[.,.],.],[.,.]]
=> [[[[.,.],.],.],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 4
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 4
[4,2,1,3] => [[[.,.],.],[.,.]]
=> [[[[.,.],.],.],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 4
[4,3,1,2] => [[[.,.],.],[.,.]]
=> [[[[.,.],.],.],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 4
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 1 + 4
[1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 1 + 4
[1,3,4,2,5] => [.,[[.,[.,.]],[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[1,3,5,2,4] => [.,[[.,[.,.]],[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[1,5,3,2,4] => [.,[[[.,.],.],[.,.]]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[1,5,4,2,3] => [.,[[[.,.],.],[.,.]]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[2,1,5,3,4] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[2,3,4,1,5] => [[.,[.,[.,.]]],[.,.]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[2,3,5,1,4] => [[.,[.,[.,.]]],[.,.]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[2,4,3,1,5] => [[.,[[.,.],.]],[.,.]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[2,4,5,1,3] => [[.,[.,[.,.]]],[.,.]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[2,5,3,1,4] => [[.,[[.,.],.]],[.,.]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[2,5,4,1,3] => [[.,[[.,.],.]],[.,.]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[3,1,4,2,5] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[3,1,5,2,4] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[3,2,4,1,5] => [[[.,.],[.,.]],[.,.]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[3,2,5,1,4] => [[[.,.],[.,.]],[.,.]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[3,4,2,1,5] => [[[.,[.,.]],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[3,4,5,1,2] => [[.,[.,[.,.]]],[.,.]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[3,5,2,1,4] => [[[.,[.,.]],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[3,5,4,1,2] => [[.,[[.,.],.]],[.,.]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[4,1,3,2,5] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[4,1,5,2,3] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[4,2,3,1,5] => [[[.,.],[.,.]],[.,.]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[4,2,5,1,3] => [[[.,.],[.,.]],[.,.]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[4,3,5,1,2] => [[[.,.],[.,.]],[.,.]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[4,5,2,1,3] => [[[.,[.,.]],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[4,5,3,1,2] => [[[.,[.,.]],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[5,1,3,2,4] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[5,1,4,2,3] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[5,2,3,1,4] => [[[.,.],[.,.]],[.,.]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[5,2,4,1,3] => [[[.,.],[.,.]],[.,.]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[5,3,2,1,4] => [[[[.,.],.],.],[.,.]]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[5,3,4,1,2] => [[[.,.],[.,.]],[.,.]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[5,4,2,1,3] => [[[[.,.],.],.],[.,.]]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[5,4,3,1,2] => [[[[.,.],.],.],[.,.]]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[2,3,1,5,6,4,7] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,3,1,5,7,4,6] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,3,1,6,5,4,7] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,3,1,6,7,4,5] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,3,1,7,5,4,6] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,3,1,7,6,4,5] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,4,1,5,6,3,7] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,4,1,5,7,3,6] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,4,1,6,5,3,7] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,4,1,6,7,3,5] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,4,1,7,5,3,6] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,4,1,7,6,3,5] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,5,1,4,6,3,7] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,5,1,4,7,3,6] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,5,1,6,4,3,7] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,5,1,6,7,3,4] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,5,1,7,4,3,6] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,5,1,7,6,3,4] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,6,1,4,5,3,7] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,6,1,4,7,3,5] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,6,1,5,4,3,7] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,6,1,5,7,3,4] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,6,1,7,4,3,5] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,6,1,7,5,3,4] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,7,1,4,5,3,6] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,7,1,4,6,3,5] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,7,1,5,4,3,6] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,7,1,5,6,3,4] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,7,1,6,4,3,5] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,7,1,6,5,3,4] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,2,1,5,6,4,7] => [[[.,.],.],[[.,[.,.]],[.,.]]]
=> [[[[.,.],.],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,2,1,5,7,4,6] => [[[.,.],.],[[.,[.,.]],[.,.]]]
=> [[[[.,.],.],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,2,1,6,5,4,7] => [[[.,.],.],[[[.,.],.],[.,.]]]
=> [[[[.,.],.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,2,1,6,7,4,5] => [[[.,.],.],[[.,[.,.]],[.,.]]]
=> [[[[.,.],.],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,2,1,7,5,4,6] => [[[.,.],.],[[[.,.],.],[.,.]]]
=> [[[[.,.],.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,2,1,7,6,4,5] => [[[.,.],.],[[[.,.],.],[.,.]]]
=> [[[[.,.],.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,4,1,5,6,2,7] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,4,1,5,7,2,6] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,4,1,6,5,2,7] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,4,1,6,7,2,5] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,4,1,7,5,2,6] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,4,1,7,6,2,5] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,4,2,5,6,1,7] => [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> [[[[.,[.,.]],[.,[.,.]]],.],.]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,4,2,5,7,1,6] => [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> [[[[.,[.,.]],[.,[.,.]]],.],.]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,4,2,6,5,1,7] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> [[[[.,[.,.]],[[.,.],.]],.],.]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,4,2,6,7,1,5] => [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> [[[[.,[.,.]],[.,[.,.]]],.],.]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,4,2,7,5,1,6] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> [[[[.,[.,.]],[[.,.],.]],.],.]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,4,2,7,6,1,5] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> [[[[.,[.,.]],[[.,.],.]],.],.]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,5,1,4,6,2,7] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,5,1,4,7,2,6] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
Description
The energy of a graph, if it is integral. The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3]. The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph K_n equals 2n-2. For this reason, we do not define the energy of the empty graph.
Matching statistic: St000450
Mp00070: Permutations Robinson-Schensted recording tableauStandard tableaux
Mp00295: Standard tableaux valley compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000450: Graphs ⟶ ℤResult quality: 15% values known / values provided: 15%distinct values known / distinct values provided: 60%
Values
[2,1,3] => [[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
[3,1,2] => [[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,3,2,4] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,4,2,3] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,3,1,4] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,4,1,3] => [[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[3,2,1,4] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[3,4,1,2] => [[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[4,2,1,3] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[4,3,1,2] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,2,4,3,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,2,5,3,4] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,3,4,2,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,3,5,2,4] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,4,3,2,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,4,5,2,3] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,5,3,2,4] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,5,4,2,3] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,1,4,3,5] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,1,5,3,4] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,3,4,1,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,3,5,1,4] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,4,3,1,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,4,5,1,3] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,5,3,1,4] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,5,4,1,3] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,1,4,2,5] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,1,5,2,4] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2,4,1,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2,5,1,4] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,4,2,1,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,4,5,1,2] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,5,2,1,4] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,5,4,1,2] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[4,1,3,2,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,1,5,2,3] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,2,3,1,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,2,5,1,3] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,3,2,1,5] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[4,3,5,1,2] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,5,2,1,3] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[4,5,3,1,2] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[5,1,3,2,4] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,1,4,2,3] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,2,3,1,4] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,2,4,1,3] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,3,2,1,4] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[5,3,4,1,2] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,4,2,1,3] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[5,4,3,1,2] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,2,3,4,6,5,7] => [[1,2,3,4,5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,3,4,7,5,6] => [[1,2,3,4,5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,3,5,6,4,7] => [[1,2,3,4,5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,3,5,7,4,6] => [[1,2,3,4,5],[6,7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,3,6,5,4,7] => [[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,3,6,7,4,5] => [[1,2,3,4,5],[6,7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,3,7,5,4,6] => [[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,3,7,6,4,5] => [[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,4,3,6,5,7] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,4,3,7,5,6] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,4,5,6,3,7] => [[1,2,3,4,5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,4,5,7,3,6] => [[1,2,3,4,5],[6,7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,4,6,5,3,7] => [[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,4,6,7,3,5] => [[1,2,3,4,5],[6,7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,4,7,5,3,6] => [[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,4,7,6,3,5] => [[1,2,3,4],[5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,5,3,6,4,7] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,5,3,7,4,6] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,5,4,6,3,7] => [[1,2,3,5,7],[4],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,5,4,7,3,6] => [[1,2,3,5],[4,7],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,5,6,4,3,7] => [[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,5,6,7,3,4] => [[1,2,3,4,5],[6,7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,5,7,4,3,6] => [[1,2,3,4],[5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,5,7,6,3,4] => [[1,2,3,4],[5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,6,3,5,4,7] => [[1,2,3,5,7],[4],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,6,3,7,4,5] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,6,4,5,3,7] => [[1,2,3,5,7],[4],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,6,4,7,3,5] => [[1,2,3,5],[4,7],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,6,5,4,3,7] => [[1,2,3,7],[4],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,6,5,7,3,4] => [[1,2,3,5],[4,7],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,6,7,4,3,5] => [[1,2,3,4],[5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,6,7,5,3,4] => [[1,2,3,4],[5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,7,3,5,4,6] => [[1,2,3,5,7],[4],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,7,3,6,4,5] => [[1,2,3,5,7],[4],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,7,4,5,3,6] => [[1,2,3,5,7],[4],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,7,4,6,3,5] => [[1,2,3,5],[4,7],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,7,5,4,3,6] => [[1,2,3,7],[4],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,7,5,6,3,4] => [[1,2,3,5],[4,7],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,7,6,4,3,5] => [[1,2,3,7],[4],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,7,6,5,3,4] => [[1,2,3,7],[4],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,3,2,4,6,5,7] => [[1,2,4,5,7],[3,6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,3,2,4,7,5,6] => [[1,2,4,5,7],[3,6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,3,2,5,6,4,7] => [[1,2,4,5,7],[3,6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,3,2,5,7,4,6] => [[1,2,4,5],[3,6,7]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,3,2,6,5,4,7] => [[1,2,4,7],[3,5],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,3,2,6,7,4,5] => [[1,2,4,5],[3,6,7]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,3,2,7,5,4,6] => [[1,2,4,7],[3,5],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,3,2,7,6,4,5] => [[1,2,4,7],[3,5],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,3,4,2,6,5,7] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,3,4,2,7,5,6] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
Description
The number of edges minus the number of vertices plus 2 of a graph. When G is connected and planar, this is also the number of its faces. When G=(V,E) is a connected graph, this is its k-monochromatic index for k>2: for 2\leq k\leq |V|, the k-monochromatic index of G is the maximum number of edge colors allowed such that for each set S of k vertices, there exists a monochromatic tree in G which contains all vertices from S. It is shown in [1] that for k>2, this is given by this statistic.
Matching statistic: St000095
Mp00070: Permutations Robinson-Schensted recording tableauStandard tableaux
Mp00295: Standard tableaux valley compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000095: Graphs ⟶ ℤResult quality: 15% values known / values provided: 15%distinct values known / distinct values provided: 60%
Values
[2,1,3] => [[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[3,1,2] => [[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[1,3,2,4] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,4,2,3] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[2,3,1,4] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[2,4,1,3] => [[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,2,1,4] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,4,1,2] => [[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[4,2,1,3] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[4,3,1,2] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,2,4,3,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,2,5,3,4] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,3,4,2,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,3,5,2,4] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,4,3,2,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,4,5,2,3] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,5,3,2,4] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,5,4,2,3] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,1,4,3,5] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,1,5,3,4] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,3,4,1,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,3,5,1,4] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,4,3,1,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,4,5,1,3] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,5,3,1,4] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,5,4,1,3] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,1,4,2,5] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,1,5,2,4] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,2,4,1,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,2,5,1,4] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,4,2,1,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,4,5,1,2] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,5,2,1,4] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,5,4,1,2] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[4,1,3,2,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,1,5,2,3] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,2,3,1,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,2,5,1,3] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,3,2,1,5] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[4,3,5,1,2] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,5,2,1,3] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[4,5,3,1,2] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[5,1,3,2,4] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[5,1,4,2,3] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[5,2,3,1,4] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[5,2,4,1,3] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[5,3,2,1,4] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[5,3,4,1,2] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[5,4,2,1,3] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[5,4,3,1,2] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,2,3,4,6,5,7] => [[1,2,3,4,5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,3,4,7,5,6] => [[1,2,3,4,5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,3,5,6,4,7] => [[1,2,3,4,5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,3,5,7,4,6] => [[1,2,3,4,5],[6,7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,3,6,5,4,7] => [[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,3,6,7,4,5] => [[1,2,3,4,5],[6,7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,3,7,5,4,6] => [[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,3,7,6,4,5] => [[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,4,3,6,5,7] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,4,3,7,5,6] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,4,5,6,3,7] => [[1,2,3,4,5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,4,5,7,3,6] => [[1,2,3,4,5],[6,7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,4,6,5,3,7] => [[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,4,6,7,3,5] => [[1,2,3,4,5],[6,7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,4,7,5,3,6] => [[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,4,7,6,3,5] => [[1,2,3,4],[5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,5,3,6,4,7] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,5,3,7,4,6] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,5,4,6,3,7] => [[1,2,3,5,7],[4],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,5,4,7,3,6] => [[1,2,3,5],[4,7],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,5,6,4,3,7] => [[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,5,6,7,3,4] => [[1,2,3,4,5],[6,7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,5,7,4,3,6] => [[1,2,3,4],[5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,5,7,6,3,4] => [[1,2,3,4],[5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,6,3,5,4,7] => [[1,2,3,5,7],[4],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,6,3,7,4,5] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,6,4,5,3,7] => [[1,2,3,5,7],[4],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,6,4,7,3,5] => [[1,2,3,5],[4,7],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,6,5,4,3,7] => [[1,2,3,7],[4],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,6,5,7,3,4] => [[1,2,3,5],[4,7],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,6,7,4,3,5] => [[1,2,3,4],[5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,6,7,5,3,4] => [[1,2,3,4],[5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,7,3,5,4,6] => [[1,2,3,5,7],[4],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,7,3,6,4,5] => [[1,2,3,5,7],[4],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,7,4,5,3,6] => [[1,2,3,5,7],[4],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,7,4,6,3,5] => [[1,2,3,5],[4,7],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,7,5,4,3,6] => [[1,2,3,7],[4],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,7,5,6,3,4] => [[1,2,3,5],[4,7],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,7,6,4,3,5] => [[1,2,3,7],[4],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,7,6,5,3,4] => [[1,2,3,7],[4],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,3,2,4,6,5,7] => [[1,2,4,5,7],[3,6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,3,2,4,7,5,6] => [[1,2,4,5,7],[3,6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,3,2,5,6,4,7] => [[1,2,4,5,7],[3,6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,3,2,5,7,4,6] => [[1,2,4,5],[3,6,7]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,3,2,6,5,4,7] => [[1,2,4,7],[3,5],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,3,2,6,7,4,5] => [[1,2,4,5],[3,6,7]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,3,2,7,5,4,6] => [[1,2,4,7],[3,5],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,3,2,7,6,4,5] => [[1,2,4,7],[3,5],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,3,4,2,6,5,7] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,3,4,2,7,5,6] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
Description
The number of triangles of a graph. A triangle T of a graph G is a collection of three vertices \{u,v,w\} \in G such that they form K_3, the complete graph on three vertices.
Mp00071: Permutations descent compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000455: Graphs ⟶ ℤResult quality: 13% values known / values provided: 13%distinct values known / distinct values provided: 20%
Values
[2,1,3] => [1,2] => ([(1,2)],3)
=> 0 = 1 - 1
[3,1,2] => [1,2] => ([(1,2)],3)
=> 0 = 1 - 1
[1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,4,3,2,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,4,5,2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,5,3,2,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,5,4,2,3] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,1,4,3,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[2,1,5,3,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[2,3,4,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,3,5,1,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,4,3,1,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,4,5,1,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,5,3,1,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,5,4,1,3] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,1,4,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[3,1,5,2,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[3,2,4,1,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[3,2,5,1,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[3,4,2,1,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,4,5,1,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,5,2,1,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,5,4,1,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[4,1,3,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[4,1,5,2,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[4,2,3,1,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[4,2,5,1,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[4,3,2,1,5] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[4,3,5,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[4,5,2,1,3] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[4,5,3,1,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[5,1,3,2,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[5,1,4,2,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[5,2,3,1,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[5,2,4,1,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[5,3,2,1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[5,3,4,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[5,4,2,1,3] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[5,4,3,1,2] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,2,3,5,4,6] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,2,3,6,4,5] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,2,4,5,3,6] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,2,4,6,3,5] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,2,5,4,3,6] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,2,5,6,3,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,2,6,4,3,5] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,2,6,5,3,4] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,3,2,5,4,6] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,3,2,6,4,5] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,3,4,5,2,6] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,3,4,6,2,5] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,3,5,4,2,6] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,3,5,6,2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,3,6,4,2,5] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,3,6,5,2,4] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,4,2,5,3,6] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,4,2,6,3,5] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,4,3,5,2,6] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,4,3,6,2,5] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,4,5,3,2,6] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,4,5,6,2,3] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,5,2,4,3,6] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,5,2,6,3,4] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,5,3,4,2,6] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,5,3,6,2,4] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,5,4,6,2,3] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,6,2,4,3,5] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,6,2,5,3,4] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,6,3,4,2,5] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,6,3,5,2,4] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,6,4,5,2,3] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[2,1,3,5,4,6] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[2,1,3,6,4,5] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[2,1,4,5,3,6] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[2,1,4,6,3,5] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[2,1,5,4,3,6] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[2,1,5,6,3,4] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[2,1,6,4,3,5] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[2,1,6,5,3,4] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[2,3,1,5,4,6] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[2,3,1,6,4,5] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[2,4,1,5,3,6] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[2,4,1,6,3,5] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[2,4,3,5,1,6] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[2,4,3,6,1,5] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[2,5,1,4,3,6] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[2,5,1,6,3,4] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[2,5,3,4,1,6] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[2,5,3,6,1,4] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.
Mp00070: Permutations Robinson-Schensted recording tableauStandard tableaux
Mp00295: Standard tableaux valley compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001330: Graphs ⟶ ℤResult quality: 13% values known / values provided: 13%distinct values known / distinct values provided: 20%
Values
[2,1,3] => [[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,1,2] => [[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,3,2,4] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,4,2,3] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,3,1,4] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,4,1,3] => [[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,2,1,4] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,4,1,2] => [[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4,2,1,3] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4,3,1,2] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,2,4,3,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,2,5,3,4] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,3,4,2,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,3,5,2,4] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,4,3,2,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,4,5,2,3] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,5,3,2,4] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,5,4,2,3] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,1,4,3,5] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[2,1,5,3,4] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[2,3,4,1,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,3,5,1,4] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,4,3,1,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,4,5,1,3] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,5,3,1,4] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,5,4,1,3] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,1,4,2,5] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[3,1,5,2,4] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[3,2,4,1,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[3,2,5,1,4] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[3,4,2,1,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,4,5,1,2] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,5,2,1,4] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,5,4,1,2] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[4,1,3,2,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[4,1,5,2,3] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[4,2,3,1,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[4,2,5,1,3] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[4,3,2,1,5] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[4,3,5,1,2] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[4,5,2,1,3] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[4,5,3,1,2] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[5,1,3,2,4] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[5,1,4,2,3] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[5,2,3,1,4] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[5,2,4,1,3] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[5,3,2,1,4] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[5,3,4,1,2] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[5,4,2,1,3] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[5,4,3,1,2] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,2,3,5,4,6] => [[1,2,3,4,6],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,3,6,4,5] => [[1,2,3,4,6],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,4,5,3,6] => [[1,2,3,4,6],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,4,6,3,5] => [[1,2,3,4],[5,6]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,5,4,3,6] => [[1,2,3,6],[4],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,5,6,3,4] => [[1,2,3,4],[5,6]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,6,4,3,5] => [[1,2,3,6],[4],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,6,5,3,4] => [[1,2,3,6],[4],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,3,2,5,4,6] => [[1,2,4,6],[3,5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,3,2,6,4,5] => [[1,2,4,6],[3,5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,3,4,5,2,6] => [[1,2,3,4,6],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,3,4,6,2,5] => [[1,2,3,4],[5,6]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,3,5,4,2,6] => [[1,2,3,6],[4],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,3,5,6,2,4] => [[1,2,3,4],[5,6]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,3,6,4,2,5] => [[1,2,3,6],[4],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,3,6,5,2,4] => [[1,2,3],[4,6],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,4,2,5,3,6] => [[1,2,4,6],[3,5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,4,2,6,3,5] => [[1,2,4,6],[3,5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,4,3,5,2,6] => [[1,2,4,6],[3],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,4,3,6,2,5] => [[1,2,4],[3,6],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,4,5,3,2,6] => [[1,2,3,6],[4],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,4,5,6,2,3] => [[1,2,3,4],[5,6]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,5,2,4,3,6] => [[1,2,4,6],[3],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,5,2,6,3,4] => [[1,2,4,6],[3,5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,5,3,4,2,6] => [[1,2,4,6],[3],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,5,3,6,2,4] => [[1,2,4],[3,6],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,5,4,6,2,3] => [[1,2,4],[3,6],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,6,2,4,3,5] => [[1,2,4,6],[3],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,6,2,5,3,4] => [[1,2,4,6],[3],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,6,3,4,2,5] => [[1,2,4,6],[3],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,6,3,5,2,4] => [[1,2,4],[3,6],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,6,4,5,2,3] => [[1,2,4],[3,6],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[2,1,3,5,4,6] => [[1,3,4,6],[2,5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[2,1,3,6,4,5] => [[1,3,4,6],[2,5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[2,1,4,5,3,6] => [[1,3,4,6],[2,5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[2,1,4,6,3,5] => [[1,3,4],[2,5,6]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[2,1,5,4,3,6] => [[1,3,6],[2,4],[5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[2,1,5,6,3,4] => [[1,3,4],[2,5,6]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[2,1,6,4,3,5] => [[1,3,6],[2,4],[5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[2,1,6,5,3,4] => [[1,3,6],[2,4],[5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[2,3,1,5,4,6] => [[1,2,4,6],[3,5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[2,3,1,6,4,5] => [[1,2,4,6],[3,5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[2,4,1,5,3,6] => [[1,2,4,6],[3,5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[2,4,1,6,3,5] => [[1,2,4],[3,5,6]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[2,4,3,5,1,6] => [[1,2,4,6],[3],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[2,4,3,6,1,5] => [[1,2,4],[3,6],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[2,5,1,4,3,6] => [[1,2,6],[3,4],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[2,5,1,6,3,4] => [[1,2,4],[3,5,6]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[2,5,3,4,1,6] => [[1,2,4,6],[3],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[2,5,3,6,1,4] => [[1,2,4],[3,6],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of q possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number HG(G) of a graph G is the largest integer q such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of q possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Mp00068: Permutations Simion-Schmidt mapPermutations
Mp00061: Permutations to increasing treeBinary trees
Mp00011: Binary trees to graphGraphs
St000454: Graphs ⟶ ℤResult quality: 7% values known / values provided: 7%distinct values known / distinct values provided: 20%
Values
[2,1,3] => [2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 1 - 2
[3,1,2] => [3,1,2] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 1 - 2
[1,3,2,4] => [1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 2
[1,4,2,3] => [1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 2
[2,3,1,4] => [2,4,1,3] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 2
[2,4,1,3] => [2,4,1,3] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 2
[3,2,1,4] => [3,2,1,4] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 2
[3,4,1,2] => [3,4,1,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 2
[4,2,1,3] => [4,2,1,3] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 2
[4,3,1,2] => [4,3,1,2] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 2
[1,2,4,3,5] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[1,2,5,3,4] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[1,3,4,2,5] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[1,3,5,2,4] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[1,4,3,2,5] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[1,4,5,2,3] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[1,5,3,2,4] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[1,5,4,2,3] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[2,1,4,3,5] => [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 3 - 2
[2,1,5,3,4] => [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 3 - 2
[2,3,4,1,5] => [2,5,4,1,3] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[2,3,5,1,4] => [2,5,4,1,3] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[2,4,3,1,5] => [2,5,4,1,3] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[2,4,5,1,3] => [2,5,4,1,3] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[2,5,3,1,4] => [2,5,4,1,3] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[2,5,4,1,3] => [2,5,4,1,3] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[3,1,4,2,5] => [3,1,5,4,2] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 3 - 2
[3,1,5,2,4] => [3,1,5,4,2] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 3 - 2
[3,2,4,1,5] => [3,2,5,1,4] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 - 2
[3,2,5,1,4] => [3,2,5,1,4] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 - 2
[3,4,2,1,5] => [3,5,2,1,4] => [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[3,4,5,1,2] => [3,5,4,1,2] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[3,5,2,1,4] => [3,5,2,1,4] => [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[3,5,4,1,2] => [3,5,4,1,2] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[4,1,3,2,5] => [4,1,5,3,2] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 3 - 2
[4,1,5,2,3] => [4,1,5,3,2] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 3 - 2
[4,2,3,1,5] => [4,2,5,1,3] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 - 2
[4,2,5,1,3] => [4,2,5,1,3] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 - 2
[4,3,2,1,5] => [4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[4,3,5,1,2] => [4,3,5,1,2] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 - 2
[4,5,2,1,3] => [4,5,2,1,3] => [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[4,5,3,1,2] => [4,5,3,1,2] => [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[5,1,3,2,4] => [5,1,4,3,2] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 3 - 2
[5,1,4,2,3] => [5,1,4,3,2] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 3 - 2
[5,2,3,1,4] => [5,2,4,1,3] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 - 2
[5,2,4,1,3] => [5,2,4,1,3] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 - 2
[5,3,2,1,4] => [5,3,2,1,4] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[5,3,4,1,2] => [5,3,4,1,2] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 - 2
[5,4,2,1,3] => [5,4,2,1,3] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[5,4,3,1,2] => [5,4,3,1,2] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[3,4,2,5,6,1,7] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,4,2,5,7,1,6] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,4,2,6,5,1,7] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,4,2,6,7,1,5] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,4,2,7,5,1,6] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,4,2,7,6,1,5] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,5,2,4,6,1,7] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,5,2,4,7,1,6] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,5,2,6,4,1,7] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,5,2,6,7,1,4] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,5,2,7,4,1,6] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,5,2,7,6,1,4] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,6,2,4,5,1,7] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,6,2,4,7,1,5] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,6,2,5,4,1,7] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,6,2,5,7,1,4] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,6,2,7,4,1,5] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,6,2,7,5,1,4] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,7,2,4,5,1,6] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,7,2,4,6,1,5] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,7,2,5,4,1,6] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,7,2,5,6,1,4] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,7,2,6,4,1,5] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,7,2,6,5,1,4] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,3,2,5,6,1,7] => [4,3,2,7,6,1,5] => [[[[.,.],.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,3,2,5,7,1,6] => [4,3,2,7,6,1,5] => [[[[.,.],.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,3,2,6,5,1,7] => [4,3,2,7,6,1,5] => [[[[.,.],.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,3,2,6,7,1,5] => [4,3,2,7,6,1,5] => [[[[.,.],.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,3,2,7,5,1,6] => [4,3,2,7,6,1,5] => [[[[.,.],.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,3,2,7,6,1,5] => [4,3,2,7,6,1,5] => [[[[.,.],.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,5,2,3,6,1,7] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,5,2,3,7,1,6] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,5,2,6,3,1,7] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,5,2,6,7,1,3] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,5,2,7,3,1,6] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,5,2,7,6,1,3] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,5,3,6,7,1,2] => [4,7,3,6,5,1,2] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,5,3,7,6,1,2] => [4,7,3,6,5,1,2] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,6,2,3,5,1,7] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,6,2,3,7,1,5] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,6,2,5,3,1,7] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,6,2,5,7,1,3] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,6,2,7,3,1,5] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,6,2,7,5,1,3] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,6,3,5,7,1,2] => [4,7,3,6,5,1,2] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,6,3,7,5,1,2] => [4,7,3,6,5,1,2] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,7,2,3,5,1,6] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,7,2,3,6,1,5] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,7,2,5,3,1,6] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,7,2,5,6,1,3] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
Description
The largest eigenvalue of a graph if it is integral. If a graph is d-regular, then its largest eigenvalue equals d. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
The following 17 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000068The number of minimal elements in a poset. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001438The number of missing boxes of a skew partition. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001703The villainy of a graph. St001488The number of corners of a skew partition. St000638The number of up-down runs of a permutation. St001613The binary logarithm of the size of the center of a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St001618The cardinality of the Frattini sublattice of a lattice. St001845The number of join irreducibles minus the rank of a lattice. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001771The number of occurrences of the signed pattern 1-2 in a signed permutation. St001870The number of positive entries followed by a negative entry in a signed permutation. St001895The oddness of a signed permutation.