searching the database
Your data matches 27 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000290
Mp00109: Permutations —descent word⟶ Binary words
Mp00136: Binary words —rotate back-to-front⟶ Binary words
St000290: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00136: Binary words —rotate back-to-front⟶ Binary words
St000290: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[2,1,3] => 10 => 01 => 0 = 1 - 1
[3,1,2] => 10 => 01 => 0 = 1 - 1
[1,3,2,4] => 010 => 001 => 0 = 1 - 1
[1,4,2,3] => 010 => 001 => 0 = 1 - 1
[2,3,1,4] => 010 => 001 => 0 = 1 - 1
[2,4,1,3] => 010 => 001 => 0 = 1 - 1
[3,2,1,4] => 110 => 011 => 0 = 1 - 1
[3,4,1,2] => 010 => 001 => 0 = 1 - 1
[4,2,1,3] => 110 => 011 => 0 = 1 - 1
[4,3,1,2] => 110 => 011 => 0 = 1 - 1
[1,2,4,3,5] => 0010 => 0001 => 0 = 1 - 1
[1,2,5,3,4] => 0010 => 0001 => 0 = 1 - 1
[1,3,4,2,5] => 0010 => 0001 => 0 = 1 - 1
[1,3,5,2,4] => 0010 => 0001 => 0 = 1 - 1
[1,4,3,2,5] => 0110 => 0011 => 0 = 1 - 1
[1,4,5,2,3] => 0010 => 0001 => 0 = 1 - 1
[1,5,3,2,4] => 0110 => 0011 => 0 = 1 - 1
[1,5,4,2,3] => 0110 => 0011 => 0 = 1 - 1
[2,1,4,3,5] => 1010 => 0101 => 2 = 3 - 1
[2,1,5,3,4] => 1010 => 0101 => 2 = 3 - 1
[2,3,4,1,5] => 0010 => 0001 => 0 = 1 - 1
[2,3,5,1,4] => 0010 => 0001 => 0 = 1 - 1
[2,4,3,1,5] => 0110 => 0011 => 0 = 1 - 1
[2,4,5,1,3] => 0010 => 0001 => 0 = 1 - 1
[2,5,3,1,4] => 0110 => 0011 => 0 = 1 - 1
[2,5,4,1,3] => 0110 => 0011 => 0 = 1 - 1
[3,1,4,2,5] => 1010 => 0101 => 2 = 3 - 1
[3,1,5,2,4] => 1010 => 0101 => 2 = 3 - 1
[3,2,4,1,5] => 1010 => 0101 => 2 = 3 - 1
[3,2,5,1,4] => 1010 => 0101 => 2 = 3 - 1
[3,4,2,1,5] => 0110 => 0011 => 0 = 1 - 1
[3,4,5,1,2] => 0010 => 0001 => 0 = 1 - 1
[3,5,2,1,4] => 0110 => 0011 => 0 = 1 - 1
[3,5,4,1,2] => 0110 => 0011 => 0 = 1 - 1
[4,1,3,2,5] => 1010 => 0101 => 2 = 3 - 1
[4,1,5,2,3] => 1010 => 0101 => 2 = 3 - 1
[4,2,3,1,5] => 1010 => 0101 => 2 = 3 - 1
[4,2,5,1,3] => 1010 => 0101 => 2 = 3 - 1
[4,3,2,1,5] => 1110 => 0111 => 0 = 1 - 1
[4,3,5,1,2] => 1010 => 0101 => 2 = 3 - 1
[4,5,2,1,3] => 0110 => 0011 => 0 = 1 - 1
[4,5,3,1,2] => 0110 => 0011 => 0 = 1 - 1
[5,1,3,2,4] => 1010 => 0101 => 2 = 3 - 1
[5,1,4,2,3] => 1010 => 0101 => 2 = 3 - 1
[5,2,3,1,4] => 1010 => 0101 => 2 = 3 - 1
[5,2,4,1,3] => 1010 => 0101 => 2 = 3 - 1
[5,3,2,1,4] => 1110 => 0111 => 0 = 1 - 1
[5,3,4,1,2] => 1010 => 0101 => 2 = 3 - 1
[5,4,2,1,3] => 1110 => 0111 => 0 = 1 - 1
[5,4,3,1,2] => 1110 => 0111 => 0 = 1 - 1
Description
The major index of a binary word.
This is the sum of the positions of descents, i.e., a one followed by a zero.
For words of length n with a zeros, the generating function for the major index is the q-binomial coefficient \binom{n}{a}_q.
Matching statistic: St000456
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
Mp00295: Standard tableaux —valley composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000456: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00295: Standard tableaux —valley composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000456: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[2,1,3] => [[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
[3,1,2] => [[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,3,2,4] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,4,2,3] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,3,1,4] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,4,1,3] => [[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[3,2,1,4] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[3,4,1,2] => [[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[4,2,1,3] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[4,3,1,2] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,2,4,3,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,2,5,3,4] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,3,4,2,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,3,5,2,4] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,4,3,2,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,4,5,2,3] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,5,3,2,4] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,5,4,2,3] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,1,4,3,5] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,1,5,3,4] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,3,4,1,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,3,5,1,4] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,4,3,1,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,4,5,1,3] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,5,3,1,4] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,5,4,1,3] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,1,4,2,5] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,1,5,2,4] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2,4,1,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2,5,1,4] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,4,2,1,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,4,5,1,2] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,5,2,1,4] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,5,4,1,2] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[4,1,3,2,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,1,5,2,3] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,2,3,1,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,2,5,1,3] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,3,2,1,5] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[4,3,5,1,2] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,5,2,1,3] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[4,5,3,1,2] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[5,1,3,2,4] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,1,4,2,3] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,2,3,1,4] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,2,4,1,3] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,3,2,1,4] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[5,3,4,1,2] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,4,2,1,3] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[5,4,3,1,2] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
Description
The monochromatic index of a connected graph.
This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path.
For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Matching statistic: St000293
Mp00109: Permutations —descent word⟶ Binary words
Mp00136: Binary words —rotate back-to-front⟶ Binary words
Mp00096: Binary words —Foata bijection⟶ Binary words
St000293: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00136: Binary words —rotate back-to-front⟶ Binary words
Mp00096: Binary words —Foata bijection⟶ Binary words
St000293: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[2,1,3] => 10 => 01 => 01 => 0 = 1 - 1
[3,1,2] => 10 => 01 => 01 => 0 = 1 - 1
[1,3,2,4] => 010 => 001 => 001 => 0 = 1 - 1
[1,4,2,3] => 010 => 001 => 001 => 0 = 1 - 1
[2,3,1,4] => 010 => 001 => 001 => 0 = 1 - 1
[2,4,1,3] => 010 => 001 => 001 => 0 = 1 - 1
[3,2,1,4] => 110 => 011 => 011 => 0 = 1 - 1
[3,4,1,2] => 010 => 001 => 001 => 0 = 1 - 1
[4,2,1,3] => 110 => 011 => 011 => 0 = 1 - 1
[4,3,1,2] => 110 => 011 => 011 => 0 = 1 - 1
[1,2,4,3,5] => 0010 => 0001 => 0001 => 0 = 1 - 1
[1,2,5,3,4] => 0010 => 0001 => 0001 => 0 = 1 - 1
[1,3,4,2,5] => 0010 => 0001 => 0001 => 0 = 1 - 1
[1,3,5,2,4] => 0010 => 0001 => 0001 => 0 = 1 - 1
[1,4,3,2,5] => 0110 => 0011 => 0011 => 0 = 1 - 1
[1,4,5,2,3] => 0010 => 0001 => 0001 => 0 = 1 - 1
[1,5,3,2,4] => 0110 => 0011 => 0011 => 0 = 1 - 1
[1,5,4,2,3] => 0110 => 0011 => 0011 => 0 = 1 - 1
[2,1,4,3,5] => 1010 => 0101 => 1001 => 2 = 3 - 1
[2,1,5,3,4] => 1010 => 0101 => 1001 => 2 = 3 - 1
[2,3,4,1,5] => 0010 => 0001 => 0001 => 0 = 1 - 1
[2,3,5,1,4] => 0010 => 0001 => 0001 => 0 = 1 - 1
[2,4,3,1,5] => 0110 => 0011 => 0011 => 0 = 1 - 1
[2,4,5,1,3] => 0010 => 0001 => 0001 => 0 = 1 - 1
[2,5,3,1,4] => 0110 => 0011 => 0011 => 0 = 1 - 1
[2,5,4,1,3] => 0110 => 0011 => 0011 => 0 = 1 - 1
[3,1,4,2,5] => 1010 => 0101 => 1001 => 2 = 3 - 1
[3,1,5,2,4] => 1010 => 0101 => 1001 => 2 = 3 - 1
[3,2,4,1,5] => 1010 => 0101 => 1001 => 2 = 3 - 1
[3,2,5,1,4] => 1010 => 0101 => 1001 => 2 = 3 - 1
[3,4,2,1,5] => 0110 => 0011 => 0011 => 0 = 1 - 1
[3,4,5,1,2] => 0010 => 0001 => 0001 => 0 = 1 - 1
[3,5,2,1,4] => 0110 => 0011 => 0011 => 0 = 1 - 1
[3,5,4,1,2] => 0110 => 0011 => 0011 => 0 = 1 - 1
[4,1,3,2,5] => 1010 => 0101 => 1001 => 2 = 3 - 1
[4,1,5,2,3] => 1010 => 0101 => 1001 => 2 = 3 - 1
[4,2,3,1,5] => 1010 => 0101 => 1001 => 2 = 3 - 1
[4,2,5,1,3] => 1010 => 0101 => 1001 => 2 = 3 - 1
[4,3,2,1,5] => 1110 => 0111 => 0111 => 0 = 1 - 1
[4,3,5,1,2] => 1010 => 0101 => 1001 => 2 = 3 - 1
[4,5,2,1,3] => 0110 => 0011 => 0011 => 0 = 1 - 1
[4,5,3,1,2] => 0110 => 0011 => 0011 => 0 = 1 - 1
[5,1,3,2,4] => 1010 => 0101 => 1001 => 2 = 3 - 1
[5,1,4,2,3] => 1010 => 0101 => 1001 => 2 = 3 - 1
[5,2,3,1,4] => 1010 => 0101 => 1001 => 2 = 3 - 1
[5,2,4,1,3] => 1010 => 0101 => 1001 => 2 = 3 - 1
[5,3,2,1,4] => 1110 => 0111 => 0111 => 0 = 1 - 1
[5,3,4,1,2] => 1010 => 0101 => 1001 => 2 = 3 - 1
[5,4,2,1,3] => 1110 => 0111 => 0111 => 0 = 1 - 1
[5,4,3,1,2] => 1110 => 0111 => 0111 => 0 = 1 - 1
Description
The number of inversions of a binary word.
Matching statistic: St001311
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
Mp00295: Standard tableaux —valley composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001311: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00295: Standard tableaux —valley composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001311: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[2,1,3] => [[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[3,1,2] => [[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[1,3,2,4] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,4,2,3] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[2,3,1,4] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[2,4,1,3] => [[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,2,1,4] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,4,1,2] => [[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[4,2,1,3] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[4,3,1,2] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,2,4,3,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,2,5,3,4] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,3,4,2,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,3,5,2,4] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,4,3,2,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,4,5,2,3] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,5,3,2,4] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,5,4,2,3] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,1,4,3,5] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,1,5,3,4] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,3,4,1,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,3,5,1,4] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,4,3,1,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,4,5,1,3] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,5,3,1,4] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,5,4,1,3] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,1,4,2,5] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,1,5,2,4] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,2,4,1,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,2,5,1,4] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,4,2,1,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,4,5,1,2] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,5,2,1,4] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,5,4,1,2] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[4,1,3,2,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,1,5,2,3] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,2,3,1,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,2,5,1,3] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,3,2,1,5] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[4,3,5,1,2] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,5,2,1,3] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[4,5,3,1,2] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[5,1,3,2,4] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[5,1,4,2,3] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[5,2,3,1,4] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[5,2,4,1,3] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[5,3,2,1,4] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[5,3,4,1,2] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[5,4,2,1,3] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[5,4,3,1,2] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
Description
The cyclomatic number of a graph.
This is the minimum number of edges that must be removed from the graph so that the result is a forest. This is also the first Betti number of the graph. It can be computed as c + m - n, where c is the number of connected components, m is the number of edges and n is the number of vertices.
Matching statistic: St000422
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00009: Binary trees —left rotate⟶ Binary trees
Mp00011: Binary trees —to graph⟶ Graphs
St000422: Graphs ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 20%
Mp00009: Binary trees —left rotate⟶ Binary trees
Mp00011: Binary trees —to graph⟶ Graphs
St000422: Graphs ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 20%
Values
[2,1,3] => [[.,.],[.,.]]
=> [[[.,.],.],.]
=> ([(0,2),(1,2)],3)
=> ? = 1 + 4
[3,1,2] => [[.,.],[.,.]]
=> [[[.,.],.],.]
=> ([(0,2),(1,2)],3)
=> ? = 1 + 4
[1,3,2,4] => [.,[[.,.],[.,.]]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 4
[1,4,2,3] => [.,[[.,.],[.,.]]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 4
[2,3,1,4] => [[.,[.,.]],[.,.]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 4
[2,4,1,3] => [[.,[.,.]],[.,.]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 4
[3,2,1,4] => [[[.,.],.],[.,.]]
=> [[[[.,.],.],.],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 4
[3,4,1,2] => [[.,[.,.]],[.,.]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 4
[4,2,1,3] => [[[.,.],.],[.,.]]
=> [[[[.,.],.],.],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 4
[4,3,1,2] => [[[.,.],.],[.,.]]
=> [[[[.,.],.],.],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 4
[1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 1 + 4
[1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 1 + 4
[1,3,4,2,5] => [.,[[.,[.,.]],[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[1,3,5,2,4] => [.,[[.,[.,.]],[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[1,4,3,2,5] => [.,[[[.,.],.],[.,.]]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[1,5,3,2,4] => [.,[[[.,.],.],[.,.]]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[1,5,4,2,3] => [.,[[[.,.],.],[.,.]]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[2,1,5,3,4] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[2,3,4,1,5] => [[.,[.,[.,.]]],[.,.]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[2,3,5,1,4] => [[.,[.,[.,.]]],[.,.]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[2,4,3,1,5] => [[.,[[.,.],.]],[.,.]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[2,4,5,1,3] => [[.,[.,[.,.]]],[.,.]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[2,5,3,1,4] => [[.,[[.,.],.]],[.,.]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[2,5,4,1,3] => [[.,[[.,.],.]],[.,.]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[3,1,4,2,5] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[3,1,5,2,4] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[3,2,4,1,5] => [[[.,.],[.,.]],[.,.]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[3,2,5,1,4] => [[[.,.],[.,.]],[.,.]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[3,4,2,1,5] => [[[.,[.,.]],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[3,4,5,1,2] => [[.,[.,[.,.]]],[.,.]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[3,5,2,1,4] => [[[.,[.,.]],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[3,5,4,1,2] => [[.,[[.,.],.]],[.,.]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[4,1,3,2,5] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[4,1,5,2,3] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[4,2,3,1,5] => [[[.,.],[.,.]],[.,.]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[4,2,5,1,3] => [[[.,.],[.,.]],[.,.]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[4,3,5,1,2] => [[[.,.],[.,.]],[.,.]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[4,5,2,1,3] => [[[.,[.,.]],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[4,5,3,1,2] => [[[.,[.,.]],.],[.,.]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[5,1,3,2,4] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[5,1,4,2,3] => [[.,.],[[.,.],[.,.]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[5,2,3,1,4] => [[[.,.],[.,.]],[.,.]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[5,2,4,1,3] => [[[.,.],[.,.]],[.,.]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[5,3,2,1,4] => [[[[.,.],.],.],[.,.]]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[5,3,4,1,2] => [[[.,.],[.,.]],[.,.]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 4
[5,4,2,1,3] => [[[[.,.],.],.],[.,.]]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[5,4,3,1,2] => [[[[.,.],.],.],[.,.]]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 4
[2,3,1,5,6,4,7] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,3,1,5,7,4,6] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,3,1,6,5,4,7] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,3,1,6,7,4,5] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,3,1,7,5,4,6] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,3,1,7,6,4,5] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,4,1,5,6,3,7] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,4,1,5,7,3,6] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,4,1,6,5,3,7] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,4,1,6,7,3,5] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,4,1,7,5,3,6] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,4,1,7,6,3,5] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,5,1,4,6,3,7] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,5,1,4,7,3,6] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,5,1,6,4,3,7] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,5,1,6,7,3,4] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,5,1,7,4,3,6] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,5,1,7,6,3,4] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,6,1,4,5,3,7] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,6,1,4,7,3,5] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,6,1,5,4,3,7] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,6,1,5,7,3,4] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,6,1,7,4,3,5] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,6,1,7,5,3,4] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,7,1,4,5,3,6] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,7,1,4,6,3,5] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,7,1,5,4,3,6] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,7,1,5,6,3,4] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,7,1,6,4,3,5] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[2,7,1,6,5,3,4] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,2,1,5,6,4,7] => [[[.,.],.],[[.,[.,.]],[.,.]]]
=> [[[[.,.],.],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,2,1,5,7,4,6] => [[[.,.],.],[[.,[.,.]],[.,.]]]
=> [[[[.,.],.],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,2,1,6,5,4,7] => [[[.,.],.],[[[.,.],.],[.,.]]]
=> [[[[.,.],.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,2,1,6,7,4,5] => [[[.,.],.],[[.,[.,.]],[.,.]]]
=> [[[[.,.],.],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,2,1,7,5,4,6] => [[[.,.],.],[[[.,.],.],[.,.]]]
=> [[[[.,.],.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,2,1,7,6,4,5] => [[[.,.],.],[[[.,.],.],[.,.]]]
=> [[[[.,.],.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,4,1,5,6,2,7] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,4,1,5,7,2,6] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,4,1,6,5,2,7] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,4,1,6,7,2,5] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,4,1,7,5,2,6] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,4,1,7,6,2,5] => [[.,[.,.]],[[[.,.],.],[.,.]]]
=> [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,4,2,5,6,1,7] => [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> [[[[.,[.,.]],[.,[.,.]]],.],.]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,4,2,5,7,1,6] => [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> [[[[.,[.,.]],[.,[.,.]]],.],.]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,4,2,6,5,1,7] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> [[[[.,[.,.]],[[.,.],.]],.],.]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,4,2,6,7,1,5] => [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> [[[[.,[.,.]],[.,[.,.]]],.],.]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,4,2,7,5,1,6] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> [[[[.,[.,.]],[[.,.],.]],.],.]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,4,2,7,6,1,5] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> [[[[.,[.,.]],[[.,.],.]],.],.]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,5,1,4,6,2,7] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
[3,5,1,4,7,2,6] => [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [[[.,[.,.]],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 4 + 4
Description
The energy of a graph, if it is integral.
The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3].
The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph K_n equals 2n-2. For this reason, we do not define the energy of the empty graph.
Matching statistic: St000450
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
Mp00295: Standard tableaux —valley composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000450: Graphs ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 60%
Mp00295: Standard tableaux —valley composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000450: Graphs ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 60%
Values
[2,1,3] => [[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
[3,1,2] => [[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,3,2,4] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,4,2,3] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,3,1,4] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,4,1,3] => [[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[3,2,1,4] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[3,4,1,2] => [[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[4,2,1,3] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[4,3,1,2] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,2,4,3,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,2,5,3,4] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,3,4,2,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,3,5,2,4] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,4,3,2,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,4,5,2,3] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,5,3,2,4] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,5,4,2,3] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,1,4,3,5] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,1,5,3,4] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,3,4,1,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,3,5,1,4] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,4,3,1,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,4,5,1,3] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,5,3,1,4] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[2,5,4,1,3] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,1,4,2,5] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,1,5,2,4] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2,4,1,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,2,5,1,4] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[3,4,2,1,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,4,5,1,2] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,5,2,1,4] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,5,4,1,2] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[4,1,3,2,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,1,5,2,3] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,2,3,1,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,2,5,1,3] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,3,2,1,5] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[4,3,5,1,2] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[4,5,2,1,3] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[4,5,3,1,2] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[5,1,3,2,4] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,1,4,2,3] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,2,3,1,4] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,2,4,1,3] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,3,2,1,4] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[5,3,4,1,2] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[5,4,2,1,3] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[5,4,3,1,2] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,2,3,4,6,5,7] => [[1,2,3,4,5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,3,4,7,5,6] => [[1,2,3,4,5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,3,5,6,4,7] => [[1,2,3,4,5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,3,5,7,4,6] => [[1,2,3,4,5],[6,7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,3,6,5,4,7] => [[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,3,6,7,4,5] => [[1,2,3,4,5],[6,7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,3,7,5,4,6] => [[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,3,7,6,4,5] => [[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,4,3,6,5,7] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,4,3,7,5,6] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,4,5,6,3,7] => [[1,2,3,4,5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,4,5,7,3,6] => [[1,2,3,4,5],[6,7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,4,6,5,3,7] => [[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,4,6,7,3,5] => [[1,2,3,4,5],[6,7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,4,7,5,3,6] => [[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,4,7,6,3,5] => [[1,2,3,4],[5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,5,3,6,4,7] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,5,3,7,4,6] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,5,4,6,3,7] => [[1,2,3,5,7],[4],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,5,4,7,3,6] => [[1,2,3,5],[4,7],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,5,6,4,3,7] => [[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,5,6,7,3,4] => [[1,2,3,4,5],[6,7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,5,7,4,3,6] => [[1,2,3,4],[5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,5,7,6,3,4] => [[1,2,3,4],[5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,6,3,5,4,7] => [[1,2,3,5,7],[4],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,6,3,7,4,5] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,6,4,5,3,7] => [[1,2,3,5,7],[4],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,6,4,7,3,5] => [[1,2,3,5],[4,7],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,6,5,4,3,7] => [[1,2,3,7],[4],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,6,5,7,3,4] => [[1,2,3,5],[4,7],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,6,7,4,3,5] => [[1,2,3,4],[5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,6,7,5,3,4] => [[1,2,3,4],[5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,7,3,5,4,6] => [[1,2,3,5,7],[4],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,7,3,6,4,5] => [[1,2,3,5,7],[4],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,7,4,5,3,6] => [[1,2,3,5,7],[4],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,7,4,6,3,5] => [[1,2,3,5],[4,7],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,7,5,4,3,6] => [[1,2,3,7],[4],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,7,5,6,3,4] => [[1,2,3,5],[4,7],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,2,7,6,4,3,5] => [[1,2,3,7],[4],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,2,7,6,5,3,4] => [[1,2,3,7],[4],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1
[1,3,2,4,6,5,7] => [[1,2,4,5,7],[3,6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,3,2,4,7,5,6] => [[1,2,4,5,7],[3,6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,3,2,5,6,4,7] => [[1,2,4,5,7],[3,6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,3,2,5,7,4,6] => [[1,2,4,5],[3,6,7]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,3,2,6,5,4,7] => [[1,2,4,7],[3,5],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,3,2,6,7,4,5] => [[1,2,4,5],[3,6,7]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,3,2,7,5,4,6] => [[1,2,4,7],[3,5],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,3,2,7,6,4,5] => [[1,2,4,7],[3,5],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4
[1,3,4,2,6,5,7] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
[1,3,4,2,7,5,6] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5
Description
The number of edges minus the number of vertices plus 2 of a graph.
When G is connected and planar, this is also the number of its faces.
When G=(V,E) is a connected graph, this is its k-monochromatic index for k>2: for 2\leq k\leq |V|, the k-monochromatic index of G is the maximum number of edge colors allowed such that for each set S of k vertices, there exists a monochromatic tree in G which contains all vertices from S. It is shown in [1] that for k>2, this is given by this statistic.
Matching statistic: St000095
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
Mp00295: Standard tableaux —valley composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000095: Graphs ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 60%
Mp00295: Standard tableaux —valley composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000095: Graphs ⟶ ℤResult quality: 15% ●values known / values provided: 15%●distinct values known / distinct values provided: 60%
Values
[2,1,3] => [[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[3,1,2] => [[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 0 = 1 - 1
[1,3,2,4] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,4,2,3] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[2,3,1,4] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[2,4,1,3] => [[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,2,1,4] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,4,1,2] => [[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[4,2,1,3] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[4,3,1,2] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,2,4,3,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,2,5,3,4] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,3,4,2,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,3,5,2,4] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,4,3,2,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,4,5,2,3] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,5,3,2,4] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,5,4,2,3] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,1,4,3,5] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,1,5,3,4] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,3,4,1,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,3,5,1,4] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,4,3,1,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,4,5,1,3] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,5,3,1,4] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,5,4,1,3] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,1,4,2,5] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,1,5,2,4] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,2,4,1,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,2,5,1,4] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[3,4,2,1,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,4,5,1,2] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,5,2,1,4] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,5,4,1,2] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[4,1,3,2,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,1,5,2,3] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,2,3,1,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,2,5,1,3] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,3,2,1,5] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[4,3,5,1,2] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[4,5,2,1,3] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[4,5,3,1,2] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[5,1,3,2,4] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[5,1,4,2,3] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[5,2,3,1,4] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[5,2,4,1,3] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[5,3,2,1,4] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[5,3,4,1,2] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[5,4,2,1,3] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[5,4,3,1,2] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,2,3,4,6,5,7] => [[1,2,3,4,5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,3,4,7,5,6] => [[1,2,3,4,5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,3,5,6,4,7] => [[1,2,3,4,5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,3,5,7,4,6] => [[1,2,3,4,5],[6,7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,3,6,5,4,7] => [[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,3,6,7,4,5] => [[1,2,3,4,5],[6,7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,3,7,5,4,6] => [[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,3,7,6,4,5] => [[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,4,3,6,5,7] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,4,3,7,5,6] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,4,5,6,3,7] => [[1,2,3,4,5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,4,5,7,3,6] => [[1,2,3,4,5],[6,7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,4,6,5,3,7] => [[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,4,6,7,3,5] => [[1,2,3,4,5],[6,7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,4,7,5,3,6] => [[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,4,7,6,3,5] => [[1,2,3,4],[5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,5,3,6,4,7] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,5,3,7,4,6] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,5,4,6,3,7] => [[1,2,3,5,7],[4],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,5,4,7,3,6] => [[1,2,3,5],[4,7],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,5,6,4,3,7] => [[1,2,3,4,7],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,5,6,7,3,4] => [[1,2,3,4,5],[6,7]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,5,7,4,3,6] => [[1,2,3,4],[5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,5,7,6,3,4] => [[1,2,3,4],[5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,6,3,5,4,7] => [[1,2,3,5,7],[4],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,6,3,7,4,5] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,6,4,5,3,7] => [[1,2,3,5,7],[4],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,6,4,7,3,5] => [[1,2,3,5],[4,7],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,6,5,4,3,7] => [[1,2,3,7],[4],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,6,5,7,3,4] => [[1,2,3,5],[4,7],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,6,7,4,3,5] => [[1,2,3,4],[5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,6,7,5,3,4] => [[1,2,3,4],[5,7],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,7,3,5,4,6] => [[1,2,3,5,7],[4],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,7,3,6,4,5] => [[1,2,3,5,7],[4],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,7,4,5,3,6] => [[1,2,3,5,7],[4],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,7,4,6,3,5] => [[1,2,3,5],[4,7],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,7,5,4,3,6] => [[1,2,3,7],[4],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,7,5,6,3,4] => [[1,2,3,5],[4,7],[6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,2,7,6,4,3,5] => [[1,2,3,7],[4],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,2,7,6,5,3,4] => [[1,2,3,7],[4],[5],[6]]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 1 - 1
[1,3,2,4,6,5,7] => [[1,2,4,5,7],[3,6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,3,2,4,7,5,6] => [[1,2,4,5,7],[3,6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,3,2,5,6,4,7] => [[1,2,4,5,7],[3,6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,3,2,5,7,4,6] => [[1,2,4,5],[3,6,7]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,3,2,6,5,4,7] => [[1,2,4,7],[3,5],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,3,2,6,7,4,5] => [[1,2,4,5],[3,6,7]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,3,2,7,5,4,6] => [[1,2,4,7],[3,5],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,3,2,7,6,4,5] => [[1,2,4,7],[3,5],[6]]
=> [3,3,1] => ([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 4 - 1
[1,3,4,2,6,5,7] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
[1,3,4,2,7,5,6] => [[1,2,3,5,7],[4,6]]
=> [4,2,1] => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 5 - 1
Description
The number of triangles of a graph.
A triangle T of a graph G is a collection of three vertices \{u,v,w\} \in G such that they form K_3, the complete graph on three vertices.
Matching statistic: St000455
(load all 11 compositions to match this statistic)
(load all 11 compositions to match this statistic)
Mp00071: Permutations —descent composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 13% ●values known / values provided: 13%●distinct values known / distinct values provided: 20%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 13% ●values known / values provided: 13%●distinct values known / distinct values provided: 20%
Values
[2,1,3] => [1,2] => ([(1,2)],3)
=> 0 = 1 - 1
[3,1,2] => [1,2] => ([(1,2)],3)
=> 0 = 1 - 1
[1,3,2,4] => [2,2] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,4,2,3] => [2,2] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[2,3,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[2,4,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,2,1,4] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[3,4,1,2] => [2,2] => ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[4,2,1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[4,3,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 0 = 1 - 1
[1,2,4,3,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,2,5,3,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,3,4,2,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,3,5,2,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,4,3,2,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,4,5,2,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,5,3,2,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,5,4,2,3] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,1,4,3,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[2,1,5,3,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[2,3,4,1,5] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,3,5,1,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,4,3,1,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,4,5,1,3] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,5,3,1,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[2,5,4,1,3] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,1,4,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[3,1,5,2,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[3,2,4,1,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[3,2,5,1,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[3,4,2,1,5] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,4,5,1,2] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,5,2,1,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[3,5,4,1,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[4,1,3,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[4,1,5,2,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[4,2,3,1,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[4,2,5,1,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[4,3,2,1,5] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[4,3,5,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[4,5,2,1,3] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[4,5,3,1,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[5,1,3,2,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[5,1,4,2,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[5,2,3,1,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[5,2,4,1,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[5,3,2,1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[5,3,4,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[5,4,2,1,3] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[5,4,3,1,2] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0 = 1 - 1
[1,2,3,5,4,6] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,2,3,6,4,5] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,2,4,5,3,6] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,2,4,6,3,5] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,2,5,4,3,6] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,2,5,6,3,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,2,6,4,3,5] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,2,6,5,3,4] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,3,2,5,4,6] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,3,2,6,4,5] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,3,4,5,2,6] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,3,4,6,2,5] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,3,5,4,2,6] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,3,5,6,2,4] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,3,6,4,2,5] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,3,6,5,2,4] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,4,2,5,3,6] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,4,2,6,3,5] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,4,3,5,2,6] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,4,3,6,2,5] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,4,5,3,2,6] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,4,5,6,2,3] => [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[1,5,2,4,3,6] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,5,2,6,3,4] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,5,3,4,2,6] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,5,3,6,2,4] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,5,4,6,2,3] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,6,2,4,3,5] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,6,2,5,3,4] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,6,3,4,2,5] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,6,3,5,2,4] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[1,6,4,5,2,3] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[2,1,3,5,4,6] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[2,1,3,6,4,5] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[2,1,4,5,3,6] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[2,1,4,6,3,5] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[2,1,5,4,3,6] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[2,1,5,6,3,4] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[2,1,6,4,3,5] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[2,1,6,5,3,4] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[2,3,1,5,4,6] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[2,3,1,6,4,5] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[2,4,1,5,3,6] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[2,4,1,6,3,5] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[2,4,3,5,1,6] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[2,4,3,6,1,5] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[2,5,1,4,3,6] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[2,5,1,6,3,4] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[2,5,3,4,1,6] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
[2,5,3,6,1,4] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 - 1
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Matching statistic: St001330
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
Mp00295: Standard tableaux —valley composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 13% ●values known / values provided: 13%●distinct values known / distinct values provided: 20%
Mp00295: Standard tableaux —valley composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 13% ●values known / values provided: 13%●distinct values known / distinct values provided: 20%
Values
[2,1,3] => [[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[3,1,2] => [[1,3],[2]]
=> [2,1] => ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,3,2,4] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,4,2,3] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,3,1,4] => [[1,2,4],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,4,1,3] => [[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,2,1,4] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,4,1,2] => [[1,2],[3,4]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4,2,1,3] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4,3,1,2] => [[1,4],[2],[3]]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,2,4,3,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,2,5,3,4] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,3,4,2,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,3,5,2,4] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,4,3,2,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,4,5,2,3] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,5,3,2,4] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,5,4,2,3] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,1,4,3,5] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[2,1,5,3,4] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[2,3,4,1,5] => [[1,2,3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,3,5,1,4] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,4,3,1,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,4,5,1,3] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,5,3,1,4] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[2,5,4,1,3] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,1,4,2,5] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[3,1,5,2,4] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[3,2,4,1,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[3,2,5,1,4] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[3,4,2,1,5] => [[1,2,5],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,4,5,1,2] => [[1,2,3],[4,5]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,5,2,1,4] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[3,5,4,1,2] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[4,1,3,2,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[4,1,5,2,3] => [[1,3,5],[2,4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[4,2,3,1,5] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[4,2,5,1,3] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[4,3,2,1,5] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[4,3,5,1,2] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[4,5,2,1,3] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[4,5,3,1,2] => [[1,2],[3,5],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[5,1,3,2,4] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[5,1,4,2,3] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[5,2,3,1,4] => [[1,3,5],[2],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[5,2,4,1,3] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[5,3,2,1,4] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[5,3,4,1,2] => [[1,3],[2,5],[4]]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
[5,4,2,1,3] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[5,4,3,1,2] => [[1,5],[2],[3],[4]]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,2,3,5,4,6] => [[1,2,3,4,6],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,3,6,4,5] => [[1,2,3,4,6],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,4,5,3,6] => [[1,2,3,4,6],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,4,6,3,5] => [[1,2,3,4],[5,6]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,5,4,3,6] => [[1,2,3,6],[4],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,5,6,3,4] => [[1,2,3,4],[5,6]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,6,4,3,5] => [[1,2,3,6],[4],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,2,6,5,3,4] => [[1,2,3,6],[4],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,3,2,5,4,6] => [[1,2,4,6],[3,5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,3,2,6,4,5] => [[1,2,4,6],[3,5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,3,4,5,2,6] => [[1,2,3,4,6],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,3,4,6,2,5] => [[1,2,3,4],[5,6]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,3,5,4,2,6] => [[1,2,3,6],[4],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,3,5,6,2,4] => [[1,2,3,4],[5,6]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,3,6,4,2,5] => [[1,2,3,6],[4],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,3,6,5,2,4] => [[1,2,3],[4,6],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,4,2,5,3,6] => [[1,2,4,6],[3,5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,4,2,6,3,5] => [[1,2,4,6],[3,5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,4,3,5,2,6] => [[1,2,4,6],[3],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,4,3,6,2,5] => [[1,2,4],[3,6],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,4,5,3,2,6] => [[1,2,3,6],[4],[5]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,4,5,6,2,3] => [[1,2,3,4],[5,6]]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,5,2,4,3,6] => [[1,2,4,6],[3],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,5,2,6,3,4] => [[1,2,4,6],[3,5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,5,3,4,2,6] => [[1,2,4,6],[3],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,5,3,6,2,4] => [[1,2,4],[3,6],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,5,4,6,2,3] => [[1,2,4],[3,6],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,6,2,4,3,5] => [[1,2,4,6],[3],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,6,2,5,3,4] => [[1,2,4,6],[3],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,6,3,4,2,5] => [[1,2,4,6],[3],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,6,3,5,2,4] => [[1,2,4],[3,6],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[1,6,4,5,2,3] => [[1,2,4],[3,6],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[2,1,3,5,4,6] => [[1,3,4,6],[2,5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[2,1,3,6,4,5] => [[1,3,4,6],[2,5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[2,1,4,5,3,6] => [[1,3,4,6],[2,5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[2,1,4,6,3,5] => [[1,3,4],[2,5,6]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[2,1,5,4,3,6] => [[1,3,6],[2,4],[5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[2,1,5,6,3,4] => [[1,3,4],[2,5,6]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[2,1,6,4,3,5] => [[1,3,6],[2,4],[5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[2,1,6,5,3,4] => [[1,3,6],[2,4],[5]]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
[2,3,1,5,4,6] => [[1,2,4,6],[3,5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[2,3,1,6,4,5] => [[1,2,4,6],[3,5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[2,4,1,5,3,6] => [[1,2,4,6],[3,5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[2,4,1,6,3,5] => [[1,2,4],[3,5,6]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[2,4,3,5,1,6] => [[1,2,4,6],[3],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[2,4,3,6,1,5] => [[1,2,4],[3,6],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[2,5,1,4,3,6] => [[1,2,6],[3,4],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[2,5,1,6,3,4] => [[1,2,4],[3,5,6]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[2,5,3,4,1,6] => [[1,2,4,6],[3],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
[2,5,3,6,1,4] => [[1,2,4],[3,6],[5]]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 4 + 1
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of q possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number HG(G) of a graph G is the largest integer q such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of q possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000454
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00068: Permutations —Simion-Schmidt map⟶ Permutations
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00011: Binary trees —to graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 20%
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00011: Binary trees —to graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 7% ●values known / values provided: 7%●distinct values known / distinct values provided: 20%
Values
[2,1,3] => [2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 1 - 2
[3,1,2] => [3,1,2] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 1 - 2
[1,3,2,4] => [1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 2
[1,4,2,3] => [1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 2
[2,3,1,4] => [2,4,1,3] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 2
[2,4,1,3] => [2,4,1,3] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 2
[3,2,1,4] => [3,2,1,4] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 2
[3,4,1,2] => [3,4,1,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 2
[4,2,1,3] => [4,2,1,3] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 2
[4,3,1,2] => [4,3,1,2] => [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 - 2
[1,2,4,3,5] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[1,2,5,3,4] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[1,3,4,2,5] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[1,3,5,2,4] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[1,4,3,2,5] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[1,4,5,2,3] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[1,5,3,2,4] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[1,5,4,2,3] => [1,5,4,3,2] => [.,[[[[.,.],.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[2,1,4,3,5] => [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 3 - 2
[2,1,5,3,4] => [2,1,5,4,3] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 3 - 2
[2,3,4,1,5] => [2,5,4,1,3] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[2,3,5,1,4] => [2,5,4,1,3] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[2,4,3,1,5] => [2,5,4,1,3] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[2,4,5,1,3] => [2,5,4,1,3] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[2,5,3,1,4] => [2,5,4,1,3] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[2,5,4,1,3] => [2,5,4,1,3] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[3,1,4,2,5] => [3,1,5,4,2] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 3 - 2
[3,1,5,2,4] => [3,1,5,4,2] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 3 - 2
[3,2,4,1,5] => [3,2,5,1,4] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 - 2
[3,2,5,1,4] => [3,2,5,1,4] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 - 2
[3,4,2,1,5] => [3,5,2,1,4] => [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[3,4,5,1,2] => [3,5,4,1,2] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[3,5,2,1,4] => [3,5,2,1,4] => [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[3,5,4,1,2] => [3,5,4,1,2] => [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[4,1,3,2,5] => [4,1,5,3,2] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 3 - 2
[4,1,5,2,3] => [4,1,5,3,2] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 3 - 2
[4,2,3,1,5] => [4,2,5,1,3] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 - 2
[4,2,5,1,3] => [4,2,5,1,3] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 - 2
[4,3,2,1,5] => [4,3,2,1,5] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[4,3,5,1,2] => [4,3,5,1,2] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 - 2
[4,5,2,1,3] => [4,5,2,1,3] => [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[4,5,3,1,2] => [4,5,3,1,2] => [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[5,1,3,2,4] => [5,1,4,3,2] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 3 - 2
[5,1,4,2,3] => [5,1,4,3,2] => [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 3 - 2
[5,2,3,1,4] => [5,2,4,1,3] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 - 2
[5,2,4,1,3] => [5,2,4,1,3] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 - 2
[5,3,2,1,4] => [5,3,2,1,4] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[5,3,4,1,2] => [5,3,4,1,2] => [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 - 2
[5,4,2,1,3] => [5,4,2,1,3] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[5,4,3,1,2] => [5,4,3,1,2] => [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 - 2
[3,4,2,5,6,1,7] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,4,2,5,7,1,6] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,4,2,6,5,1,7] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,4,2,6,7,1,5] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,4,2,7,5,1,6] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,4,2,7,6,1,5] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,5,2,4,6,1,7] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,5,2,4,7,1,6] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,5,2,6,4,1,7] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,5,2,6,7,1,4] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,5,2,7,4,1,6] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,5,2,7,6,1,4] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,6,2,4,5,1,7] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,6,2,4,7,1,5] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,6,2,5,4,1,7] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,6,2,5,7,1,4] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,6,2,7,4,1,5] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,6,2,7,5,1,4] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,7,2,4,5,1,6] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,7,2,4,6,1,5] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,7,2,5,4,1,6] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,7,2,5,6,1,4] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,7,2,6,4,1,5] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[3,7,2,6,5,1,4] => [3,7,2,6,5,1,4] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,3,2,5,6,1,7] => [4,3,2,7,6,1,5] => [[[[.,.],.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,3,2,5,7,1,6] => [4,3,2,7,6,1,5] => [[[[.,.],.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,3,2,6,5,1,7] => [4,3,2,7,6,1,5] => [[[[.,.],.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,3,2,6,7,1,5] => [4,3,2,7,6,1,5] => [[[[.,.],.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,3,2,7,5,1,6] => [4,3,2,7,6,1,5] => [[[[.,.],.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,3,2,7,6,1,5] => [4,3,2,7,6,1,5] => [[[[.,.],.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,5,2,3,6,1,7] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,5,2,3,7,1,6] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,5,2,6,3,1,7] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,5,2,6,7,1,3] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,5,2,7,3,1,6] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,5,2,7,6,1,3] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,5,3,6,7,1,2] => [4,7,3,6,5,1,2] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,5,3,7,6,1,2] => [4,7,3,6,5,1,2] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,6,2,3,5,1,7] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,6,2,3,7,1,5] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,6,2,5,3,1,7] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,6,2,5,7,1,3] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,6,2,7,3,1,5] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,6,2,7,5,1,3] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,6,3,5,7,1,2] => [4,7,3,6,5,1,2] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,6,3,7,5,1,2] => [4,7,3,6,5,1,2] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,7,2,3,5,1,6] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,7,2,3,6,1,5] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,7,2,5,3,1,6] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
[4,7,2,5,6,1,3] => [4,7,2,6,5,1,3] => [[[.,[.,.]],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 2 = 4 - 2
Description
The largest eigenvalue of a graph if it is integral.
If a graph is d-regular, then its largest eigenvalue equals d. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
The following 17 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000068The number of minimal elements in a poset. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001438The number of missing boxes of a skew partition. St001001The number of indecomposable modules with projective and injective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001703The villainy of a graph. St001488The number of corners of a skew partition. St000638The number of up-down runs of a permutation. St001613The binary logarithm of the size of the center of a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St001618The cardinality of the Frattini sublattice of a lattice. St001845The number of join irreducibles minus the rank of a lattice. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001771The number of occurrences of the signed pattern 1-2 in a signed permutation. St001870The number of positive entries followed by a negative entry in a signed permutation. St001895The oddness of a signed permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!