searching the database
Your data matches 40 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000382
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00041: Integer compositions —conjugate⟶ Integer compositions
St000382: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00041: Integer compositions —conjugate⟶ Integer compositions
St000382: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,1] => [2] => 2
[2]
=> [1,1,0,0,1,0]
=> [2,1] => [2,1] => 2
[1,1]
=> [1,0,1,1,0,0]
=> [1,2] => [1,2] => 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => [2,1,1] => 2
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1] => [3] => 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => [1,1,2] => 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [2,1,1,1] => 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,1,1] => [3,1] => 3
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => [1,2,1] => 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,2,1] => [2,2] => 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1,1,2] => 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1] => [2,1,1,1,1] => 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,1,1] => [3,1,1] => 3
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => [3,1] => 3
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,2] => 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,3] => 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [2,1,2] => 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,5] => [1,1,1,1,2] => 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1] => [2,1,1,1,1,1] => 2
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,1,1] => [3,1,1,1] => 3
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,1] => [3,1,1] => 3
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [2,2,1] => 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [1,2,1,1] => 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => 4
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [2,1,2] => 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,2,1] => 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,2,2] => 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,4,1] => [2,1,1,2] => 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,6] => [1,1,1,1,1,2] => 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [7,1] => [2,1,1,1,1,1,1] => 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,1,1] => [3,1,1,1,1] => 3
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,1] => [3,1,1,1] => 3
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,2,1] => [2,2,1,1] => 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1] => 3
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [4,1] => 4
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [2,1,2] => 2
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,3,1] => 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [2,2,1] => 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [3,2] => 3
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,4,1] => [2,1,1,2] => 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,1,3] => 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,3,2] => [1,2,1,2] => 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,5,1] => [2,1,1,1,2] => 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,7] => [1,1,1,1,1,1,2] => 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [8,1] => [2,1,1,1,1,1,1,1] => 2
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [6,1,1] => [3,1,1,1,1,1] => 3
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,1] => [3,1,1,1,1] => 3
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,2,1] => [2,2,1,1,1] => 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,1,1] => [3,1,1,1] => 3
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,1,1,1] => [4,1,1] => 4
Description
The first part of an integer composition.
Matching statistic: St000297
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00109: Permutations —descent word⟶ Binary words
St000297: Binary words ⟶ ℤResult quality: 85% ●values known / values provided: 85%●distinct values known / distinct values provided: 100%
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00109: Permutations —descent word⟶ Binary words
St000297: Binary words ⟶ ℤResult quality: 85% ●values known / values provided: 85%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [2,1] => 1 => 1 = 2 - 1
[2]
=> [1,1,0,0,1,0]
=> [3,1,2] => 10 => 1 = 2 - 1
[1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => 01 => 0 = 1 - 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 100 => 1 = 2 - 1
[2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 11 => 2 = 3 - 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 001 => 0 = 1 - 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => 1000 => 1 = 2 - 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 110 => 2 = 3 - 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 010 => 0 = 1 - 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 101 => 1 = 2 - 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 0001 => 0 = 1 - 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => 10000 => 1 = 2 - 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => 1100 => 2 = 3 - 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 110 => 2 = 3 - 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 101 => 1 = 2 - 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 011 => 0 = 1 - 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1001 => 1 = 2 - 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 00001 => 0 = 1 - 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,6] => 100000 => 1 = 2 - 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [6,2,1,3,4,5] => 11000 => 2 = 3 - 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => 1100 => 2 = 3 - 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 1010 => 1 = 2 - 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => 0100 => 0 = 1 - 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 111 => 3 = 4 - 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 1001 => 1 = 2 - 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 0010 => 0 = 1 - 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 0101 => 0 = 1 - 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => 10001 => 1 = 2 - 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => 000001 => 0 = 1 - 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [8,1,2,3,4,5,6,7] => 1000000 => 1 = 2 - 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => 110000 => 2 = 3 - 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [6,3,1,2,4,5] => 11000 => 2 = 3 - 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [6,2,3,1,4,5] => 10100 => 1 = 2 - 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => 1100 => 2 = 3 - 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => 1110 => 3 = 4 - 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 1001 => 1 = 2 - 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => 0110 => 0 = 1 - 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 1010 => 1 = 2 - 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 1101 => 2 = 3 - 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => 10001 => 1 = 2 - 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 0011 => 0 = 1 - 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,6,1] => 01001 => 0 = 1 - 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => 100001 => 1 = 2 - 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => 0000001 => 0 = 1 - 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1,2,3,4,5,6,7,8] => 10000000 => 1 = 2 - 1
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [8,2,1,3,4,5,6,7] => 1100000 => 2 = 3 - 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [7,3,1,2,4,5,6] => 110000 => 2 = 3 - 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => 101000 => 1 = 2 - 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => 11000 => 2 = 3 - 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [6,3,2,1,4,5] => 11100 => 3 = 4 - 1
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [9,3,2,1,4,5,6,7,8] => ? => ? = 4 - 1
[7,2,1,1]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [8,3,2,4,1,5,6,7] => ? => ? = 3 - 1
[4,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [5,2,3,4,6,7,8,9,1] => ? => ? = 2 - 1
[2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [3,4,5,2,6,7,8,9,1] => ? => ? = 1 - 1
[2,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [3,4,2,5,6,7,8,9,10,1] => ? => ? = 1 - 1
[9,2,1]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [10,3,2,1,4,5,6,7,8,9] => ? => ? = 4 - 1
[8,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0]
=> [9,5,1,2,3,4,6,7,8] => ? => ? = 3 - 1
[8,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0]
=> [9,4,2,1,3,5,6,7,8] => ? => ? = 4 - 1
[8,2,1,1]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,1,0]
=> [9,3,2,4,1,5,6,7,8] => ? => ? = 3 - 1
[7,3,2]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0,1,0]
=> [8,4,3,1,2,5,6,7] => ? => ? = 4 - 1
[7,2,1,1,1]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0]
=> [8,3,2,4,5,1,6,7] => ? => ? = 3 - 1
[5,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [6,3,2,4,5,7,8,1] => ? => ? = 3 - 1
[5,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [6,2,3,4,5,7,8,9,1] => ? => ? = 2 - 1
[4,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> [5,3,2,4,6,7,8,9,1] => ? => ? = 3 - 1
[4,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0]
=> [5,2,3,4,6,7,8,9,10,1] => ? => ? = 2 - 1
[3,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [4,3,5,2,6,7,8,9,1] => ? => ? = 2 - 1
[2,2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [3,4,5,6,2,7,8,9,1] => ? => ? = 1 - 1
[2,2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0]
=> [3,4,5,2,6,7,8,9,10,1] => ? => ? = 1 - 1
[2,2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0]
=> [3,4,2,5,6,7,8,9,10,11,1] => ? => ? = 1 - 1
[2,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,9,10,11,12,1] => ? => ? = 2 - 1
[9,4]
=> [1,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,0,1,0]
=> [10,5,1,2,3,4,6,7,8,9] => ? => ? = 3 - 1
[9,3,1]
=> [1,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,0,1,0]
=> [10,4,2,1,3,5,6,7,8,9] => ? => ? = 4 - 1
[9,2,1,1]
=> [1,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [10,3,2,4,1,5,6,7,8,9] => ? => ? = 3 - 1
[8,4,1]
=> [1,1,1,1,1,1,0,1,0,0,0,1,0,0,0,0,1,0]
=> [9,5,2,1,3,4,6,7,8] => ? => ? = 4 - 1
[8,3,2]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0,1,0]
=> [9,4,3,1,2,5,6,7,8] => ? => ? = 4 - 1
[8,3,1,1]
=> [1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,0,1,0]
=> [9,4,2,3,1,5,6,7,8] => ? => ? = 3 - 1
[8,2,2,1]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0,1,0]
=> [9,3,4,2,1,5,6,7,8] => ? => ? = 2 - 1
[8,2,1,1,1]
=> [1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [9,3,2,4,5,1,6,7,8] => ? => ? = 3 - 1
[7,5,1]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0,1,0]
=> [8,6,2,1,3,4,5,7] => ? => ? = 4 - 1
[7,4,1,1]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0,1,0]
=> [8,5,2,3,1,4,6,7] => ? => ? = 3 - 1
[7,2,2,1,1]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0,1,0]
=> [8,3,4,2,5,1,6,7] => ? => ? = 2 - 1
[6,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [7,2,3,4,5,6,8,9,1] => ? => ? = 2 - 1
[5,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [6,4,2,3,5,7,8,1] => ? => ? = 3 - 1
[5,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [6,3,4,2,5,7,8,1] => ? => ? = 2 - 1
[5,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,1,0,0,0,0]
=> [6,3,2,4,5,7,8,9,1] => ? => ? = 3 - 1
[4,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [5,6,2,3,4,7,8,1] => ? => ? = 1 - 1
[4,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [5,3,4,6,2,7,8,1] => ? => ? = 2 - 1
[4,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,0]
=> [5,3,4,2,6,7,8,9,1] => ? => ? = 2 - 1
[3,3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [4,5,3,6,2,7,8,1] => ? => ? = 1 - 1
[3,3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> [4,5,3,2,6,7,8,9,1] => ? => ? = 1 - 1
[3,2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0]
=> [4,3,5,6,2,7,8,9,1] => ? => ? = 2 - 1
[2,2,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,4,5,6,7,2,8,9,1] => ? => ? = 1 - 1
[2,2,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0]
=> [3,4,5,2,6,7,8,9,10,11,1] => ? => ? = 1 - 1
[9,3,2]
=> [1,1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0,0,1,0]
=> [10,4,3,1,2,5,6,7,8,9] => ? => ? = 4 - 1
[8,4,2]
=> [1,1,1,1,1,1,0,0,1,0,0,1,0,0,0,0,1,0]
=> [9,5,3,1,2,4,6,7,8] => ? => ? = 4 - 1
[8,3,3]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0,1,0]
=> [9,4,5,1,2,3,6,7,8] => ? => ? = 2 - 1
[8,3,2,1]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,1,0]
=> [9,4,3,2,1,5,6,7,8] => ? => ? = 5 - 1
[8,2,2,1,1]
=> [1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [9,3,4,2,5,1,6,7,8] => ? => ? = 2 - 1
[7,5,2]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0,1,0]
=> [8,6,3,1,2,4,5,7] => ? => ? = 4 - 1
[7,5,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0,1,0]
=> [8,6,2,3,1,4,5,7] => ? => ? = 3 - 1
Description
The number of leading ones in a binary word.
Matching statistic: St000745
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
St000745: Standard tableaux ⟶ ℤResult quality: 76% ●values known / values provided: 76%●distinct values known / distinct values provided: 100%
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
St000745: Standard tableaux ⟶ ℤResult quality: 76% ●values known / values provided: 76%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [2,1] => [[1],[2]]
=> 2
[2]
=> [1,1,0,0,1,0]
=> [3,1,2] => [[1,3],[2]]
=> 2
[1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => [[1,2],[3]]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [[1,3,4],[2]]
=> 2
[2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => [[1],[2],[3]]
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [[1,2,3],[4]]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [[1,3,4,5],[2]]
=> 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [[1,4],[2],[3]]
=> 3
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [[1,2],[3,4]]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [[1,3],[2],[4]]
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [[1,2,3,4],[5]]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => [[1,3,4,5,6],[2]]
=> 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [[1,4,5],[2],[3]]
=> 3
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [[1,4],[2],[3]]
=> 3
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [[1,3],[2],[4]]
=> 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [[1,2],[3],[4]]
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [[1,3,4],[2],[5]]
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [[1,2,3,4,5],[6]]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,6] => [[1,3,4,5,6,7],[2]]
=> 2
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [6,2,1,3,4,5] => [[1,4,5,6],[2],[3]]
=> 3
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [[1,4,5],[2],[3]]
=> 3
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [[1,3,5],[2],[4]]
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [[1,2,5],[3,4]]
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [[1],[2],[3],[4]]
=> 4
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [[1,3,4],[2],[5]]
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [[1,2,3],[4,5]]
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [[1,2,4],[3],[5]]
=> 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => [[1,3,4,5],[2],[6]]
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => [[1,2,3,4,5,6],[7]]
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [8,1,2,3,4,5,6,7] => [[1,3,4,5,6,7,8],[2]]
=> 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => [[1,4,5,6,7],[2],[3]]
=> 3
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [6,3,1,2,4,5] => [[1,4,5,6],[2],[3]]
=> 3
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [6,2,3,1,4,5] => [[1,3,5,6],[2],[4]]
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [[1,4,5],[2],[3]]
=> 3
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [[1,5],[2],[3],[4]]
=> 4
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [[1,3,4],[2],[5]]
=> 2
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [[1,2],[3,5],[4]]
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [[1,3],[2,5],[4]]
=> 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [[1,4],[2],[3],[5]]
=> 3
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => [[1,3,4,5],[2],[6]]
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [[1,2,3],[4],[5]]
=> 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,6,1] => [[1,2,4,5],[3],[6]]
=> 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => [[1,3,4,5,6],[2],[7]]
=> 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => [[1,2,3,4,5,6,7],[8]]
=> 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1,2,3,4,5,6,7,8] => [[1,3,4,5,6,7,8,9],[2]]
=> 2
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [8,2,1,3,4,5,6,7] => [[1,4,5,6,7,8],[2],[3]]
=> 3
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [7,3,1,2,4,5,6] => [[1,4,5,6,7],[2],[3]]
=> 3
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => [[1,3,5,6,7],[2],[4]]
=> 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [[1,4,5,6],[2],[3]]
=> 3
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [6,3,2,1,4,5] => [[1,5,6],[2],[3],[4]]
=> 4
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,9,10,1] => [[1,3,4,5,6,7,8,9],[2],[10]]
=> ? = 2
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,9,10,11,1] => [[1,2,3,4,5,6,7,8,9,10],[11]]
=> ? = 1
[9,1,1]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [10,2,3,1,4,5,6,7,8,9] => [[1,3,5,6,7,8,9,10],[2],[4]]
=> ? = 2
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [9,3,2,1,4,5,6,7,8] => ?
=> ? = 4
[7,2,1,1]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [8,3,2,4,1,5,6,7] => ?
=> ? = 3
[4,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [5,2,3,4,6,7,8,9,1] => ?
=> ? = 2
[3,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [4,3,2,5,6,7,8,9,1] => [[1,4,5,6,7,8],[2],[3],[9]]
=> ? = 3
[3,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [4,2,3,5,6,7,8,9,10,1] => [[1,3,4,5,6,7,8,9],[2],[10]]
=> ? = 2
[2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [3,4,5,2,6,7,8,9,1] => ?
=> ? = 1
[2,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [3,4,2,5,6,7,8,9,10,1] => ?
=> ? = 1
[9,2,1]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [10,3,2,1,4,5,6,7,8,9] => ?
=> ? = 4
[8,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0]
=> [9,5,1,2,3,4,6,7,8] => ?
=> ? = 3
[8,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0]
=> [9,4,2,1,3,5,6,7,8] => ?
=> ? = 4
[8,2,1,1]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,1,0]
=> [9,3,2,4,1,5,6,7,8] => ?
=> ? = 3
[7,3,2]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0,1,0]
=> [8,4,3,1,2,5,6,7] => ?
=> ? = 4
[7,2,1,1,1]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0]
=> [8,3,2,4,5,1,6,7] => ?
=> ? = 3
[5,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [6,3,2,4,5,7,8,1] => ?
=> ? = 3
[5,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [6,2,3,4,5,7,8,9,1] => ?
=> ? = 2
[4,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> [5,3,2,4,6,7,8,9,1] => ?
=> ? = 3
[4,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0]
=> [5,2,3,4,6,7,8,9,10,1] => ?
=> ? = 2
[3,3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [4,5,2,3,6,7,8,9,1] => [[1,2,5,6,7,8],[3,4],[9]]
=> ? = 1
[3,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [4,3,5,2,6,7,8,9,1] => ?
=> ? = 2
[2,2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [3,4,5,6,2,7,8,9,1] => ?
=> ? = 1
[2,2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0]
=> [3,4,5,2,6,7,8,9,10,1] => ?
=> ? = 1
[2,2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0]
=> [3,4,2,5,6,7,8,9,10,11,1] => ?
=> ? = 1
[2,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,9,10,11,12,1] => ?
=> ? = 2
[9,4]
=> [1,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,0,1,0]
=> [10,5,1,2,3,4,6,7,8,9] => ?
=> ? = 3
[9,3,1]
=> [1,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,0,1,0]
=> [10,4,2,1,3,5,6,7,8,9] => ?
=> ? = 4
[9,2,1,1]
=> [1,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [10,3,2,4,1,5,6,7,8,9] => ?
=> ? = 3
[9,1,1,1,1]
=> [1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [10,2,3,4,5,1,6,7,8,9] => [[1,3,4,5,7,8,9,10],[2],[6]]
=> ? = 2
[8,4,1]
=> [1,1,1,1,1,1,0,1,0,0,0,1,0,0,0,0,1,0]
=> [9,5,2,1,3,4,6,7,8] => ?
=> ? = 4
[8,3,2]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0,1,0]
=> [9,4,3,1,2,5,6,7,8] => ?
=> ? = 4
[8,3,1,1]
=> [1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,0,1,0]
=> [9,4,2,3,1,5,6,7,8] => ?
=> ? = 3
[8,2,2,1]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0,1,0]
=> [9,3,4,2,1,5,6,7,8] => ?
=> ? = 2
[8,2,1,1,1]
=> [1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [9,3,2,4,5,1,6,7,8] => ?
=> ? = 3
[7,5,1]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0,1,0]
=> [8,6,2,1,3,4,5,7] => ?
=> ? = 4
[7,4,1,1]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0,1,0]
=> [8,5,2,3,1,4,6,7] => ?
=> ? = 3
[7,2,2,1,1]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0,1,0]
=> [8,3,4,2,5,1,6,7] => ?
=> ? = 2
[6,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0]
=> [7,2,3,4,5,6,8,9,1] => ?
=> ? = 2
[5,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [6,4,2,3,5,7,8,1] => ?
=> ? = 3
[5,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [6,3,4,2,5,7,8,1] => ?
=> ? = 2
[5,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,1,0,0,0,0]
=> [6,3,2,4,5,7,8,9,1] => ?
=> ? = 3
[5,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,0]
=> [6,2,3,4,5,7,8,9,10,1] => [[1,3,4,5,6,7,8,9],[2],[10]]
=> ? = 2
[4,4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [5,6,2,3,4,7,8,1] => ?
=> ? = 1
[4,3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> [5,4,2,3,6,7,8,9,1] => [[1,4,5,6,7,8],[2],[3],[9]]
=> ? = 3
[4,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [5,3,4,6,2,7,8,1] => ?
=> ? = 2
[4,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,0]
=> [5,3,4,2,6,7,8,9,1] => ?
=> ? = 2
[3,3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [4,5,3,6,2,7,8,1] => ?
=> ? = 1
[3,3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> [4,5,3,2,6,7,8,9,1] => ?
=> ? = 1
[3,3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,0]
=> [4,5,2,3,6,7,8,9,10,1] => [[1,2,5,6,7,8,9],[3,4],[10]]
=> ? = 1
Description
The index of the last row whose first entry is the row number in a standard Young tableau.
Matching statistic: St000011
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
St000011: Dyck paths ⟶ ℤResult quality: 71% ●values known / values provided: 71%●distinct values known / distinct values provided: 100%
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
St000011: Dyck paths ⟶ ℤResult quality: 71% ●values known / values provided: 71%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> 2
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 2
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> 3
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 3
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> 3
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> 3
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 4
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> 2
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 3
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> 3
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> 3
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 4
[9,2]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 3
[8,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 3
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 4
[7,4]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 3
[7,3,1]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4
[7,2,1,1]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 3
[5,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 2
[4,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> ? = 2
[3,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> ? = 2
[3,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 3
[2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 1
[9,3]
=> [1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 3
[9,2,1]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 4
[8,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 3
[8,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 4
[8,2,1,1]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 3
[8,1,1,1,1]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
[7,5]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 3
[7,4,1]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 4
[7,3,2]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4
[7,3,1,1]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 3
[7,2,1,1,1]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> ? = 3
[6,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 2
[5,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 3
[5,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> ? = 2
[4,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 3
[4,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> ? = 2
[4,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> ? = 3
[4,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0]
=> ? = 2
[3,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> ? = 2
[3,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> ? = 2
[2,2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 1
[2,2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> ? = 1
[2,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> ? = 2
[9,4]
=> [1,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 3
[9,3,1]
=> [1,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 4
[9,2,1,1]
=> [1,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 3
[9,1,1,1,1]
=> [1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
[8,5]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 3
[8,4,1]
=> [1,1,1,1,1,1,0,1,0,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 4
[8,3,2]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 4
[8,3,1,1]
=> [1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 3
[8,2,2,1]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0,1,0]
=> ? = 2
[8,2,1,1,1]
=> [1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 3
[8,1,1,1,1,1]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
[7,5,1]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> ? = 4
[7,4,2]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 4
[7,4,1,1]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 3
[7,3,2,1]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 5
[7,3,1,1,1]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> ? = 3
Description
The number of touch points (or returns) of a Dyck path.
This is the number of points, excluding the origin, where the Dyck path has height 0.
Matching statistic: St000383
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00039: Integer compositions —complement⟶ Integer compositions
St000383: Integer compositions ⟶ ℤResult quality: 62% ●values known / values provided: 62%●distinct values known / distinct values provided: 100%
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00039: Integer compositions —complement⟶ Integer compositions
St000383: Integer compositions ⟶ ℤResult quality: 62% ●values known / values provided: 62%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,1] => [2] => 2
[2]
=> [1,1,0,0,1,0]
=> [2,1] => [1,2] => 2
[1,1]
=> [1,0,1,1,0,0]
=> [1,2] => [2,1] => 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,2] => 2
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1] => [3] => 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => [2,1,1] => 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,1,1,2] => 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,3] => 3
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => [1,2,1] => 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,2,1] => [2,2] => 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [2,1,1,1] => 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1] => [1,1,1,1,2] => 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,1,1] => [1,1,3] => 3
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,3] => 3
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,2] => 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => [3,1] => 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [2,1,2] => 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,5] => [2,1,1,1,1] => 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1] => [1,1,1,1,1,2] => 2
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,1,1] => [1,1,1,3] => 3
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,1] => [1,1,3] => 3
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,2,2] => 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [1,1,2,1] => 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => 4
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [2,1,2] => 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,2,1,1] => 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [2,2,1] => 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,4,1] => [2,1,1,2] => 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,6] => [2,1,1,1,1,1] => 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [7,1] => [1,1,1,1,1,1,2] => ? = 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,1,1] => [1,1,1,1,3] => 3
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,1] => [1,1,1,3] => 3
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,2,1] => [1,1,2,2] => 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,1,3] => 3
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,4] => 4
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [2,1,2] => 2
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,3,1] => 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,2,2] => 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [2,3] => 3
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,4,1] => [2,1,1,2] => 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1] => 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,3,2] => [2,1,2,1] => 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,5,1] => [2,1,1,1,2] => 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,7] => [2,1,1,1,1,1,1] => ? = 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [8,1] => [1,1,1,1,1,1,1,2] => ? = 2
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [6,1,1] => [1,1,1,1,1,3] => ? = 3
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,1] => [1,1,1,1,3] => 3
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,2,1] => [1,1,1,2,2] => 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,1,1] => [1,1,1,3] => 3
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,1,1,1] => [1,1,4] => 4
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,3,1] => [1,2,1,2] => 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,2] => [1,1,1,2,1] => 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,4] => 4
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,2,2] => 2
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,8] => [2,1,1,1,1,1,1,1] => ? = 1
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => [1,1,1,1,1,1,1,1,2] => ? = 2
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [7,1,1] => [1,1,1,1,1,1,3] => ? = 3
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [6,1,1] => [1,1,1,1,1,3] => ? = 3
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,7,1] => [2,1,1,1,1,1,2] => ? = 2
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,9] => [2,1,1,1,1,1,1,1,1] => ? = 1
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [8,1,1] => [1,1,1,1,1,1,1,3] => ? = 3
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [7,1,1] => [1,1,1,1,1,1,3] => ? = 3
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [6,2,1] => [1,1,1,1,1,2,2] => ? = 2
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [6,1,1] => [1,1,1,1,1,3] => ? = 3
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [5,1,1,1] => [1,1,1,1,4] => ? = 4
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,5,1,1] => [2,1,1,1,3] => ? = 3
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,7,1] => [2,1,1,1,1,1,2] => ? = 2
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,6,2] => [2,1,1,1,1,2,1] => ? = 1
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,10] => [2,1,1,1,1,1,1,1,1,1] => ? = 1
[9,2]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> [8,1,1] => [1,1,1,1,1,1,1,3] => ? = 3
[8,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,1,0]
=> [7,1,1] => [1,1,1,1,1,1,3] => ? = 3
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [6,1,1,1] => [1,1,1,1,1,4] => ? = 4
[8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [5,3,1] => [1,1,1,1,2,1,2] => ? = 2
[7,4]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [6,1,1] => [1,1,1,1,1,3] => ? = 3
[7,3,1]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> [5,1,1,1] => [1,1,1,1,4] => ? = 4
[7,2,1,1]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [4,2,1,1] => [1,1,1,2,3] => ? = 3
[4,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,5,1,1] => [2,1,1,1,3] => ? = 3
[4,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,7,1] => [2,1,1,1,1,1,2] => ? = 2
[3,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,6,1,1] => [2,1,1,1,1,3] => ? = 3
[2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,5,3] => [2,1,1,1,2,1,1] => ? = 1
[2,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,7,2] => [2,1,1,1,1,1,2,1] => ? = 1
[9,3]
=> [1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,0]
=> [8,1,1] => [1,1,1,1,1,1,1,3] => ? = 3
[9,2,1]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [7,1,1,1] => [1,1,1,1,1,1,4] => ? = 4
[8,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0]
=> [7,1,1] => [1,1,1,1,1,1,3] => ? = 3
[8,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0]
=> [6,1,1,1] => [1,1,1,1,1,4] => ? = 4
[8,2,2]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0]
=> [6,2,1] => [1,1,1,1,1,2,2] => ? = 2
[8,2,1,1]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,1,0]
=> [5,2,1,1] => [1,1,1,1,2,3] => ? = 3
[8,1,1,1,1]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [4,4,1] => [1,1,1,2,1,1,2] => ? = 2
[7,5]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [6,1,1] => [1,1,1,1,1,3] => ? = 3
[7,4,1]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0,1,0]
=> [5,1,1,1] => [1,1,1,1,4] => ? = 4
[7,3,2]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0,1,0]
=> [5,1,1,1] => [1,1,1,1,4] => ? = 4
[7,3,1,1]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0,1,0]
=> [4,2,1,1] => [1,1,1,2,3] => ? = 3
[7,2,1,1,1]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0]
=> [3,3,1,1] => [1,1,2,1,3] => ? = 3
[5,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [1,5,1,1] => [2,1,1,1,3] => ? = 3
[5,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,7,1] => [2,1,1,1,1,1,2] => ? = 2
[4,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,5,1,1] => [2,1,1,1,3] => ? = 3
[4,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> [1,6,1,1] => [2,1,1,1,1,3] => ? = 3
[3,3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,6,2] => [2,1,1,1,1,2,1] => ? = 1
[3,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [1,5,2,1] => [2,1,1,1,2,2] => ? = 2
[2,2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [1,4,4] => [2,1,1,2,1,1,1] => ? = 1
Description
The last part of an integer composition.
Matching statistic: St000439
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St000439: Dyck paths ⟶ ℤResult quality: 62% ●values known / values provided: 62%●distinct values known / distinct values provided: 100%
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
St000439: Dyck paths ⟶ ℤResult quality: 62% ●values known / values provided: 62%●distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 3 = 2 + 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 4 = 3 + 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 4 = 3 + 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 4 = 3 + 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 4 = 3 + 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 4 = 3 + 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 4 = 3 + 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 5 = 4 + 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> 4 = 3 + 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> 4 = 3 + 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 4 = 3 + 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 5 = 4 + 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 4 = 3 + 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> 4 = 3 + 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> 4 = 3 + 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 5 = 4 + 1
[9,2]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 3 + 1
[8,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 3 + 1
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 4 + 1
[8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 2 + 1
[7,4]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 3 + 1
[7,3,1]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 4 + 1
[7,2,1,1]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 3 + 1
[4,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,1,0,0,0]
=> ? = 3 + 1
[4,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> ? = 2 + 1
[3,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> ? = 2 + 1
[3,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0,0]
=> ? = 3 + 1
[3,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> ? = 2 + 1
[2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 1 + 1
[2,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 1 + 1
[9,3]
=> [1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 3 + 1
[9,2,1]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 4 + 1
[8,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 3 + 1
[8,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 4 + 1
[8,2,2]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 2 + 1
[8,2,1,1]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 3 + 1
[8,1,1,1,1]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 2 + 1
[7,5]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 3 + 1
[7,4,1]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,1,0,0]
=> ? = 4 + 1
[7,3,2]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0,1,0]
=> ? = 4 + 1
[7,3,1,1]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 3 + 1
[7,2,1,1,1]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3 + 1
[5,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,1,0,0,0]
=> ? = 3 + 1
[5,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> ? = 2 + 1
[4,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,1,0,0]
=> ? = 3 + 1
[4,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 2 + 1
[4,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0,0]
=> ? = 3 + 1
[4,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> ? = 2 + 1
[3,3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> ? = 1 + 1
[3,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> ? = 2 + 1
[3,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> ? = 2 + 1
[2,2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 1 + 1
[2,2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 1 + 1
[2,2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 1 + 1
[2,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 2 + 1
[9,4]
=> [1,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 3 + 1
[9,3,1]
=> [1,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ?
=> ? = 4 + 1
[9,2,1,1]
=> [1,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 3 + 1
[9,1,1,1,1]
=> [1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 2 + 1
[8,5]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 3 + 1
[8,4,1]
=> [1,1,1,1,1,1,0,1,0,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ?
=> ? = 4 + 1
[8,3,2]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0,1,0]
=> ? = 4 + 1
[8,3,1,1]
=> [1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 3 + 1
[8,2,2,1]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 2 + 1
[8,2,1,1,1]
=> [1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> ?
=> ? = 3 + 1
[8,1,1,1,1,1]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 2 + 1
Description
The position of the first down step of a Dyck path.
Matching statistic: St000678
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000678: Dyck paths ⟶ ℤResult quality: 62% ●values known / values provided: 62%●distinct values known / distinct values provided: 80%
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000678: Dyck paths ⟶ ℤResult quality: 62% ●values known / values provided: 62%●distinct values known / distinct values provided: 80%
Values
[1]
=> [1,0,1,0]
=> [1,1] => [1,0,1,0]
=> 2
[2]
=> [1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> 2
[1,1]
=> [1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 2
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 3
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 3
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> 2
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 3
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 4
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,6] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> 3
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 3
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 3
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 4
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 3
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,7] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [8,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 3
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> 3
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> 3
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> 4
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,8] => [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [7,1,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> ? = 3
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 3
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 2
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,7,1] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,9] => [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 1
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [8,1,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> ? = 3
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [7,1,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> ? = 3
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [6,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 2
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 3
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 4
[7,1,1,1]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 2
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,7,1] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,6,2] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 1
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,8,1] => [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,10] => [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> ? = 1
[9,2]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> [8,1,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> ? = 3
[9,1,1]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [7,2,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 2
[8,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,1,0]
=> [7,1,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> ? = 3
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [6,1,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 4
[8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [5,3,1] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 2
[7,4]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 3
[7,3,1]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 4
[7,2,2]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 2
[7,2,1,1]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [4,2,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 3
[7,1,1,1,1]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 2
[4,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,7,1] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
[3,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,6,1,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 3
[3,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,8,1] => [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
[2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,5,3] => [1,0,1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 1
[2,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,7,2] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0]
=> ? = 1
[9,3]
=> [1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,0]
=> [8,1,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> ? = 3
[9,2,1]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [7,1,1,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 4
[8,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0]
=> [7,1,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> ? = 3
[8,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0]
=> [6,1,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 4
[8,2,2]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0]
=> [6,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 2
[8,2,1,1]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,1,0]
=> [5,2,1,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 3
[8,1,1,1,1]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [4,4,1] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 2
[7,5]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 3
[7,4,1]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0,1,0]
=> [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 4
[7,3,2]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0,1,0]
=> [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 4
[7,3,1,1]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0,1,0]
=> [4,2,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 3
[7,2,2,1]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0]
=> [4,1,2,1] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 2
[7,2,1,1,1]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0]
=> [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 3
[6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 1
[5,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,7,1] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
Description
The number of up steps after the last double rise of a Dyck path.
Matching statistic: St000675
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
St000675: Dyck paths ⟶ ℤResult quality: 50% ●values known / values provided: 50%●distinct values known / distinct values provided: 70%
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
St000675: Dyck paths ⟶ ℤResult quality: 50% ●values known / values provided: 50%●distinct values known / distinct values provided: 70%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> 2
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 3
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> 2
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> 3
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 3
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? = 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> 3
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 3
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 3
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 4
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 3
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> ? = 2
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> ? = 3
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> 3
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 3
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> 4
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 4
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> ? = 2
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0]
=> ? = 1
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 2
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0,0]
=> ? = 3
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,1,0,0]
=> ? = 2
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> ? = 2
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0,0]
=> ? = 2
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0]
=> ? = 1
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0,0]
=> ? = 3
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0,1,0]
=> ? = 3
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,1,0,0]
=> ? = 2
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> ? = 3
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,1,0,0,0]
=> ? = 4
[7,1,1,1]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,1,0,0]
=> ? = 2
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0]
=> ? = 2
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0]
=> ? = 3
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,0]
=> ? = 2
[2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 1
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 1
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0,0]
=> ? = 2
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,0,0]
=> ? = 1
[9,2]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 3
[9,1,1]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 2
[8,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ?
=> ? = 3
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ?
=> ? = 4
[8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,1,0,0]
=> ? = 2
[7,4]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0,1,0]
=> ? = 3
[7,3,1]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> ? = 4
[7,2,2]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0,1,0]
=> ? = 2
[7,2,1,1]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,1,0,0,0]
=> ? = 3
[7,1,1,1,1]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> ? = 2
[5,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> ? = 2
[4,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,1,0,0,0]
=> ? = 3
[4,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0,0]
=> ? = 2
[3,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,1,1,0,0,0,0]
=> ? = 2
[3,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ?
=> ? = 3
[3,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0,0]
=> ? = 2
[2,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 1
[2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ?
=> ? = 1
[2,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 1
[9,3]
=> [1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ?
=> ? = 3
[9,2,1]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 4
[8,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ?
=> ? = 3
[8,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ?
=> ? = 4
[8,2,2]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0,1,0]
=> ? = 2
[8,2,1,1]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ?
=> ? = 3
Description
The number of centered multitunnels of a Dyck path.
This is the number of factorisations $D = A B C$ of a Dyck path, such that $B$ is a Dyck path and $A$ and $B$ have the same length.
Matching statistic: St001050
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St001050: Set partitions ⟶ ℤResult quality: 43% ●values known / values provided: 43%●distinct values known / distinct values provided: 70%
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St001050: Set partitions ⟶ ℤResult quality: 43% ●values known / values provided: 43%●distinct values known / distinct values provided: 70%
Values
[1]
=> [1,0,1,0]
=> {{1},{2}}
=> 2
[2]
=> [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 2
[1,1]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 2
[2,1]
=> [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> 3
[2,2]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> {{1,2,3,4,5},{6}}
=> 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> {{1,2,4},{3},{5}}
=> 3
[3,2]
=> [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 3
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2,3,4,5,6}}
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> {{1,2,3,4,5,6},{7}}
=> 2
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> {{1,2,3,5},{4},{6}}
=> 3
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> {{1,4},{2,3},{5}}
=> 3
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 4
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> {{1},{2,3,4,6},{5}}
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> {{1},{2,3,4,5,6,7}}
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> {{1,2,3,4,5,6,7},{8}}
=> 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> {{1,2,3,4,6},{5},{7}}
=> 3
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> {{1,2,5},{3,4},{6}}
=> 3
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> {{1,2,4,5},{3},{6}}
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 3
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> 4
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 2
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> 3
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> {{1},{2,3,6},{4,5}}
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> {{1},{2,3,5,6},{4}}
=> 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> {{1},{2,3,4,5,7},{6}}
=> 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> {{1},{2,3,4,5,6,7,8}}
=> 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> {{1,2,3,4,5,6,7,8},{9}}
=> 2
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> {{1,2,3,4,5,7},{6},{8}}
=> 3
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> {{1,2,3,6},{4,5},{7}}
=> 3
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> {{1,2,3,5,6},{4},{7}}
=> 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> {{1,5},{2,3,4},{6}}
=> 3
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> {{1,2,5},{3},{4},{6}}
=> 4
[9,2]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> {{1,2,3,4,5,6,9},{7,8},{10}}
=> ? = 3
[9,1,1]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> {{1,2,3,4,5,6,8,9},{7},{10}}
=> ? = 2
[8,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,1,0]
=> {{1,2,3,4,8},{5,6,7},{9}}
=> ? = 3
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> {{1,2,3,4,5,8},{6},{7},{9}}
=> ? = 4
[8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> {{1,2,3,4,6,7,8},{5},{9}}
=> ? = 2
[7,4]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> {{1,2,7},{3,4,5,6},{8}}
=> ? = 3
[7,3,1]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> {{1,2,3,7},{4,6},{5},{8}}
=> ? = 4
[7,2,2]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> {{1,2,3,6,7},{4,5},{8}}
=> ? = 2
[7,2,1,1]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> {{1,2,3,5,7},{4},{6},{8}}
=> ? = 3
[7,1,1,1,1]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> {{1,2,4,5,6,7},{3},{8}}
=> ? = 2
[5,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> {{1},{2,3,8},{4,5,6,7}}
=> ? = 2
[4,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> {{1},{2,3,4,8},{5,7},{6}}
=> ? = 3
[4,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> {{1},{2,3,4,5,9},{6,7,8}}
=> ? = 2
[3,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> {{1},{2,3,4,7,8},{5,6}}
=> ? = 1
[3,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> {{1},{2,3,4,6,8},{5},{7}}
=> ? = 2
[3,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> {{1},{2,3,4,5,6,9},{7},{8}}
=> ? = 3
[3,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> {{1},{2,3,4,5,6,7,10},{8,9}}
=> ? = 2
[2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> {{1},{2,3,4,5,7,8,9},{6}}
=> ? = 1
[2,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> {{1},{2,3,4,5,6,7,9,10},{8}}
=> ? = 1
[9,3]
=> [1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,0]
=> {{1,2,3,4,5,9},{6,7,8},{10}}
=> ? = 3
[9,2,1]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> {{1,2,3,4,5,6,9},{7},{8},{10}}
=> ? = 4
[8,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0]
=> {{1,2,3,8},{4,5,6,7},{9}}
=> ? = 3
[8,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0]
=> {{1,2,3,4,8},{5,7},{6},{9}}
=> ? = 4
[8,2,2]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0]
=> {{1,2,3,4,7,8},{5,6},{9}}
=> ? = 2
[8,2,1,1]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,1,0]
=> {{1,2,3,4,6,8},{5},{7},{9}}
=> ? = 3
[8,1,1,1,1]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> {{1,2,3,5,6,7,8},{4},{9}}
=> ? = 2
[7,5]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> {{1,7},{2,3,4,5,6},{8}}
=> ? = 3
[7,4,1]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0,1,0]
=> {{1,2,7},{3,4,6},{5},{8}}
=> ? = 4
[7,3,2]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0,1,0]
=> {{1,2,3,7},{4,5},{6},{8}}
=> ? = 4
[7,3,1,1]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0,1,0]
=> {{1,2,3,7},{4},{5,6},{8}}
=> ? = 3
[7,2,2,1]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0]
=> {{1,2,3,6,7},{4},{5},{8}}
=> ? = 2
[7,2,1,1,1]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0]
=> {{1,2,4,5,7},{3},{6},{8}}
=> ? = 3
[7,1,1,1,1,1]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> {{1,3,4,5,6,7},{2},{8}}
=> ? = 2
[6,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> {{1},{2,8},{3,4,5,6,7}}
=> ? = 2
[5,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> {{1},{2,3,8},{4,5,7},{6}}
=> ? = 3
[5,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> {{1},{2,3,4,9},{5,6,7,8}}
=> ? = 2
[4,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> {{1},{2,3,4,8},{5,6},{7}}
=> ? = 3
[4,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> {{1},{2,3,4,8},{5},{6,7}}
=> ? = 2
[4,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> {{1},{2,3,4,5,9},{6,8},{7}}
=> ? = 3
[4,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0]
=> {{1},{2,3,4,5,6,10},{7,8,9}}
=> ? = 2
[3,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> {{1},{2,3,4,7,8},{5},{6}}
=> ? = 1
[3,3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> {{1},{2,3,4,5,8,9},{6,7}}
=> ? = 1
[3,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> {{1},{2,3,5,6,8},{4},{7}}
=> ? = 2
[3,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> {{1},{2,3,4,5,7,9},{6},{8}}
=> ? = 2
[2,2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> {{1},{2,3,4,6,7,8,9},{5}}
=> ? = 1
[2,2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0]
=> {{1},{2,3,4,5,6,8,9,10},{7}}
=> ? = 1
[2,2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0]
=> {{1},{2,3,4,5,6,7,8,10,11},{9}}
=> ? = 1
[2,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> {{1},{2,3,4,5,6,7,8,9,10,12},{11}}
=> ? = 2
[9,4]
=> [1,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,0,1,0]
=> {{1,2,3,4,9},{5,6,7,8},{10}}
=> ? = 3
[9,3,1]
=> [1,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,0,1,0]
=> {{1,2,3,4,5,9},{6,8},{7},{10}}
=> ? = 4
Description
The number of terminal closers of a set partition.
A closer of a set partition is a number that is maximal in its block. In particular, a singleton is a closer. This statistic counts the number of terminal closers. In other words, this is the number of closers such that all larger elements are also closers.
Matching statistic: St000025
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
Mp00123: Dyck paths —Barnabei-Castronuovo involution⟶ Dyck paths
St000025: Dyck paths ⟶ ℤResult quality: 40% ●values known / values provided: 40%●distinct values known / distinct values provided: 70%
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
Mp00123: Dyck paths —Barnabei-Castronuovo involution⟶ Dyck paths
St000025: Dyck paths ⟶ ℤResult quality: 40% ●values known / values provided: 40%●distinct values known / distinct values provided: 70%
Values
[1]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 2
[2]
=> [1,1,0,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 3
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 3
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> 2
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 3
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> 2
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 2
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> 3
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 3
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 2
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 3
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 4
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0]
=> 2
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> 2
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 2
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 3
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> 3
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> 2
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 3
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 4
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 2
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 4
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 2
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 1
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 2
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 3
[7,2]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 3
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 2
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 1
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 2
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> ? = 1
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 3
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 3
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 2
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,1,0,0,0,0]
=> ? = 3
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,1,0,0,0,0,0]
=> ? = 4
[7,1,1,1]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 2
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> ? = 2
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,1,1,0,0,0,0]
=> ? = 3
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 2
[2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 1
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 1
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> ? = 2
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> ? = 1
[9,2]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> ?
=> ?
=> ? = 3
[9,1,1]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 2
[8,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,1,0]
=> ?
=> ?
=> ? = 3
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 4
[8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,1,0,0]
=> ?
=> ? = 2
[7,4]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,1,0,0,0]
=> ? = 3
[7,3,1]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,1,0,0,0,0]
=> ? = 4
[7,2,2]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 2
[7,2,1,1]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,1,1,0,0,0,0,0]
=> ? = 3
[7,1,1,1,1]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 2
[5,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 2
[4,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,1,0,1,0,0,0]
=> ? = 3
[4,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> ? = 2
[3,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 1
[3,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> ? = 2
[3,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> ? = 3
[3,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> ? = 2
[2,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> ? = 1
[2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> ?
=> ?
=> ? = 1
[2,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> ?
=> ?
=> ? = 1
[9,3]
=> [1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,0]
=> ?
=> ?
=> ? = 3
[9,2,1]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,1,1,0,0,0]
=> ?
=> ? = 4
[8,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0]
=> ?
=> ?
=> ? = 3
Description
The number of initial rises of a Dyck path.
In other words, this is the height of the first peak of $D$.
The following 30 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St000234The number of global ascents of a permutation. St001316The domatic number of a graph. St000759The smallest missing part in an integer partition. St000068The number of minimal elements in a poset. St000007The number of saliances of the permutation. St000546The number of global descents of a permutation. St000717The number of ordinal summands of a poset. St000237The number of small exceedances. St000654The first descent of a permutation. St000989The number of final rises of a permutation. St001461The number of topologically connected components of the chord diagram of a permutation. St000843The decomposition number of a perfect matching. St000838The number of terminal right-hand endpoints when the vertices are written in order. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St000990The first ascent of a permutation. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St000056The decomposition (or block) number of a permutation. St000061The number of nodes on the left branch of a binary tree. St000084The number of subtrees. St000286The number of connected components of the complement of a graph. St000314The number of left-to-right-maxima of a permutation. St000740The last entry of a permutation. St000991The number of right-to-left minima of a permutation. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000310The minimal degree of a vertex of a graph. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!