Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000367
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00024: Dyck paths to 321-avoiding permutationPermutations
Mp00149: Permutations Lehmer code rotationPermutations
St000367: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1]
=> [1,0,1,0]
=> [2,1] => [1,2] => 0
[2]
=> [1,1,0,0,1,0]
=> [3,1,2] => [1,3,2] => 0
[1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => [3,1,2] => 0
[3]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,3,4,2] => 0
[2,1]
=> [1,0,1,0,1,0]
=> [2,1,3] => [3,2,1] => 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [3,4,1,2] => 0
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [1,3,4,5,2] => 0
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [3,1,2,4] => [4,2,3,1] => 0
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [4,1,3,2] => 0
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [2,3,1,4] => [3,4,2,1] => 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [3,4,5,1,2] => 0
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => [1,3,4,5,6,2] => 0
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,3,5] => [5,2,3,4,1] => 0
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [3,1,4,2] => [4,2,1,3] => 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [2,1,3,4] => [3,2,4,1] => 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [2,4,1,3] => [3,1,4,2] => 0
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,1,5] => [3,4,5,2,1] => 3
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [3,4,5,6,1,2] => 0
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,6] => [1,3,4,5,6,7,2] => 0
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [5,1,2,3,4,6] => [6,2,3,4,5,1] => 0
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,1,2,5,3] => [5,2,3,1,4] => 0
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,4,5] => [4,2,3,5,1] => 0
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [5,1,3,4,2] => 0
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [2,1,4,3] => [3,2,1,4] => 2
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => [3,4,2,5,1] => 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [4,5,1,3,2] => 0
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [3,4,1,5,2] => 0
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [2,3,4,5,1,6] => [3,4,5,6,2,1] => 4
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [5,1,2,3,6,4] => [6,2,3,4,1,5] => 0
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5,6] => [5,2,3,4,6,1] => 0
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => [5,2,1,4,3] => 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4] => [4,2,3,1,5] => 0
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => [3,2,4,5,1] => 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4] => [4,1,3,5,2] => 0
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,2] => [4,5,2,1,3] => 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,4] => [3,4,2,1,5] => 3
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [2,3,4,1,5,6] => [3,4,5,2,6,1] => 3
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => [3,5,1,4,2] => 0
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,3,4,6,1,5] => [3,4,5,1,6,2] => 0
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [5,1,2,6,3,4] => [6,2,3,1,5,4] => 0
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [4,1,2,3,6,5] => [5,2,3,4,1,6] => 0
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [3,1,2,4,5,6] => [4,2,3,5,6,1] => 0
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [5,6,1,2,3,4] => [6,1,3,4,5,2] => 0
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4] => [4,2,1,5,3] => 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,5,2] => [4,2,5,1,3] => 1
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,4] => [3,2,4,1,5] => 1
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [2,3,1,4,5,6] => [3,4,2,5,6,1] => 2
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,4,1,2,5] => [4,5,2,3,1] => 0
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => [3,1,4,5,2] => 0
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,5,3] => [3,5,2,1,4] => 3
Description
The number of simsun double descents of a permutation. The restriction of a permutation $\pi$ to $[k] = \{1,\ldots,k\}$ is given in one-line notation by the subword of $\pi$ of letters in $[k]$. A simsun double descent of a permutation $\pi$ is a double descent of any restriction of $\pi$ to $[1,\ldots,k]$ for some $k$. (Note here that the same double descent can appear in multiple restrictions!)
Matching statistic: St000455
Mp00095: Integer partitions to binary wordBinary words
Mp00178: Binary words to compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000455: Graphs ⟶ ℤResult quality: 11% values known / values provided: 11%distinct values known / distinct values provided: 20%
Values
[1]
=> 10 => [1,2] => ([(1,2)],3)
=> 0
[2]
=> 100 => [1,3] => ([(2,3)],4)
=> 0
[1,1]
=> 110 => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 0
[3]
=> 1000 => [1,4] => ([(3,4)],5)
=> 0
[2,1]
=> 1010 => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[1,1,1]
=> 1110 => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[4]
=> 10000 => [1,5] => ([(4,5)],6)
=> 0
[3,1]
=> 10010 => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[2,2]
=> 1100 => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 0
[2,1,1]
=> 10110 => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,1,1,1]
=> 11110 => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[5]
=> 100000 => [1,6] => ([(5,6)],7)
=> 0
[4,1]
=> 100010 => [1,4,2] => ([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[3,2]
=> 10100 => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[3,1,1]
=> 100110 => [1,3,1,2] => ([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[2,2,1]
=> 11010 => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 0
[2,1,1,1]
=> 101110 => [1,2,1,1,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,1,1,1,1]
=> 111110 => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
[6]
=> 1000000 => [1,7] => ([(6,7)],8)
=> ? = 0
[5,1]
=> 1000010 => [1,5,2] => ([(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
[4,2]
=> 100100 => [1,3,3] => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[4,1,1]
=> 1000110 => [1,4,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
[3,3]
=> 11000 => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 0
[3,2,1]
=> 101010 => [1,2,2,2] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,1,1,1]
=> 1001110 => [1,3,1,1,2] => ([(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[2,2,2]
=> 11100 => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 0
[2,2,1,1]
=> 110110 => [1,1,2,1,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[2,1,1,1,1]
=> 1011110 => [1,2,1,1,1,2] => ([(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 4
[5,2]
=> 1000100 => [1,4,3] => ([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
[5,1,1]
=> 10000110 => [1,5,1,2] => ([(1,7),(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 0
[4,3]
=> 101000 => [1,2,4] => ([(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[4,2,1]
=> 1001010 => [1,3,2,2] => ([(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
[4,1,1,1]
=> 10001110 => [1,4,1,1,2] => ([(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
[3,3,1]
=> 110010 => [1,1,3,2] => ([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[3,2,2]
=> 101100 => [1,2,1,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[3,2,1,1]
=> 1010110 => [1,2,2,1,2] => ([(1,6),(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[3,1,1,1,1]
=> 10011110 => [1,3,1,1,1,2] => ([(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 3
[2,2,2,1]
=> 111010 => [1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[2,2,1,1,1]
=> 1101110 => [1,1,2,1,1,2] => ([(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
[5,3]
=> 1001000 => [1,3,4] => ([(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
[5,2,1]
=> 10001010 => [1,4,2,2] => ([(1,8),(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 0
[5,1,1,1]
=> 100001110 => [1,5,1,1,2] => ([(1,7),(1,8),(1,9),(2,7),(2,8),(2,9),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 0
[4,4]
=> 110000 => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> 0
[4,3,1]
=> 1010010 => [1,2,3,2] => ([(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 2
[4,2,2]
=> 1001100 => [1,3,1,3] => ([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[4,2,1,1]
=> 10010110 => [1,3,2,1,2] => ([(1,7),(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1
[4,1,1,1,1]
=> 100011110 => [1,4,1,1,1,2] => ([(1,6),(1,7),(1,8),(1,9),(2,6),(2,7),(2,8),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 2
[3,3,2]
=> 110100 => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 0
[3,3,1,1]
=> 1100110 => [1,1,3,1,2] => ([(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
[3,2,2,1]
=> 1011010 => [1,2,1,2,2] => ([(1,7),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[3,2,1,1,1]
=> 10101110 => [1,2,2,1,1,2] => ([(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 4
[2,2,2,2]
=> 111100 => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
[2,2,2,1,1]
=> 1110110 => [1,1,1,2,1,2] => ([(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
[5,4]
=> 1010000 => [1,2,5] => ([(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[5,3,1]
=> 10010010 => [1,3,3,2] => ([(1,8),(2,8),(3,7),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 0
[5,2,2]
=> 10001100 => [1,4,1,3] => ([(2,7),(2,8),(3,7),(3,8),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 0
[5,2,1,1]
=> 100010110 => [1,4,2,1,2] => ([(1,8),(1,9),(2,7),(2,8),(2,9),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 0
[5,1,1,1,1]
=> 1000011110 => [1,5,1,1,1,2] => ([(1,7),(1,8),(1,9),(1,10),(2,7),(2,8),(2,9),(2,10),(3,7),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 1
[4,4,1]
=> 1100010 => [1,1,4,2] => ([(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 0
[4,3,2]
=> 1010100 => [1,2,2,3] => ([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
[4,3,1,1]
=> 10100110 => [1,2,3,1,2] => ([(1,7),(1,8),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 3
[4,2,2,1]
=> 10011010 => [1,3,1,2,2] => ([(1,8),(2,6),(2,7),(2,8),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 2
[4,2,1,1,1]
=> 100101110 => [1,3,2,1,1,2] => ([(1,7),(1,8),(1,9),(2,6),(2,7),(2,8),(2,9),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 2
[3,3,3]
=> 111000 => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 0
[3,3,2,1]
=> 1101010 => [1,1,2,2,2] => ([(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 1
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.
Matching statistic: St001948
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00201: Dyck paths RingelPermutations
Mp00238: Permutations Clarke-Steingrimsson-ZengPermutations
St001948: Permutations ⟶ ℤResult quality: 10% values known / values provided: 10%distinct values known / distinct values provided: 60%
Values
[1]
=> [1,0,1,0]
=> [3,1,2] => [3,1,2] => 0
[2]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => [4,2,1,3] => 0
[1,1]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => [4,3,1,2] => 0
[3]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => 0
[2,1]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => [4,1,2,3] => 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [5,3,1,4,2] => 0
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => [6,2,3,4,1,5] => ? = 0
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [3,1,5,2,4] => 0
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [5,2,4,1,3] => 0
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [4,5,1,2,3] => 2
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [6,3,1,4,5,2] => ? = 0
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,3,4,5,7,1,6] => [7,2,3,4,5,1,6] => ? = 0
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [4,1,6,3,2,5] => ? = 0
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [5,3,1,2,4] => 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [5,1,4,2,3] => 0
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [5,6,1,2,4,3] => ? = 3
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [3,1,4,5,6,7,2] => [7,3,1,4,5,6,2] => ? = 0
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [2,3,4,5,6,8,1,7] => [8,2,3,4,5,6,1,7] => ? = 0
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [7,3,4,5,1,2,6] => [5,1,7,3,4,2,6] => ? = 0
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [4,2,1,6,3,5] => ? = 0
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [6,3,4,1,2,5] => ? = 0
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [6,2,3,5,1,4] => ? = 0
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [5,1,2,3,4] => 2
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [5,3,1,2,6,4] => ? = 2
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [6,2,4,1,5,3] => ? = 0
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [6,4,5,1,2,3] => ? = 0
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => [6,7,1,2,4,5,3] => ? = 4
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [2,7,4,5,1,3,6] => [5,2,1,7,4,3,6] => ? = 0
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,3,4,1,7,2,6] => [7,4,5,3,1,2,6] => ? = 0
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [6,2,3,1,4,5] => ? = 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [4,1,2,6,3,5] => ? = 0
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [6,3,1,4,2,5] => ? = 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [3,1,6,5,2,4] => ? = 0
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [5,2,6,1,3,4] => ? = 2
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [5,6,1,2,3,4] => ? = 3
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [3,1,7,5,6,2,4] => [6,3,1,2,7,5,4] => ? = 3
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [6,1,4,2,5,3] => ? = 0
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [6,1,4,5,2,7,3] => [7,5,6,1,4,2,3] => ? = 0
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [2,3,7,5,1,4,6] => [5,2,3,1,7,4,6] => ? = 0
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [7,5,4,1,2,3,6] => [4,1,2,5,7,3,6] => ? = 0
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [4,3,1,5,7,2,6] => [7,3,4,1,5,2,6] => ? = 0
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,3,4,6,1,7,5] => [7,2,3,4,6,1,5] => ? = 0
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [3,1,6,2,4,5] => ? = 2
[4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [6,2,4,1,3,5] => ? = 1
[4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [4,6,1,2,3,5] => ? = 1
[4,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [3,1,4,7,6,2,5] => [6,3,1,4,2,7,5] => ? = 2
[3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [6,2,1,5,3,4] => ? = 0
[3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [6,3,1,5,2,4] => ? = 0
[3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [5,1,6,2,3,4] => ? = 3
[3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => [5,6,1,2,7,3,4] => ? = 4
[2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4,1,5,6,7,3] => [7,2,4,1,5,6,3] => ? = 0
[2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [5,1,4,2,6,7,3] => [7,4,5,1,2,6,3] => ? = 0
[5,4]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,3,4,7,1,5,6] => [7,2,3,4,1,5,6] => ? = 1
[5,3,1]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> [7,3,5,1,2,4,6] => [5,1,7,3,2,4,6] => ? = 0
[5,2,2]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [2,5,4,1,7,3,6] => [7,2,4,5,1,3,6] => ? = 0
[5,2,1,1]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [7,4,1,5,2,3,6] => [5,4,1,7,2,3,6] => ? = 0
[5,1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [3,1,4,5,7,2,6] => [7,3,1,4,5,2,6] => ? = 1
[4,4,1]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [6,3,4,1,2,7,5] => [4,1,7,3,6,2,5] => ? = 0
[4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [6,2,1,3,4,5] => ? = 1
[4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [6,3,1,2,4,5] => ? = 3
[4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [6,1,4,2,3,5] => ? = 2
[4,2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => [6,7,1,2,4,3,5] => ? = 2
Description
The number of augmented double ascents of a permutation. An augmented double ascent of a permutation $\pi$ is a double ascent of the augmented permutation $\tilde\pi$ obtained from $\pi$ by adding an initial $0$. A double ascent of $\tilde\pi$ then is a position $i$ such that $\tilde\pi(i) < \tilde\pi(i+1) < \tilde\pi(i+2)$.